Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

A Synopsis of Ball Milling Organic Synthesis in the Last 25 Years

Author(s): Davor Margetić*

Volume 27, Issue 7, 2023

Published on: 27 April, 2023

Page: [580 - 584] Pages: 5

DOI: 10.2174/1385272827666230407082210

open access plus

Abstract

Important progress in the transfer of organic reactions from solution conditions to automated solid-state synthesis was published a quarter of a century ago. Since then, ball-milling organic reactions have been slowly accepted by the chemical community as an additional synthetic tool, and the area of its application is rapidly expanding. These developments in mechanochemical synthesis are illustrated with selected literature examples.

Keywords: Organic synthesis, solid-state reactions, mechanochemistry, mechanochemical synthesis, manual grinding, fullerene derivatives.

Graphical Abstract
[1]
Tanaka, K.; Toda, F., Eds.; Organic Solid-State Reactions; Springer: Berlin , 2002.
[http://dx.doi.org/10.1007/978-94-017-0089-4_1]
[2]
Wang, G.W.; Murata, Y.; Komatsu, K.; Wan, T.S.M. The solid-phase reaction of [60]fullerene: Novel addition of organozinc reagents. Chem. Commun., 1996, (17), 2059-2060.
[http://dx.doi.org/10.1039/cc9960002059]
[3]
Wang, G.W.; Komatsu, K.; Murata, Y.; Shiro, M. Synthesis and X-ray structure of dumb-bell-shaped C120. Nature, 1997, 387(6633), 583-586.
[http://dx.doi.org/10.1038/42439]
[4]
Wang, G.W. Fullerene mechanochemistry: Serendipitous discovery of dumb‐bell shaped C120 and beyond. Chin. J. Chem., 2021, 39(7), 1797-1803.
[http://dx.doi.org/10.1002/cjoc.202100085]
[5]
Komatsu, K.; Fujiwara, K.; Murata, Y. The mechanochemical synthesis and properties of the fullerene trimer C180. Chem. Lett., 2000, 29(9), 1016-1017.
[http://dx.doi.org/10.1246/cl.2000.1016]
[6]
(a) Fujiwara, K.; Komatsu, K. Mechanochemical synthesis of a novel C60 dimer connected by a silicon bridge and a single bond. Org. Lett., 2002, 4, 1039-1041.;
(b) Murata, Y.; Han, A.; Komatsu, K. Mechanochemical synthesis of a novel C60 dimer connected by a germanium bridge and a single bond. Tetrahedron Lett., 2003, 44, 8199-8201.
[7]
(a) Zefirov, N.S.; Sereda, G.A.; Volkov, P.V.; Tkatchenko, S.E.; Zyk, N.V. Solid-phase synthesis of 1,2-benzophenazine and some fused imidazole derivatives. Chem. Heterocycl. Compd., 1996, 32, 577-579.;
(b) Im, J.; Kim, J.; Kim, S.; Hahn, B.; Toda, F. N-Glycosylation reactions in the solid to solid state. Tetrahedron Lett., 1997, 38, 451-452.;
(c) Rasmussen, M.O.; Axelsson, O.; Tanner, D. A Practical Procedure for the Solid-Phase Synthesis of Racemic 2,2-Dihydroxy-1,1-binaphthyl. Synth. Commun., 1997, 27, 4027-4030.;
(d) Schmeyers, J.; Toda, F.; Boy, J.; Kaupp, G. Quantitative solid–solid synthesis of azomethines. J. Chem. Soc., Perkin Trans. 2, 1998, 2, 989-993.;
(e) Nüchter, M.; Ondruschka, B.; Trotzki, R. Mechanochemical oxidation of organic model compounds by means of potassium permanganate. J. Prakt. Chem., 2000, 342, 720-724.
[8]
Ardila-Fierro, K.J.; Hernández, J.G. Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry. ChemSusChem, 2021, 14(10), 2145-2162.
[http://dx.doi.org/10.1002/cssc.202100478] [PMID: 33835716]
[9]
(a) Tan, D.; Garcia, F. Main group mechanochemistry: from curiosity to established protocols. Chem. Soc. Rev., 2019, 48, 2274-2292.;
(b) Do, J.L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci., 2017, 3, 13-19.;
(c) Howard, J.L.; Cao, Q.; Browne, D.L. Mechanochemistry as an emerging tool for molecular synthesis: What can it offer? Chem. Sci., 2018, 9, 3080-3094.;
