Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Editorial

Non-conventional Approaches towards Various Organic Transformations – (Part II)

Author(s): Bubun Banerjee

Volume 27, Issue 12, 2023

Published on: 23 October, 2023

Page: [983 - 984] Pages: 2

DOI: 10.2174/138527282712231023164926

[1]
Banerjee, B. Carbon-carbon and carbon-heteroatom bond forming reactions under greener conditions - Part 2. Curr. Org. Chem., 2021, 25, 2-3.
[2]
Varma, R.S.; Banerjee, B. Magnetic nanocatalysis: Synthetic applications, Berlin; De Gruyter: Boston, 2022.
[http://dx.doi.org/10.1515/9783110730357]
[3]
Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Catalytic applications of saccharin and its derivatives in organic synthesis. Curr. Org. Chem., 2020, 23(28), 3191-3205.
[http://dx.doi.org/10.2174/1385272823666191121144758]
[4]
Mukhopadhyay, C.; Banerjee, B. Non-conventional solvents: Ionic Liquids, Deep Eutectic Solvents, Crown Ethers, Fluorinated Solvents, Glycols and Glycerol; De Gruyter: Berlin, Boston, 2023.
[http://dx.doi.org/10.1515/9783110788129]
[5]
Mukhopadhyay, C.; Banerjee, B. Non-conventional solvents: Organic Synthesis, Natural Products Isolation, Drug Design, Industry and the Environment; De Gruyter: Berlin, Boston, 2023.
[http://dx.doi.org/10.1515/9783111243993]
[6]
Banerjee, B. Ultrasound and nano-catalysts: An ideal and sustainable combination to carry out diverse organic transformations. ChemistrySelect, 2019, 4(8), 2484-2500.
[http://dx.doi.org/10.1002/slct.201803081]
[7]
Kaur, G.; Sharma, A.; Banerjee, B. Ultrasound and ionic liquid: An ideal combination for organic transformations. ChemistrySelect, 2018, 3(19), 5283-5295.
[http://dx.doi.org/10.1002/slct.201800326]
[8]
Banerjee, B.; Tajti, A.; Keglevich, G. Ultrasound-assisted synthesis of organophosphorus compounds; Organophosphorus Chemistry, 2018.
[http://dx.doi.org/10.1515/9783110535839-013]
[9]
Banerjee, B. Recent developments on ultrasound-assisted synthesis of bioactive N-heterocycles at ambient temperature. Aust. J. Chem., 2017, 70(8), 872-888.
[http://dx.doi.org/10.1071/CH17080]
[10]
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem., 2017, 35(Pt A), 1-14.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.023] [PMID: 27771266]
[11]
Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem., 2017, 35(Pt A), 15-35.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.010] [PMID: 27771265]
[12]
Sharma, A.; Priya, A.; Kaur, M.; Singh, A.; Kaur, G.; Banerjee, B. Ultrasound-assisted synthesis of bioactive S -heterocycles. Synth. Commun., 2021, 51(21), 3209-3236.
[http://dx.doi.org/10.1080/00397911.2021.1970775]
[13]
Banerjee, B.; Kaur, G. Microwave assisted catalyst-free synthesis of bioactive heterocycles. Curr. Microw. Chem., 2020, 7(1), 5-22.
[http://dx.doi.org/10.2174/2213335607666200226102010]
[14]
Banerjee, B. Microwave-assisted catalyst as well as solvent-free synthesis of bioactive heterocycles; Green Sustainable Process for Chemical and Environmental Engineering and Science, 2021, pp. 225-244.
[http://dx.doi.org/10.1016/B978-0-12-819720-2.00014-X]
[15]
Egorov, I.N.; Santra, S.; Kopchuk, D.S.; Kovalev, I.S.; Zyryanov, G.V.; Majee, A.; Ranu, B.C.; Rusinov, V.L.; Chupakhin, O.N. Ball milling: An efficient and green approach for asymmetric organic syntheses. Green Chem., 2020, 22(2), 302-315.
[http://dx.doi.org/10.1039/C9GC03414E]
[16]
Shen, B.R.; Annamalai, P.; Wang, S.F.; Bai, R.; Lee, C.F. Blue LED-promoted syntheses of phosphorothioates and phosphorodithioates. J. Org. Chem., 2022, 87(14), 8858-8870.
[http://dx.doi.org/10.1021/acs.joc.2c00323] [PMID: 35762987]
[17]
Costa, P.; Vega-Peñaloza, A.; Cognigni, L.; Bonchio, M. Light-induced organic transformations by covalent organic frameworks as reticular platforms for selective photosynthesis. ACS Sustain. Chem.& Eng., 2021, 9(47), 15694-15721.
[http://dx.doi.org/10.1021/acssuschemeng.1c04787]
[18]
Balan, L.; Fernández de Córdoba, M.C.; Zaier, M.; Ania, C.O. A green and fast approach to nanoporous carbons with tuned porosity: UV-assisted condensation of organic compounds at room temperature. Carbon, 2017, 116, 264-274.
[http://dx.doi.org/10.1016/j.carbon.2017.01.088]
[19]
