Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Advances in Biocatalytic Acylation of Alcohols as a Sustainable Target for Flavor and Fragrance Compounds

Author(s): Mounia Merabet-Khelassi*

Volume 27, Issue 12, 2023

Published on: 27 September, 2023

Page: [985 - 996] Pages: 12

DOI: 10.2174/0113852728242674230921105452

Price: $65

Abstract

Currently, the use of enzymes as efficient tools for the preparation of highly valuable molecules in various industries has proven to be a tremendous development. The preparation of esters via biotechnological processes constitutes an important eco-friendly approach for several industries, especially in the field of flavour and fragrances. This is particularly due to the accrued customer’s interest in products labelled as natural ensured by using enzymes as natural catalysts. This mini-review article is dedicated to underline the recent advances (from 2010 to 2022) in the bio-acylation of achiral and chiral alcohols (esterification and transesterification). The preparation conditions, such as enzyme nature, acyl donor, solvents, etc., are highlighted.

Keywords: Biocatalysis, acetylation, enzymatic kinetic resolution, acetates, sustainable chemistry, alcohols.

« Previous
Graphical Abstract
[1]
Sun, H.; Zhang, H.; Ang, E.L.; Zhao, H. Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates. Bioorg. Med. Chem., 2018, 26(7), 1275-1284.
[http://dx.doi.org/10.1016/j.bmc.2017.06.043] [PMID: 28709846]
[2]
Patel, R.N. Biocatalysis for synthesis of pharmaceuticals. Bioorg. Med. Chem., 2018, 26(7), 1252-1274.
[http://dx.doi.org/10.1016/j.bmc.2017.05.023] [PMID: 28648492]
[3]
Woodley, J.M. Accelerating the implementation of biocatalysis in industry. Appl. Microbiol. Biotechnol., 2019, 103(12), 4733-4739.
[http://dx.doi.org/10.1007/s00253-019-09796-x] [PMID: 31049622]
[4]
Basso, A.; Serban, S. Industrial applications of immobilized enzymes-A review. Mol Catal, 2019, 479, 110607.
[http://dx.doi.org/10.1016/j.mcat.2019.110607]
[5]
Sheldon, R.A.; Brady, D.; Bode, M.L. The Hitchhiker’s guide to biocatalysis: Recent advances in the use of enzymes in organic synthesis. Chem. Sci., 2020, 11(10), 2587-2605.
[http://dx.doi.org/10.1039/C9SC05746C] [PMID: 32206264]
[6]
Winkler, C.K.; Schrittwieser, J.H.; Kroutil, W. Power of biocatalysis for organic synthesis. ACS Cent. Sci., 2021, 7(1), 55-71.
[http://dx.doi.org/10.1021/acscentsci.0c01496] [PMID: 33532569]
[7]
Turner, N.J.; Kumar, R. Editorial overview: Biocatalysis and biotransformation: The golden age of biocatalysis. Curr. Opin. Chem. Biol., 2018, 43(43), A1-A3.
[http://dx.doi.org/10.1016/j.cbpa.2018.02.012] [PMID: 29526305]
[8]
Alcántara, A.R.; Domínguez de María, P.; Littlechild, J.A.; Schürmann, M.; Sheldon, R.A.; Wohlgemuth, R. Biocatalysis as key to sustainable industrial chemistry. ChemSusChem, 2022, 15(9), e202102709.
[PMID: 35238475]
[9]
Global Markets for Enzymes in Industrial Applications In: BIO030L; BCC Publishing, 2021.
[10]
Ghaffari-Moghaddam, M.; Eslahi, H.; Aydin, Y.A.; Saloglu, D. Enzymatic processes in alternative reaction media: A mini review. J. Biol. Methods, 2015, 2(3), e25-e25.
[http://dx.doi.org/10.14440/jbm.2015.60]
[11]
Kumar, A.; Dhar, K.; Kanwar, S.S.; Arora, P.K. Lipase catalysis in organic solvents: Advantages and applications. Biol. Proced. Online, 2016, 18(1), 2.
[http://dx.doi.org/10.1186/s12575-016-0033-2] [PMID: 26766927]
[12]
Wohlgemuth, R. Biocatalysis-key to sustainable industrial chemistry. Curr. Opin. Biotechnol., 2010, 21(6), 713-724.
[http://dx.doi.org/10.1016/j.copbio.2010.09.016] [PMID: 21030244]
[13]
Simić S.; Zukić E.; Schmermund, L.; Faber, K.; Winkler, C.K.; Kroutil, W. Shortening synthetic routes to small molecule active pharmaceutical ingredients employing biocatalytic methods. Chem. Rev., 2022, 122(1), 1052-1126.
[http://dx.doi.org/10.1021/acs.chemrev.1c00574] [PMID: 34846124]
[14]
Busto, E.; Gotor-Fernández, V.; Gotor, V. Hydrolases: Catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chem. Soc. Rev., 2010, 39(11), 4504-4523.
[http://dx.doi.org/10.1039/c003811c] [PMID: 20877864]
[15]
Kharissova, O.V.; Kharisov, B.I.; Oliva González, C.M.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci., 2019, 6(11), 191378.
[http://dx.doi.org/10.1098/rsos.191378] [PMID: 31827868]
[16]
Kapoor, M.; Gupta, M.N. Lipase promiscuity and its biochemical applications. Process Biochem., 2012, 47(4), 555-569.
[http://dx.doi.org/10.1016/j.procbio.2012.01.011]
[17]
Hult, K.; Berglund, P. Enzyme promiscuity: Mechanism and applications. Trends Biotechnol., 2007, 25(5), 231-238.
[http://dx.doi.org/10.1016/j.tibtech.2007.03.002] [PMID: 17379338]
[18]
Serra, S.; Fuganti, C.; Brenna, E. Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol., 2005, 23(4), 193-198.