(d) Andersen, J.; Mack, J. Mechanochemistry and organic synthesis: From mystical to practical. Green Chem., 2018, 20, 1435-1445.;
(e) Tan, D.; Friščić, T. Mechanochemistry for organic chemists: An Update. Eur. J. Org. Chem., 2018, 1, 18-33.;
(f) Štrukil, V. Mechanochemical organic synthesis: The art of making chemistry green. Synlett, 2018, 29, 1281-1288.;
(g) Wang, G.W. Mechanochemical organic synthesis. Chem. Soc. Rev., 2013, 42, 7668-7700.;
(h) James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A.G.; Parkin, I.P.; Shearouse, W.C.; Steed, J.W. Wa dell, D.C. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev., 2012, 41, 413-447.;
(i) Margetić, D. Mechanochemical organic reactions without the use of solvents. Kem. Ind., 2005, 54, 351-358.
[10]
Margetić, D.; Štrukil, V. Heterocycles - Synthesis, Catalysis, Sustainability and Characterization; Wiley: Weinheim, 2022, p. 339.
[11]
(a) Stolle, A.; Ranu, B. Ball Milling Towards Green Synthesis: Applications, Projects, Challenges; RSC: London, 2014. ;
(b) Margetić, D.; Štrukil, V. Mechanochemical Organic Synthesis; Elsevier: Amsterdam, 2016. ;
(c) Colacino, E.; Ennas, G.; Halasz, I.; Porcheddu, A. Mechanochemistry. In: A Practical Introduction from Soft to Hard Materials; de Gruyter: Berlin, 2021.
[12]
Hwang, S.; Grätz, S.; Borchardt, L. A guide to direct mechanocatalysis. Chem. Commun., 2022, 58(11), 1661-1671.
[http://dx.doi.org/10.1039/D1CC05697B] [PMID: 35023515]
[13]
Štrukil, V.; Sajko, I. Mechanochemically-assisted solid-state photocatalysis (MASSPC). Chem. Commun., 2017, 53(65), 9101-9104.
[http://dx.doi.org/10.1039/C7CC03510A] [PMID: 28759078]
[14]
Pfennig, V.S.; Villella, R.C.; Nikodemus, J.; Bolm, C. Mechanochemical grignard reactions with gaseous CO2 and sodium methyl carbonate. Angew. Chem. Int. Ed., 2022, 61(9), e202116514.
[http://dx.doi.org/10.1002/anie.202116514] [PMID: 34942056]
[15]
Friščić, T.; Trask, A.V.; Jones, W.; Motherwell, W.D.S. Screening for inclusion compounds and systematic construction of three-component solids by liquid-assisted grinding. Angew. Chem. Int. Ed., 2006, 45(45), 7546-7550.
[http://dx.doi.org/10.1002/anie.200603235] [PMID: 17051633]
[16]
Gracin, D.; Štrukil, V.; Friščić, T.; Halasz, I.; Užarević, K. Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy. Angew. Chem. Int. Ed., 2014, 53(24), 6193-6197.
[http://dx.doi.org/10.1002/anie.201402334] [PMID: 24764165]
[17]
Halasz, I.; Puškarić, A.; Kimber, S.A.J.; Beldon, P.J.; Belenguer, A.M.; Adams, F.; Honkimäki, V.; Dinnebier, R.E.; Patel, B.; Jones, W.; Štrukil, V.; Friščić, T. Real-time in situ powder X-ray diffraction monitoring of mechanochemical synthesis of pharmaceutical cocrystals. Angew. Chem. Int. Ed., 2013, 52(44), 11538-11541.
[http://dx.doi.org/10.1002/anie.201305928] [PMID: 24108571]
[18]
Cindro, N.; Tireli, M.; Karadeniz, B.; Mrla, T.; Užarević, K. Investigations of thermally controlled mechanochemical milling reactions. ACS Sustainable. Chem. Eng., 2019, 7, 16301-16309.
[19]
Michalchuk, A.A.L.; Tumanov, I.A.; Boldyreva, E.V. The effect of ball mass on the mechanochemical transformation of a single-component organic system: Anhydrous caffeine. J. Mater. Sci., 2018, 53(19), 13380-13389.
[http://dx.doi.org/10.1007/s10853-018-2324-2] [PMID: 30996469]
[20]
Ayoub, G.; Štrukil, V.; Fábián, L.; Mottillo, C.; Bao, H.; Murata, Y.; Moores, A.; Margetić, D.; Eckert-Maksić, M.; Friščić, T. Mechanochemistry vs. solution growth: Striking differences in bench stability of a cimetidine salt based on a synthetic method. CrystEngComm, 2018, 20(45), 7242-7247.