Albano, G.; Decandia, G.; Capozzi, M.A.M.; Zappimbulso, N.; Punzi, A.; Farinola, G.M. Infrared irradiation-assisted solvent-free Pd-catalyzed (hetero)aryl-aryl coupling via C−H bond activation. ChemSusChem, 2021, 14(16), 3391-3401.
[http://dx.doi.org/10.1002/cssc.202101070] [PMID: 34224202]
[20]
Zhu, C.; Ang, N.W.J.; Meyer, T.H.; Qiu, Y.; Ackermann, L. Organic electrochemistry: Molecular syntheses with potential. ACS Cent. Sci., 2021, 7(3), 415-431.
[http://dx.doi.org/10.1021/acscentsci.0c01532] [PMID: 33791425]
[21]
Banerjee, B.; Priya, A.; Kaur, J.; Kaur, M.; Singh, A.; Sharma, A. Cyanuric chloride promoted various organic transformations. Synth. Commun., 2023, 53(12), 855-882.
[http://dx.doi.org/10.1080/00397911.2023.2201889]
[22]
Banerjee, B.; Singh, A.; Kaur, G. 9 Baker’s yeast (Saccharomyces cerevisiae) catalyzed synthesis of bioactive heterocycles and some stereoselective reactions. Phys. Sci. Rev., 2022, 7, 227-250.
[http://dx.doi.org/10.1515/9783110732542-009]
[23]
Kaur, M.; Priya, A.; Sharma, A.; Singh, A.; Banerjee, B. Glycine and its derivatives catalyzed one-pot multicomponent synthesis of bioactive heterocycles. Synth. Commun., 2022, 52(16), 1635-1656.
[http://dx.doi.org/10.1080/00397911.2022.2090262]
[24]
Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic acid (CSA): An efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr. Green Chem., 2018, 5(3), 150-167.
[http://dx.doi.org/10.2174/2213346105666181001113413]
[25]
Banerjee, B. Non-conventional Approaches Towards Various Organic Transformations – (Part 1). Curr. Org. Chem., 2023, 27, 557-558.
[26]
Kamboj, M.; Bajpai, S.; Banik, B.K. Microwave-induced reactions for pyrrole synthesis. Curr. Org. Chem., 2023, 27(7), 559-567.
[http://dx.doi.org/10.2174/1385272827666230508124450]
[27]
Banerjee, B.; Singh, A.; Sharma, A.; Priya, A.; Kaur, M.; Kaur, G. Ultrasound-assisted synthesis of biologically promising organoselenium scaffolds. Curr. Org. Chem., 2023, 27(7), 568-579.
[http://dx.doi.org/10.2174/1385272827666230522151128]
[28]
Margetić D. A synopsis of ball milling organic synthesis in the last 25 years. Curr. Org. Chem., 2023, 27(7), 580-584.
[http://dx.doi.org/10.2174/1385272827666230407082210]
[29]
Ayvaz, A. Demirbaş, S.G.; Demirbaş, A.; Demirbaş, N. One-pot multicomponent reactions in deep eutectic solvents. Curr. Org. Chem., 2023, 27(7), 585-620.
[http://dx.doi.org/10.2174/1385272827666230427101210]
[30]
Berrichi, A.; Bachir, R.; Bedrane, S. Catalysts for propargylamines synthesis via A3, AHA, and KA2 coupling - A review. Curr. Org. Chem., 2023, 27(7), 621-643.
[http://dx.doi.org/10.2174/1385272827666230614151935]
[31]
Merabet-Khelassi, M. Recent advances in biocatalytic acylation of alcohols as a sustainable target for flavor and fragrance compounds. Curr. Org. Chem., 2023, 27(12), 985-996.
[http://dx.doi.org/10.2174/0113852728242674230921105452]
[32]
Kumar, P.V.; Aravindraj, K.; Madhumitha, G.; Roopan, S.M. Recent advances in the light-assisted synthesis of ring junction nitrogen heterocycles. Curr. Org. Chem., 2023, 27(12), 997-1009.
[http://dx.doi.org/10.2174/1385272827666230915101920]
[33]
Wahan, S.K.; Bhargava, G.; Chawla, P. Ultrasound-assisted synthesis of nitrogen and oxygen containing heterocycles. Curr. Org. Chem., 2023, 27(12), 1010-1019.
[http://dx.doi.org/10.2174/1385272827666230911130127]
[34]
Li, S.; Dong, J. A visible-light-induced cyclization reaction. Curr. Org. Chem., 2023, 27(12), 1020-1035.
[http://dx.doi.org/10.1021/acs.joc.2c01432]
[35]
Tayade, Y.A. Wagh, Y.B.; Dalal, D.S. β-cyclodextrin mediated green synthesis of bioactive heterocycles. Curr. Org. Chem., 2023, 27(12), 1036-1052.
[http://dx.doi.org/10.2174/1385272827666230911115818]
[36]
Tok, F. Koçyiğit-Kaymakçıoğlu, B. Recent advances in the microwave and ultrasound-assisted synthesis of pyrazole scaffolds. Curr. Org. Chem., 2023, 27(12), 1053-1071.
[http://dx.doi.org/10.2174/1385272827666230816105258]
[37]
Majee, S. Applications of flow chemistry in total synthesis of natural products. Curr. Org. Chem., 2023, 27(12), 1072-1089.
[http://dx.doi.org/10.2174/1385272827666230809094232]
[38]
Gupta, A.; Gupta, R.; Arora, G.; Yadav, P.; Sharma, R.K. Heterogeneous catalysis under continuous flow conditions. Curr. Org. Chem., 2023, 27(12), 1090-1110.
[http://dx.doi.org/10.2174/0113852728268688230921105908]

© 2024 Bentham Science Publishers | Privacy Policy