[http://dx.doi.org/10.1016/j.tibtech.2005.02.003] [PMID: 15780711]
[19]
Malkar, R.S.; Yadav, G.D. Development of green and clean processes for perfumes and flavors using heterogeneous chemical catalysis. Curr. Catal., 2020, 9(1), 32-58.
[http://dx.doi.org/10.2174/2211544708666190613163523]
[20]
Flavors and fragrances market size, share & trends analysis report by product (Aroma Chemicals, Natural), by application (Flavors, Fragrances), by region (Asia Pacific, North America), and segment forecasts, 2023-2030. Report ID: GVR-1-68038-697. Retrieved from: https://www.grandviewresearch.com/industry-analysis/flavors-fragrances-market#
[21]
Ribeaucourt, D.; Bissaro, B.; Lambert, F.; Lafond, M.; Berrin, J.G. Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry. Biotechnol. Adv., 2022, 56, 107787.
[http://dx.doi.org/10.1016/j.biotechadv.2021.107787] [PMID: 34147589]
[22]
Shin, M.; Seo, J.; Baek, Y.; Lee, T.; Jang, M.; Park, C. Novel and efficient synthesis of phenethyl formate via enzymatic esterification of formic acid. Biomolecules, 2020, 10(1), 70.
[http://dx.doi.org/10.3390/biom10010070] [PMID: 31906270]
[23]
Sá, A.G.A.; Meneses, A.C.; Araújo, P.H.H.; Oliveira, D. A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends Food Sci. Technol., 2017, 69, 95-105.
[http://dx.doi.org/10.1016/j.tifs.2017.09.004]
[24]
Poornima, K.; Preetha, R. Biosynthesis of food flavours and fragrances-A review. Asian J. Chem., 2017, 29(11), 2345-2352.
[http://dx.doi.org/10.14233/ajchem.2017.20748]
[25]
Khan, Z.; Javed, F.; Shamair, Z.; Hafeez, A.; Fazal, T.; Aslam, A.; Zimmerman, W.B.; Rehman, F. Current developments in esterification reaction: A review on process and parameters. J. Ind. Eng. Chem., 2021, 103, 80-101.
[http://dx.doi.org/10.1016/j.jiec.2021.07.018]
[26]
Gamayurova, V.S.; Zinov’eva, M.E.; Shnaider, K.L.; Davletshina, G.A. Lipases in esterification reactions: A review. Catal. Ind., 2021, 13(1), 58-72.
[http://dx.doi.org/10.1134/S2070050421010025]
[27]
Berger, R.G. Biotechnology of flavours-the next generation. Biotechnol. Lett., 2009, 31(11), 1651-1659.
[http://dx.doi.org/10.1007/s10529-009-0083-5] [PMID: 19609491]
[28]
Dylong, D.; Hausoul, P.J.C.; Palkovits, R.; Eisenacher, M. Synthesis of (−)-menthol: Industrial synthesis routes and recent development. Flavour Fragrance J., 2022, 37(4), 195-209.
[http://dx.doi.org/10.1002/ffj.3699]
[29]
Ben Akacha, N.; Gargouri, M. Microbial and enzymatic technologies used for the production of natural aroma compounds: Synthesis, recovery modeling, and bioprocesses. Food Bioprod. Process., 2015, 94, 675-706.
[http://dx.doi.org/10.1016/j.fbp.2014.09.011]
[30]
Khan, N.R.; Rathod, V.K. Enzyme catalyzed synthesis of cosmetic esters and its intensification: A review. Process Biochem., 2015, 50(11), 1793-1806.
[http://dx.doi.org/10.1016/j.procbio.2015.07.014]
[31]
Serra, S. Recent developments in the synthesis of the flavors and fragrances of terpenoid origin. Stud. Nat. Prod. Chem., 2015, 46, 201-226.
[http://dx.doi.org/10.1016/B978-0-444-63462-7.00007-5]
[32]
Khan, N.R.; Rathod, V.K. Microwave assisted enzymatic synthesis of speciality esters: A mini-review. Process Biochem., 2018, 75, 89-98.
[http://dx.doi.org/10.1016/j.procbio.2018.08.019]
[33]
Paulino, B.N.; Sales, A.; Felipe, L.; Pastore, G.M.; Molina, G.; Bicas, J.L. Recent advances in the microbial and enzymatic production of aroma compounds. Curr. Opin. Food Sci., 2021, 37, 98-106.
[http://dx.doi.org/10.1016/j.cofs.2020.09.010]
[34]
Dhake, K.P.; Thakare, D.D.; Bhanage, B.M. Lipase: A potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour Fragrance J., 2013, 28(2), 71-83.
[http://dx.doi.org/10.1002/ffj.3140]
[35]
Alnoch, R.C.; Alves dos Santos, L.; Marques de Almeida, J.; Krieger, N.; Mateo, C. Recent trends in biomaterials for immobilization of lipases for application in non-conventional media. Catalysts, 2020, 10(6), 697.
[http://dx.doi.org/10.3390/catal10060697]
[36]
Jaeger, K.E.; Ransac, S.; Dijkstra, B.W.; Colson, C.; Heuvel, M.; Misset, O. Bacterial lipases. FEMS Microbiol. Rev., 1994, 15(1), 29-63.
[http://dx.doi.org/10.1111/j.1574-6976.1994.tb00121.x] [PMID: 7946464]
[37]
Ismail, A.R.; Kashtoh, H.; Baek, K.H. Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. Int. J. Biol. Macromol., 2021, 187, 127-142.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.07.101] [PMID: 34298046]
[38]
Javed, S.; Azeem, F.; Hussain, S.; Rasul, I.; Siddique, M.H.; Riaz, M.; Afzal, M.; Kouser, A.; Nadeem, H. Bacterial lipases: A review on purification and characterization. Prog. Biophys. Mol. Biol., 2018, 132, 23-34.