[http://dx.doi.org/10.1039/C8CE01727A]
[21]
Delori, A.; Friščić, T.; Jones, W. The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm, 2012, 14(7), 2350-2362.
[http://dx.doi.org/10.1039/c2ce06582g]
[22]
Stolar, T.; Užarević, K. Mechanochemistry: An efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal–organic frameworks. CrystEngComm, 2020, 22(27), 4511-4525.
[http://dx.doi.org/10.1039/D0CE00091D]
[23]
Cappuccino, C.; Farinella, F.; Braga, D.; Maini, L. Mechanochemistry, an easy technique to boost the synthesis of cui pyrazine coordination polymers. Cryst. Growth Des., 2019, 19(8), 4395-4403.
[http://dx.doi.org/10.1021/acs.cgd.9b00192]
[24]
Zappimbulso, N.; Capozzi, M.A.M.; Porcheddu, A.; Farinola, G.M.; Punzi, A. Solvent‐free reactions for the synthesis of indolenine‐based squaraines and croconaines: Comparison of thermal heating, mechanochemical milling, and IR Irradiation. ChemSusChem, 2021, 14(5), 1363-1369.
[http://dx.doi.org/10.1002/cssc.202002763] [PMID: 33428315]
[25]
Piquero, M.; Font, C.; Gullón, N.; López-Alvarado, P.; Menéndez, J.C. One‐Pot mechanochemical synthesis of mono‐ and bis‐indolylquinones via solvent‐free multiple bond‐forming processes. ChemSusChem, 2021, 14(21), 4764-4775.
[http://dx.doi.org/10.1002/cssc.202101529] [PMID: 34409746]
[26]
Williams, M.T.J.; Morrill, L.C.; Browne, D.L. Expedient organocatalytic aza-morita–baylis–hillman reaction through ball-milling. ACS Sustain. Chem. Eng., 2020, 8(48), 17876-17881.
[http://dx.doi.org/10.1021/acssuschemeng.0c07320] [PMID: 33614300]
[27]
Pan, L.; Zheng, L.; Chen, Y.; Ke, Z.; Yeung, Y.Y. A mechanochemical, catalyst‐free cascade synthesis of 1,3‐diols and 1,4‐iodoalcohols using styrenes and hypervalent iodine reagents. Angew. Chem. Int. Ed., 2022, 61(36), e202207926.
[http://dx.doi.org/10.1002/anie.202207926] [PMID: 35829718]
[28]
Avila-Ortiz, C.G.; Pérez-Venegas, M.; Vargas-Caporali, J.; Juaristi, E. Recent applications of mechanochemistry in enantioselective synthesis. Tetrahedron Lett., 2019, 60(27), 1749-1757.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.065]
[29]
Machuca, E.; Rojas, Y.; Juaristi, E. Synthesis and evaluation of (S)-proline-containing α,β-dipeptides as organocatalysts in solvent-free asymmetric aldol reactions under ball-milling conditions. Asian J. Org. Chem., 2015, 4(1), 46-53.
[http://dx.doi.org/10.1002/ajoc.201402170]
[30]
Friščić, T. Supramolecular concepts and new techniques in mechanochemistry: Cocrystals, cages, rotaxanes, open metal–organic frameworks. Chem. Soc. Rev., 2012, 41(9), 3493-3510.
[http://dx.doi.org/10.1039/c2cs15332g] [PMID: 22371100]
[31]
Wu, K.D.; Lin, Y.H.; Lai, C.C.; Chiu, S.H. Na+ ion templated threading of oligo(ethylene glycol) chains through BPX26C6 allows synthesis of [2] rotaxanes under solvent-free conditions. Org. Lett., 2014, 16(4), 1068-1071.
[http://dx.doi.org/10.1021/ol403602j] [PMID: 24499390]
[32]
Crawford, D.E.; Miskimmin, C.K.G.; Albadarin, A.B.; Walker, G.; James, S.L. Organic synthesis by twin screw extrusion (TSE): Continuous, scalable and solvent-free. Green Chem., 2017, 19(6), 1507-1518.
[http://dx.doi.org/10.1039/C6GC03413F]
[33]
Hernández, J.G.; Halasz, I.; Crawford, D.E.; Krupička, M.; Baláž, M.; André, V.; Vella-Zarb, L.; Niidu, A.; García, F.; Maini, L.; Colacino, E. European research in focus: Mechanochemistry for sustainable industry (COST Action MechSustInd). Eur. J. Org. Chem., 2020, 2020(1), 8-9.
[http://dx.doi.org/10.1002/ejoc.201901718]

© 2024 Bentham Science Publishers | Privacy Policy