[http://dx.doi.org/10.1016/j.pbiomolbio.2017.07.014] [PMID: 28774751]
[39]
Godoy, C.A.; Pardo-Tamayo, J.S.; Barbosa, O. Microbial lipases and their potential in the production of pharmaceutical building blocks. Int. J. Mol. Sci., 2022, 23(17), 9933.
[http://dx.doi.org/10.3390/ijms23179933] [PMID: 36077332]
[40]
Chen, B.S.; Ribeiro de Souza, F.Z. Enzymatic synthesis of enantiopure alcohols: Current state and perspectives. RSC Advances, 2019, 9(4), 2102-2115.
[http://dx.doi.org/10.1039/C8RA09004A] [PMID: 35516160]
[41]
Borowiecki, P.; Zdun, B.; Dranka, M. Chemoenzymatic enantioselective and stereo-convergent syntheses of lisofylline enantiomers via lipase-catalyzed kinetic resolution and optical inversion approach. Mol. Catalysis, 2021, 504, 111451.
[http://dx.doi.org/10.1016/j.mcat.2021.111451]
[42]
Stergiou, P.Y.; Foukis, A.; Filippou, M.; Koukouritaki, M.; Parapouli, M.; Theodorou, L.G.; Hatziloukas, E.; Afendra, A.; Pandey, A.; Papamichael, E.M. Advances in lipase-catalyzed esterification reactions. Biotechnol. Adv., 2013, 31(8), 1846-1859.
[http://dx.doi.org/10.1016/j.biotechadv.2013.08.006] [PMID: 23954307]
[43]
Tarczykowska, A.; Sikora, A.; Marszall, M.P. Lipases-valuable biocatalysts in kinetic resolution of racemates. Mini Rev. Org. Chem., 2018, 15(5), 374-381.
[http://dx.doi.org/10.2174/1570193X15666171228145012]
[44]
Bornscheuer, U.T. Lipases, synthesis of chiral compounds, aqueous and organic solvents. In: Encyclopedia of industrial biotechnology: Bioprocess, bioseparation, and cell technology; Wiley, 2009, 7.
[45]
Merabet-Khelassi, M.; Bouzemi, N.; Fiaud, J.C.; Riant, O.; Aribi-Zouioueche, L. Effect of the amount of lipase on enantioselectivity in the kinetic resolution by enzymatic acylation of arylalkylcarbinols. C. R. Chim., 2011, 14(11), 978-986.
[http://dx.doi.org/10.1016/j.crci.2011.07.005]
[46]
Merabet-Khelassi, M.; Houiene, Z.; Aribi-Zouioueche, L.; Riant, O. Green methodology for enzymatic hydrolysis of acetates in non-aqueous media via carbonate salts. Tetrahedron Asymmetry, 2012, 23(11-12), 828-833.
[http://dx.doi.org/10.1016/j.tetasy.2012.06.001]
[47]
Houiene, Z.; Merabet-Khelassi, M.; Bouzemi, N.; Riant, O.; Aribi-Zouioueche, L. A green route to enantioenriched (S)-arylalkyl carbinols by deracemization via combined lipase alkaline-hydrolysis/Mitsunobu esterification. Tetrahedron Asymmetry, 2013, 24(5-6), 290-296.
[http://dx.doi.org/10.1016/j.tetasy.2013.01.020]
[48]
Merabet-Khelassi, M.; Vriamont, N.; Aribi-Zouioueche, L.; Riant, O. Racemization of secondary alcohols catalyzed by ruthenium: Application to chemoenzymatic dynamic resolution. Tetrahedron Asymmetry, 2011, 22(18-19), 1790-1796.
[http://dx.doi.org/10.1016/j.tetasy.2011.10.007]
[49]
Zaïdi, A.; Merabet-Khelassi, M.; Aribi-Zouioueche, L. CAL-B-catalyzed enantioselective deacetylation of some benzylic acetate derivatives via alcoholysis in non-aqueous media. Catal. Lett., 2015, 145(4), 1054-1061.
[http://dx.doi.org/10.1007/s10562-014-1470-7]
[50]
Ferrah, M.; Benamara, N.; Merabet-Khelassi, M.; Lakoud, S.G.; Aribi-Zouioueche, L. Enantioselective bio-deacylation of arylalkyl acetates using tertiary amines as additive under promiscuous conditions. Enzyme Microb. Technol., 2023, 162, 110145.
[http://dx.doi.org/10.1016/j.enzmictec.2022.110145] [PMID: 36335859]
[51]
Braia, N.; Merabet-Khelassi, M.; Aribi-Zouioueche, L. Efficient access to both enantiomers of 3-(1-hydroxyethyl)phenol by regioselective and enantioselective CAL-B -catalyzed hydrolysis of diacetate in organic media by sodium carbonate. Chirality, 2018, 30(12), 1312-1320.
[http://dx.doi.org/10.1002/chir.23025] [PMID: 30295968]
[52]
Merabet-Khelassi, M.; Zaidi, A.; Aribi-Zouioueche, L. CAL-B-Catalyzed deacylation of benzylic acetates: Effect of amines addition. Comparison of several approaches. Enzyme Microb. Technol., 2017, 107, 1-6.
[http://dx.doi.org/10.1016/j.enzmictec.2017.07.005] [PMID: 28899481]
[53]
Razi, S.; Zeror, S.; Merabet-Khelassi, M.; Kolodziej, E.; Toffano, M.; Aribi-Zouioueche, L. Two approaches for CAL-B-catalyzed enantioselective deacylation of a set of α-phenyl ethyl esters: Organic solvent with sodium carbonate and micro-aqueous medium. Catal. Lett., 2021, 151(9), 2603-2611.
[http://dx.doi.org/10.1007/s10562-020-03525-0]
[54]
Merabet, M.; Melais, N.; Boukachabia, M.; Fiaud, J.C.; Zouioueche-Aribi, L. Effect of a crown ether on the catalytic system over lipase of candida cylindracea in the transesterification of 1-acenaphenol with various acylating agents. J. Soc. Alg. Chim., 2007, 17(2), 185-194.
[55]
Braïa, N.; Merabet-Khelassi, M.; Toffano, M.; Aribi-Zouioueche, L. Practical access to (S)-heterocyclic aromatic acetates via CAL-B/Na2CO3-deacylation and Mitsunobu reaction protocol. Biocatal. Biotransform., 2022, 41(4), 261-269.
[http://dx.doi.org/10.1080/10242422.2022.2030726]
[56]
Benamara, N.E.; Merabet-Khelassi, M.; Lakoud, S.G.; Aribi-Zouioueche, L.; Riant, O. Enantioselective enzymatic synthesis of (R)-phenyl alkyl esters and their analogue amides using fatty acids as green acyl donors. ChemistrySelect, 2021, 6(48), 13941-13946.
[http://dx.doi.org/10.1002/slct.202103831]
[57]
Merabet-Khelassi, M.; Aribi-Zouioueche, L.; Riant, O. Synthesis of 1,2-disubstituted aminoarylferrocene as direct route to enantioenriched 2-hydroxymethyl-1-phenylferrocene via enzymatic kinetic resolution. Res. Chem. Intermed., 2017, 43(10), 5293-5303.
[http://dx.doi.org/10.1007/s11164-017-2926-3]
[58]
Merabet-Khellasi, M.; Aribi-Zouioueche, L.; Riant, O. Chemoenzymatic synthesis of optically active 1,2-disubstituted ferrocenes with planar chirality. Tetrahedron Asymmetry, 2009, 20(12), 1371-1377.
[http://dx.doi.org/10.1016/j.tetasy.2009.04.014]
[59]
Merabet-Khelassi, M.; Aribi-Zouioueche, L.; Riant, O. Effect of alkaloids on the activity and selectivity of Candida rugosa lipase in the kinetic resolution of 2-hydroxymethyl-1-phenylthioferrocene with planar chirality. Tetrahedron Asymmetry, 2008, 19(20), 2378-2384.
[http://dx.doi.org/10.1016/j.tetasy.2008.10.009]
[60]
Alalla, A.; Merabet-Khelassi, M.; Riant, O.; Aribi-Zouioueche, L. Easy kinetic resolution of some β-amino alcohols by Candida antarctica lipase B catalyzed hydrolysis in organic media. Tetrahedron Asymmetry, 2016, 27(24), 1253-1259.
[http://dx.doi.org/10.1016/j.tetasy.2016.10.003]
[61]
Belkacemi, F.Z.; Merabet-Khelassi, M.; Aribi-Zouioueche, L.; Riant, O. Diastereoselective and enantioselective alkaline-hydrolysis of 2-aryl-1-cyclohexyl acetate: A CAL-B catalyzed deacylation/acylation tandem process. Tetrahedron Asymmetry, 2017, 28(11), 1644-1650.
[http://dx.doi.org/10.1016/j.tetasy.2017.09.010]
[62]
Braïa, N.; Merabet-Khelassi, M.; Toffano, M.; Guillot, R.; Aribi-Zouioueche, L. Access to valuable building blocks by the regio- and enantioselective ring opening of itaconic anhydride by lipase catalysis. Org. Biomol. Chem., 2022, 20(13), 2693-2703.
[http://dx.doi.org/10.1039/D2OB00047D] [PMID: 35293925]
[63]
Benamara, N.; Merabet-Khelassi, M.; Aribi-Zouioueche, L.; Riant, O. CAL-B-mediated efficient synthesis of a set of valuable amides by direct amidation of phenoxy- and aryl-propionic acids. Chem. Pap., 2021, 75(8), 4045-4053.
[http://dx.doi.org/10.1007/s11696-021-01636-5]
[64]
Berger, R.G. Flavours and fragrances: Chemistry, bioprocessing and sustainability; Springer, 2007.
[http://dx.doi.org/10.1007/978-3-540-49339-6]
[65]
Gupta, P.; Taneja, S.C.; Shah, B.A.; Sethi, V.K.; Qazi, G.N. Lipase-catalyzed separation of geometrical isomers: Geraniol-nerol. Chem. Lett., 2007, 36(9), 1110-1111.
[http://dx.doi.org/10.1246/cl.2007.1110]
[66]
Sun, W.; Xiong, J.; Xu, H.; Ma, M.; Hu, Y. Synthesis of neryl acetate by free lipase-catalyzed transesterification in organic solvents and its kinetics. Food Sci. Technol., 2022, 42(42), e26522.
[http://dx.doi.org/10.1590/fst.26522]
[67]
Jiang, C.; Cheng, G. Optimization of enzymatic synthesis of neryl acetate in a solvent free system. OAlib, 2020, 7(4), 1-13.
[http://dx.doi.org/10.4236/oalib.1106254]
[68]
Liu, Y. WeiZhuo, X.; Wei, X. A review on lipase-catalyzed synthesis of geranyl esters as flavor additives for food, pharmaceutical and cosmetic applications. Food Chem. Adv., 2022, 1, 100052.
[http://dx.doi.org/10.1016/j.focha.2022.100052]
[69]
Martins, A. B.; Da Silva, A. M.; Schein, M. F.; Garcia-Galan, C. Comparison of the performance of commercial immobilized lipases in the synthesis of different flavor esters. J. Mol. Catal. B: Enz., 2014, 105, 18e25.
[70]
Paroul, N.; Grzegozeski, L.P.; Chiaradia, V.; Treichel, H.; Cansian, R.L.; Oliveira, J.V.; de Oliveira, D. Solvent-free geranyl oleate production by enzymatic esterification. Bioprocess Biosyst. Eng., 2011, 34(3), 323-329.
[http://dx.doi.org/10.1007/s00449-010-0475-x] [PMID: 20981557]
[71]
Yadav, G.D.; Kamble, M.P. A green process for synthesis of geraniol esters by immobilized lipase from Candida antarctica B fraction in non-aqueous reaction media: Optimization and kinetic modeling. Int. J. Chem. React. Eng., 2018, 16(7), 20170179.
[http://dx.doi.org/10.1515/ijcre-2017-0179]
[72]
Lozano, P.; Bernal, J.M.; Navarro, A. A clean enzymatic process for producing flavour esters by direct esterification in switchable ionic liquid/solid phases. Green Chem., 2012, 14(11), 3026-3033.
[http://dx.doi.org/10.1039/c2gc36081k]
[73]
Bhavsar, K.V.; Yadav, G.D. Synthesis of geranyl acetate by transesterification of geraniol with ethyl acetate over Candida antarctica lipase as catalyst in solvent-free system. Flavour Fragrance J., 2019, 34(4), 288-293.
[http://dx.doi.org/10.1002/ffj.3502]
[74]
Chiaradia, V.; Soares, N.S.; Valério, A.; de Oliveira, D.; Araújo, P.H.H.; Sayer, C. Immobilization of Candida antarctica lipase B on magnetic poly (urea-urethane) nanoparticles. Appl. Biochem. Biotechnol., 2016, 180(3), 558-575.
[http://dx.doi.org/10.1007/s12010-016-2116-6] [PMID: 27184256]
[75]
da Silva Corrêa, L.; Henriques, R.O.; Rios, J.V.; Lerin, L.A.; de Oliveira, D.; Furigo, A., Jr Lipase-catalyzed esterification of geraniol and citronellol for the synthesis of terpenic esters. Appl. Biochem. Biotechnol., 2020, 190(2), 574-583.
[http://dx.doi.org/10.1007/s12010-019-03102-1] [PMID: 31396887]
[76]
Nicoletti, G.; Cipolatti, E.P.; Valério, A.; Carbonera, N.G.; Soares, N.S.; Theilacker, E.; Ninow, J.L.; de Oliveira, D. Evaluation of different methods for immobilization of Candida antarctica lipase B (CalB lipase) in polyurethane foam and its application in the production of geranyl propionate. Bioprocess Biosyst. Eng., 2015, 38(9), 1739-1748.
[http://dx.doi.org/10.1007/s00449-015-1415-6] [PMID: 26037641]
[77]
Yuan, M.; Cong, F.; Zhai, Y.; Li, P.; Yang, W.; Zhang, S.; Su, Y.; Li, T.; Wang, Y.; Luo, W.; Liu, D.; Cui, Z. Rice straw enhancing catalysis of Pseudomonas fluorescens lipase for synthesis of citronellyl acetate. Bioprocess Biosyst. Eng., 2022, 45(3), 453-464.
[http://dx.doi.org/10.1007/s00449-021-02659-8] [PMID: 34686911]
[78]
Adarme, C.A.A.; Leão, R.A.C.; de Souza, S.P.; Itabaiana, I., Jr; de Souza, R.O.M.A.; Rezende, C.M. Continuous-flow chemo and enzymatic synthesis of monoterpenic esters with integrated purification. Mol. Catal., 2018, 453, 39-46.
[http://dx.doi.org/10.1016/j.mcat.2018.04.007]
[79]
Damnjanović J.J.; Žuža, M.G.; Savanović J.K.; Bezbradica, D.I.; Mijin, D.Ž.; Bošković-Vragolović N.; Knežević-Jugović Z.D. Covalently immobilized lipase catalyzing high-yielding optimized geranyl butyrate synthesis in a batch and fluidized bed reactor. J. Mol. Catal., B Enzym., 2012, 75, 50-59.
[http://dx.doi.org/10.1016/j.molcatb.2011.11.009]
[80]
Patel, V.; Shah, C.; Deshpande, M.; Madamwar, D. Zinc oxide nanoparticles supported lipase immobilization for biotransformation in organic solvents: A facile synthesis of geranyl acetate, effect of operative variables and kinetic study. Appl. Biochem. Biotechnol., 2016, 178(8), 1630-1651.
[http://dx.doi.org/10.1007/s12010-015-1972-9] [PMID: 26749293]
[81]
Gupta, A.; Dhakate, S.R.; Pahwa, M.; Sinha, S.; Chand, S.; Mathur, R.B. Geranyl acetate synthesis catalyzed by Thermomyces lanuginosus lipase immobilized on electrospun polyacrylonitrile nanofiber membrane. Process Biochem., 2013, 48(1), 124-132.
[http://dx.doi.org/10.1016/j.procbio.2012.09.028]
[82]
Badgujar, K.C.; Bhanage, B.M. Synthesis of geranyl acetate in non-aqueous media using immobilized Pseudomonas cepacia lipase on biodegradable polymer film: Kinetic modelling and chain length effect study. Process Biochem., 2014, 49(8), 1304-1313.
[http://dx.doi.org/10.1016/j.procbio.2014.04.014]
[83]
Yildirim, D.; Baran, E.; Ates, S.; Yazici, B.; Tukel, S.S. Improvement of activity and stability of Rhizomucor miehei lipase by immobilization on nanoporous aluminium oxide and potassium sulfate microcrystals and their applications in the synthesis of aroma esters. Biocatal. Biotransform., 2019, 37(3), 210-223.
[http://dx.doi.org/10.1080/10242422.2018.1530766]
[84]
Isah, A.A.; Mahat, N.A.; Jamalis, J.; Attan, N.; Zakaria, I.I.; Huyop, F.; Wahab, R.A. Synthesis of geranyl propionate in a solvent-free medium using Rhizomucor miehei lipase covalently immobilized on chitosan–graphene oxide beads. Prep. Biochem. Biotechnol., 2017, 47(2), 199-210.
[http://dx.doi.org/10.1080/10826068.2016.1201681] [PMID: 27341522]
[85]
Liaquat, M.; Mehmood, T.; Khan, S.U.; Ahmed, Z.; Saeed, M.; Aslam, S.; Khan, J.; Ali, N.; Nawaz, M.; Jahangir, M. Parameters affecting the synthesis of (Z)-3-hexen-1-yl acetate by transesterifacation in organic solvent. J. Chem. Soc. Pak., 2015, 37(2), 323-334.
[86]
Badgujar, K.C.; Sasaki, T.; Bhanage, B.M. Synthesis of lipase nano-bio-conjugates as an efficient biocatalyst: Characterization and activity-stability studies with potential biocatalytic applications. RSC Advances, 2015, 5(68), 55238-55251.
[http://dx.doi.org/10.1039/C5RA10032A]
[87]
Puchl’ová, E.; Szolcsányi, P. Scalable green approach toward fragrant acetates. Molecules, 2020, 25(14), 3217.
[http://dx.doi.org/10.3390/molecules25143217] [PMID: 32674512]
[88]
Bayout, I.; Bouzemi, N.; Guo, N.; Mao, X.; Serra, S.; Riva, S.; Secundo, F. Natural flavor ester synthesis catalyzed by lipases. Flavour Fragrance J., 2020, 35(2), 209-218.
[http://dx.doi.org/10.1002/ffj.3554]
[89]
Vilas Bôas, R.N.; Castro, H.F. A review of synthesis of esters with aromatic, emulsifying, and lubricant properties by biotransformation using lipases. Biotechnol. Bioeng., 2022, 119(3), 725-742.
[http://dx.doi.org/10.1002/bit.28024] [PMID: 34958126]
[90]
Noh, H.J.; Lee, S.Y.; Jang, Y.S. Microbial production of butyl butyrate, a flavor and fragrance compound. Appl. Microbiol. Biotechnol., 2019, 103(5), 2079-2086.
[http://dx.doi.org/10.1007/s00253-018-09603-z] [PMID: 30659333]
[91]
Martins, A.B.; Schein, M.F.; Friedrich, J.L.R.; Fernandez-Lafuente, R.; Ayub, M.A.Z.; Rodrigues, R.C. Ultrasound-assisted butyl acetate synthesis catalyzed by Novozym 435: Enhanced activity and operational stability. Ultrason. Sonochem., 2013, 20(5), 1155-1160.
[http://dx.doi.org/10.1016/j.ultsonch.2013.01.018] [PMID: 23453821]
[92]
Lorenzoni, A.S.G.; Graebin, N.G.; Martins, A.B.; Fernandez-Lafuente, R.; Záchia Ayub, M.A.; Rodrigues, R.C. Optimization of pineapple flavour synthesis by esterification catalysed by immobilized lipase from Rhizomucor miehei. Flavour Fragrance J., 2012, 27(2), 196-200.
[http://dx.doi.org/10.1002/ffj.3088]
[93]
Matte, C.R.; Bordinhão, C.; Poppe, J.K.; Rodrigues, R.C.; Hertz, P.F.; Ayub, M.A.Z. Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. J. Mol. Catal., B Enzym., 2016, 127, 67-75.
[http://dx.doi.org/10.1016/j.molcatb.2016.02.016]
[94]
Martins, A.B.; Friedrich, J.L.R.; Cavalheiro, J.C.; Garcia-Galan, C.; Barbosa, O.; Ayub, M.A.Z.; Fernandez-Lafuente, R.; Rodrigues, R.C. Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene-divinylbenzene beads. Bioresour. Technol., 2013, 134, 417-422.
[http://dx.doi.org/10.1016/j.biortech.2013.02.052] [PMID: 23499180]
[95]
Bayramoglu, G.; Celikbicak, O.; Kilic, M.; Yakup Arica, M. Immobilization of Candida rugosa lipase on magnetic chitosan beads and application in flavor esters synthesis. Food Chem., 2022, 366, 130699.
[http://dx.doi.org/10.1016/j.foodchem.2021.130699] [PMID: 34348221]
[96]
Wolfson, A.; Atyya, A.; Dlugy, C.; Tavor, D. Glycerol triacetate as solvent and acyl donor in the production of isoamyl acetate with Candida antarctica lipase B. Bioprocess Biosyst. Eng., 2010, 33(3), 363-366.
[http://dx.doi.org/10.1007/s00449-009-0333-x] [PMID: 19475425]
[97]
Chiarelli Perdomo, I.; Letizia Contente, M.; Pinto, A.; Romano, D.; Fernandes, P.; Molinari, F. Continuous preparation of flavour-active acetate esters by direct biocatalytic esterification. Flavour Fragrance J., 2020, 35(2), 190-196.
[http://dx.doi.org/10.1002/ffj.3552]
[98]
Dhake, K.P.; Deshmukh, K.M.; Wagh, Y.S.; Singhal, R.S.; Bhanage, B.M. Investigation of steapsin lipase for kinetic resolution of secondary alcohols and synthesis of valuable acetates in non-aqueous reaction medium. J. Mol. Catal., B Enzym., 2012, 77, 15-23.
[http://dx.doi.org/10.1016/j.molcatb.2012.01.009]
[99]
Bansode, S.R.; Rathod, V.K. Ultrasound assisted lipase catalysed synthesis of isoamyl butyrate. Process Biochem., 2014, 49(8), 1297-1303.
[http://dx.doi.org/10.1016/j.procbio.2014.04.018]
[100]
Bansode, S.R.; Rathod, V.K. Enzymatic sythesis of isoamyl butyrate under microwave irradiation. Chem. Eng. Process., 2018, 129, 71-76.
[http://dx.doi.org/10.1016/j.cep.2018.04.015]
[101]
Yadav, G.D.; Thorat, P.A. Microwave assisted lipase catalyzed synthesis of isoamyl myristate in solvent-free system. J. Mol. Catal., B Enzym., 2012, 83, 16-22.
[http://dx.doi.org/10.1016/j.molcatb.2012.06.011]
[102]
Eccles, R. Menthol and related cooling compounds. J. Pharm. Pharmacol., 2011, 46(8), 618-630.
[http://dx.doi.org/10.1111/j.2042-7158.1994.tb03871.x] [PMID: 7529306]
[103]
Brady, D.; Reddy, S.; Mboniswa, B.; Steenkamp, L.H.; Rousseau, A.L.; Parkinson, C.J.; Chaplin, J.; Mitra, R.K.; Moutlana, T.; Marais, S.F.; Gardiner, N.S. Biocatalytic enantiomeric resolution of l-menthol from an eight isomeric menthol mixture through transesterification. J. Mol. Catal., B Enzym., 2012, 75, 1-10.
[http://dx.doi.org/10.1016/j.molcatb.2011.10.011]
[104]
Shimada, Y.; Hirota, Y.; Baba, T.; Kato, S.; Sugihara, A.; Moriyama, S.; Tominaga, Y.; Terai, T. Enzymatic synthesis of l-menthyl esters in organic solvent-free system. J. Am. Oil Chem. Soc., 1999, 76(10), 1139-1142.
[http://dx.doi.org/10.1007/s11746-999-0086-3]
[105]
Ion, S. Olănescu, F.; Teodorescu, F.; Tincu, R.; Gheorghe, D.; Pârvulescu, V.I.; Tudorache, M. DES-based biocatalysis as a green alternative for the l-menthyl ester production based on l-menthol acylation. Molecules, 2022, 27(16), 5273.
[http://dx.doi.org/10.3390/molecules27165273] [PMID: 36014511]
[106]
Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.A.Z.; Marrucho, I.M. Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents. ACS Sustain. Chem. Eng., 2015, 3(10), 2469-2477.
[http://dx.doi.org/10.1021/acssuschemeng.5b00532]
[107]
Craveiro, R.; Meneses, L.; Durazzo, L.; Rocha, Â.; Silva, J.M.; Reis, R.L.; Barreiros, S.; Duarte, A.R.C.; Paiva, A. Deep eutectic solvents for enzymatic esterification of racemic menthol. ACS Sustain. Chem. Eng., 2019, 7(24), 19943-19950.
[http://dx.doi.org/10.1021/acssuschemeng.9b05434]
[108]
Pätzold, M.; Weimer, A.; Liese, A.; Holtmann, D. Optimization of solvent-free enzymatic esterification in eutectic substrate reaction mixture. Biotechnol. Rep., 2019, 22, e00333.
[http://dx.doi.org/10.1016/j.btre.2019.e00333] [PMID: 31008067]
[109]
Silva, J.C.; Nascimento, M.G. The influence of organic medium and supports in the resolution of (R,S)-menthol catalyzed by lipases. J. Braz. Chem. Soc., 2016, 27(12), 2226-2233.
[http://dx.doi.org/10.5935/0103-5053.20160115]
[110]
Belafriekh, A.; Secundo, F.; Serra, S.; Djeghaba, Z. Enantioselective enzymatic resolution of racemic alcohols by lipases in green organic solvents. Tetrahedron Asymmetry, 2017, 28(3), 473-478.
[http://dx.doi.org/10.1016/j.tetasy.2017.02.004]
[111]
De Yan, H.; Li, Q.; Wang, Z. Efficient kinetic resolution of (±)-menthol by a lipase from Thermomyces lanuginosus. Biotechnol. Appl. Biochem., 2017, 64(1), 87-91.
[http://dx.doi.org/10.1002/bab.1457] [PMID: 26549685]
[112]
Belkacemi, F.Z.; Merabet-Khelassi, M.; Aribi-Zouioueche, L.; Riant, O. Production of l-menthyl acetate through kinetic resolution by Candida cylindracea lipase: Effects of alkaloids as additives. Res. Chem. Intermed., 2018, 44(11), 6847-6860.
[http://dx.doi.org/10.1007/s11164-018-3525-7]
[113]
Tentori, F.; Brenna, E.; Crotti, M.; Pedrocchi-Fantoni, G.; Ghezzi, M.C.; Tessaro, D. Continuous-flow biocatalytic process for the synthesis of the best stereoisomers of the commercial fragrances leather cyclohexanol (4-isopropylcyclohexanol) and woody acetate (4-(tert-butyl) cyclohexyl acetate). Catalysts, 2020, 10(1), 102.
[http://dx.doi.org/10.3390/catal10010102]
[114]
Martínez-Avila, O.; Sánchez, A.; Font, X.; Barrena, R. Bioprocesses for 2-phenylethanol and 2-phenylethyl acetate production: Current state and perspectives. Appl. Microbiol. Biotechnol., 2018, 102(23), 9991-10004.
[http://dx.doi.org/10.1007/s00253-018-9384-8] [PMID: 30293195]
[115]
Wang, X.; Wang, X.; Cong, F.; Xu, Y.; Kang, J.; Zhang, Y.; Zhou, M.; Xing, K.; Zhang, G.; Pan, H. Synthesis of cinnamyl acetate catalysed by highly reusable cotton-immobilized Pseudomonas fluorescens lipase. Biocatal. Biotransform., 2018, 36(4), 332-339.
[http://dx.doi.org/10.1080/10242422.2017.1400018]
[116]
Waghmare, G.V.; Mudaliar, C.; Rathod, V.K. Optimization of the enzyme catalyzed ultrasound assisted synthesis of cinnamyl butyrate using response surface methodology. React. Kinet. Mech. Catal., 2020, 129(1), 421-441.
[http://dx.doi.org/10.1007/s11144-019-01697-4]
[117]
Gao, Z.; Chu, J.; Jiang, T.; Xu, T.; Wu, B.; He, B. Lipase immobilization on functionalized mesoporous TiO 2: Specific adsorption, hyperactivation and application in cinnamyl acetate synthesis. Process Biochem., 2018, 64, 152-159.
[http://dx.doi.org/10.1016/j.procbio.2017.09.011]
[118]
Badgujar, K.C.; Bhanage, B.M. Enhanced biocatalytic activity of lipase immobilized on biodegradable copolymer of chitosan and polyvinyl alcohol support for synthesis of propionate ester: Kinetic approach. Ind. Eng. Chem. Res., 2014, 53(49), 18806-18815.
[http://dx.doi.org/10.1021/ie501304e]
[119]
Sá, A.G.A.; de Meneses, A.C.; Lerin, L.A.; de Araújo, P.H.H.; Sayer, C.; de Oliveira, D. Biocatalysis of aromatic benzyl-propionate ester by different immobilized lipases. Bioprocess Biosyst. Eng., 2018, 41(5), 585-591.
[http://dx.doi.org/10.1007/s00449-018-1893-4] [PMID: 29350294]
[120]
Kuo, C.H.; Chiang, S.H.; Ju, H.Y.; Chen, Y.M.; Liao, M.Y.; Liu, Y.C.; Shieh, C.J. Enzymatic synthesis of rose aromatic ester (2-phenylethyl acetate) by lipase. J. Sci. Food Agric., 2012, 92(10), 2141-2147.
[http://dx.doi.org/10.1002/jsfa.5599] [PMID: 22396119]
[121]
Kim, H.; Park, C. Enzymatic synthesis of phenethyl ester from phenethyl alcohol with acyl donors. Enzyme Microb. Technol., 2017, 100, 37-44.
[http://dx.doi.org/10.1016/j.enzmictec.2017.02.004] [PMID: 28284310]
[122]
Huang, S.M.; Huang, H.Y.; Chen, Y.M.; Kuo, C.H.; Shieh, C.J. Continuous production of 2-phenylethyl acetate in a solvent-free system using a packed-bed reactor with Novozym® 435. Catalysts, 2020, 10(6), 714.
[http://dx.doi.org/10.3390/catal10060714]
[123]
Yadav, G.D.; Devendran, S. Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochem., 2012, 47(3), 496-502.
[http://dx.doi.org/10.1016/j.procbio.2011.12.008]
[124]
Geng, B.; Wang, M.; Qi, W.; Su, R.; He, Z. Cinnamyl acetate synthesis by lipase-catalyzed transesterification in a solvent-free system. Biotechnol. Appl. Biochem., 2012, 59(4), 270-275.
[http://dx.doi.org/10.1002/bab.1023] [PMID: 23586860]
[125]
Tomke, P.D.; Rathod, V.K. Ultrasound assisted lipase catalyzed synthesis of cinnamyl acetate via transesterification reaction in a solvent free medium. Ultrason. Sonochem., 2015, 27, 241-246.
[http://dx.doi.org/10.1016/j.ultsonch.2015.04.022] [PMID: 26186841]
[126]
Badgujar, K.C.; Pai, P.A.; Bhanage, B.M. Enhanced biocatalytic activity of immobilized Pseudomonas cepacia lipase under sonicated condition. Bioprocess Biosyst. Eng., 2016, 39(2), 211-221.
[http://dx.doi.org/10.1007/s00449-015-1505-5] [PMID: 26590966]
[127]
Cai, X.; Wang, W.; Lin, L.; He, D.; Shen, Y.; Wei, W.; Wei, D. Cinnamyl esters synthesis by lipase-catalyzed transesterification in a non-aqueous system. Catal. Lett., 2017, 147(4), 946-952.
[http://dx.doi.org/10.1007/s10562-017-1994-8]
[128]
Sose, M.T.; Gawas, S.D.; Rathod, V.K. Enzymatic synthesis of cinnamyl propionate from cinnamyl alcohol and propionic acid in a solvent free condition. SN Appl. Sci., 2020, 2(5), 847.
[http://dx.doi.org/10.1007/s42452-020-2609-3]
[129]
Wang, W.; Li, L.; Wang, X.; Qiu, T.; Yang, J.; Ye, C. Reaction kinetic studies on the immobilized-lipase catalyzed enzymatic resolution of 1-phenylethanol transesterification with ethyl butyrate. Biocatal. Biotransform., 2021, 39(1), 29-40.
[http://dx.doi.org/10.1080/10242422.2020.1855150]
[130]
Silva Dias, G.; Bandeira, P.T.; Jaerger, S.; Piovan, L.; Mitchell, D.A.; Wypych, F.; Krieger, N. Immobilization of Pseudomonas cepacia lipase on layered double hydroxide of Zn/Al-Cl for kinetic resolution of rac-1-phenylethanol. Enzyme Microb. Technol., 2019, 130, 109365.
[http://dx.doi.org/10.1016/j.enzmictec.2019.109365] [PMID: 31421722]
[131]
Wang, J.; Li, K.; He, Y.; Wang, Y.; Yan, J.; Xu, L.; Han, X.; Yan, Y. Lipase immobilized on a novel rigid–flexible dendrimer-grafted hierarchically porous magnetic microspheres for effective resolution of (R,S)-1-phenylethanol. ACS Appl. Mater. Interfaces, 2020, 12(4), 4906-4916.
[http://dx.doi.org/10.1021/acsami.9b19940] [PMID: 31903759]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy