Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Combination Therapy: A New Tool for the Management of Obesity

Author(s): Pranav Kumar Prabhakar*

Volume 24, Issue 4, 2024

Published on: 26 October, 2023

Page: [402 - 417] Pages: 16

DOI: 10.2174/1871530323666230825140808

Price: $65

Abstract

Obesity is a chronic lifestyle issue with devastating results. Behavioral changes are one of the initial lines of management strategies for obesity, but they are not very efficient management strategies. Many people also use surgical intervention to maintain a healthy weight, now considered to be the most common and effective obesity management. Chemically synthesized medicines fill the gap between lifestyle interventions and minimally invasive surgical management of obesity. The most common issue associated with monotherapy without side effects is its moderate effectiveness and higher dose requirement. Combination therapy is already used for many serious and complicated disease treatments and management and has shown efficacy as well. Generally, we use two or more medicines with different mechanisms of action for a better effect. The commonly used combination therapy for obesity management includes low-dose phentermine and prolonged and slow-releasing mechanism topiramate; naltrexone, and bupropion. Phentermine with inhibitors of Na-glucose cotransporter-2 or glucagon-like peptide-1 (GLP-1) agonists with gastric hormone or Na-glucose cotransporter-2 are two more viable combo therapy. This combination strategy aims to achieve success in bariatric surgery and the scientific community is working in this direction.

Keywords: Obesity, insulin, topiramate, bariatric, orlistat, combination, Na-glucose cotransporter-2, phentermine.

Graphical Abstract
[1]
Hemaiswarya, S.; Prabhakar, P.K.; Doble, M. Synergistic herb-drug interactions against obesity. In: Herb-drug combinations: A new complementary therapeutic strategy; Hemaiswarya, S.; Prabhakar, P.K.; Doble, M., Eds.; Springer: Singapore, 2022; pp. 193-202.
[http://dx.doi.org/10.1007/978-981-19-5125-1_12]
[2]
Gray, D.S. Diagnosis and prevalence of obesity. Med. Clin. North Am., 1989, 73(1), 1-13.
[http://dx.doi.org/10.1016/S0025-7125(16)30688-5] [PMID: 2911222]
[3]
Heymsfield, S.B.; Wadden, T.A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med., 2017, 376(3), 254-266.
[http://dx.doi.org/10.1056/NEJMra1514009] [PMID: 28099824]
[4]
Ferreira, I.M.; Verreschi, I.T.; Nery, L.E.; Goldstein, R.S.; Zamel, N.; Brooks, D.; Jardim, J.R. The influence of 6 months of oral anabolic steroids on body mass and respiratory muscles in undernourished COPD patients. Chest, 1998, 114(1), 19-28.
[http://dx.doi.org/10.1378/chest.114.1.19] [PMID: 9674442]
[5]
Jo, J.; Gavrilova, O.; Pack, S.; Jou, W.; Mullen, S.; Sumner, A.E.; Cushman, S.W.; Periwal, V. Hypertrophy and/or hyperplasia: Dynamics of adipose tissue growth. PLOS Comput. Biol., 2009, 5(3), e1000324.
[http://dx.doi.org/10.1371/journal.pcbi.1000324] [PMID: 19325873]
[6]
Björntorp, P. Metabolic implications of body fat distribution. Diabetes Care, 1991, 14(12), 1132-1143.
[http://dx.doi.org/10.2337/diacare.14.12.1132] [PMID: 1773700]
[7]
Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab., 2004, 89(6), 2548-2556.
[http://dx.doi.org/10.1210/jc.2004-0395] [PMID: 15181022]
[8]
Frigolet, M.E.; Gutiérrez-Aguilar, R. The colors of adipose tissue. Gac. Med. Mex., 2020, 156(2), 142-149.
[PMID: 32285854]
[9]
Sorkin, J.D. BMI, age, and mortality: The slaying of a beautiful hypothesis by an ugly fact. Am. J. Clin. Nutr., 2014, 99(4), 759-760.
[http://dx.doi.org/10.3945/ajcn.114.084780] [PMID: 24572566]
[10]
Caballero, B. The global epidemic of obesity: An overview. Epidemiol. Rev., 2007, 29(1), 1-5.
[http://dx.doi.org/10.1093/epirev/mxm012] [PMID: 17569676]
[11]
Tanaka, H.; Gourley, D.D.; Dekhtyar, M.; Haley, A.P. Cognition, brain structure, and brain function in individuals with obesity and related disorders. Curr. Obes. Rep., 2020, 9(4), 544-549.
[http://dx.doi.org/10.1007/s13679-020-00412-y] [PMID: 33064270]
[12]
Bray, G.A.; Frühbeck, G.; Ryan, D.H.; Wilding, J.P.H. Management of obesity. Lancet, 2016, 387(10031), 1947-1956.
[http://dx.doi.org/10.1016/S0140-6736(16)00271-3] [PMID: 26868660]
[13]
Stefanovics, E.A.; Potenza, M.N.; Pietrzak, R.H. Smoking, obesity, and their co-occurrence in the U.S. military veterans: Results from the national health and resilience in veterans study. J. Affect. Disord., 2020, 274, 354-362.
[http://dx.doi.org/10.1016/j.jad.2020.04.005] [PMID: 32469827]
[14]
Butte, N.F. Fat intake of children in relation to energy requirements. Am. J. Clin. Nutr., 2000, 72(5), 1246s-1252s.
[http://dx.doi.org/10.1093/ajcn/72.5.1246s] [PMID: 11063466]
[15]
Flodmark, C-E.; Lissau, I.; Moreno, L.A.; Pietrobelli, A.; Widhalm, K. New insights into the field of children and adolescents’ obesity: The European perspective. Int. J. Obes., 2004, 28(10), 1189-1196.
[http://dx.doi.org/10.1038/sj.ijo.0802787] [PMID: 15365581]
[16]
Bhargava, S.K.; Sachdev, H.S.; Fall, C.H.D.; Osmond, C.; Lakshmy, R.; Barker, D.J.P.; Biswas, S.K.D.; Ramji, S.; Prabhakaran, D.; Reddy, K.S. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N. Engl. J. Med., 2004, 350(9), 865-875.
[http://dx.doi.org/10.1056/NEJMoa035698] [PMID: 14985484]
[17]
Wynne, K.; Stanley, S.; Bloom, S. The gut and regulation of body weight. J. Clin. Endocrinol. Metab., 2004, 89(6), 2576-2582.
[http://dx.doi.org/10.1210/jc.2004-0189] [PMID: 15181026]
[18]
Stern, A.J.; Speidel, L.; Zaitlen, N.A.; Nielsen, R. Disentangling selection on genetically correlated polygenic traits via whole-genome genealogies. Am. J. Hum. Genet., 2021, 108(2), 219-239.
[http://dx.doi.org/10.1016/j.ajhg.2020.12.005] [PMID: 33440170]
[19]
Pollard, A.E.; Carling, D. Thermogenic adipocytes: Lineage, function and therapeutic potential. Biochem. J., 2020, 477(11), 2071-2093.
[http://dx.doi.org/10.1042/BCJ20200298] [PMID: 32539124]
[20]
Santos, J.L.; Cortés, V.A. Eating behaviour in contrasting adiposity phenotypes: Monogenic obesity and congenital generalized lipodystrophy. Obes. Rev., 2021, 22(1), e13114.
[http://dx.doi.org/10.1111/obr.13114] [PMID: 33030294]
[21]
Diels, S.; Vanden Berghe, W.; Van Hul, W. Insights into the multifactorial causation of obesity by integrated genetic and epigenetic analysis. Obes. Rev., 2020, 21(7), e13019.
[http://dx.doi.org/10.1111/obr.13019] [PMID: 32170999]
[22]
Bilginoglu, A. Cardiovascular protective effect of pioglitazone on oxidative stress in rats with metabolic syndrome. J. Chin. Med. Assoc., 2019, 82(6), 452-456.
[http://dx.doi.org/10.1097/JCMA.0000000000000103] [PMID: 30932940]
[23]
Mounika, P.; Aishwarya, M.N.L.; Sikdar, P.; Prathima, S.; Babu, M.N. A review on thiazolidinedione. Asian J. Pharmaceut. Res., 2017, 7(2), 124-135.
[http://dx.doi.org/10.5958/2231-5691.2017.00021.1]
[24]
Chen, Y. Discovery of novel insulin sensitizers: Promising approaches and targets. PPAR Res., 2017, 2017(7), 1-13.
[http://dx.doi.org/10.1155/2017/8360919]
[25]
Frankenberg, A.D.; Reis, A.F.; Gerchman, F. Relationships between adiponectin levels, the metabolic syndrome, and type 2 diabetes: A literature review. Arch. Endocrinol. Metab., 2017, 61(6), 614-622.
[http://dx.doi.org/10.1590/2359-3997000000316] [PMID: 29412387]
[26]
Conway, B.N.; Han, X.; Munro, H.M.; Gross, A.L.; Shu, X.O.; Hargreaves, M.K.; Zheng, W.; Powers, A.C.; Blot, W.J. The obesity epidemic and rising diabetes incidence in a low-income racially diverse southern US cohort. PLoS One, 2018, 13(1), e0190993.
[http://dx.doi.org/10.1371/journal.pone.0190993] [PMID: 29324894]
[27]
Hemaiswarya, S.; Prabhakar, P.K.; Doble, M. Synergistic herb interactions with antidiabetic drugs. In: Herb-Drug Combinations: A New Complementary Therapeutic Strategy; Hemaiswarya, S.; Prabhakar, P.K.; Doble, M., Eds.; Springer: Singapore, 2022; pp. 175-192.
[http://dx.doi.org/10.1007/978-981-19-5125-1_11]
[28]
Ulus, I.H.; Maher, T.J.; Wurtman, R.J. Characterization of phentermine and related compounds as monoamine oxidase (mao) inhibitors. Biochem. Pharmacol., 2000, 59(12), 1611-1621.
[http://dx.doi.org/10.1016/S0006-2952(00)00306-3] [PMID: 10799660]
[29]
Padwal, R.; Li, S.K.; Lau, D.C.W. Long-term pharmacotherapy for obesity and overweight. Cochrane Database Syst. Rev., 2004, 2003(3), CD004094-CD004094.
[PMID: 15266516]
[30]
Lafferty, R.A.; Flatt, P.R.; Irwin, N. Is polypharmacy the future for pharmacological management of obesity? Curr. Opin. Endocr. Metab. Res., 2022, 23, 100322.
[http://dx.doi.org/10.1016/j.coemr.2022.100322]
[31]
Srivastava, G.; Apovian, C. Future pharmacotherapy for obesity: New anti-obesity drugs on the horizon. Curr. Obes. Rep., 2018, 7(2), 147-161.
[http://dx.doi.org/10.1007/s13679-018-0300-4] [PMID: 29504049]
[32]
Arias, H.R.; Santamaría, A.; Ali, S.F. Pharmacological and neurotoxicological actions mediated by bupropion and diethylpropion. Int. Rev. Neurobiol., 2009, 88, 223-255.
[http://dx.doi.org/10.1016/S0074-7742(09)88009-4] [PMID: 19897080]
[33]
Martins, A.; Morgado, S.; Morgado, M. Anti-obesity drugs currently used and new compounds in clinical development. World J. Metaanal., 2014, 2(4), 135-153.
[http://dx.doi.org/10.13105/wjma.v2.i4.135]
[34]
Narayanaswami, V.; Dwoskin, L.P. Obesity: Current and potential pharmacotherapeutics and targets. Pharmacol. Ther., 2017, 170, 116-147.
[http://dx.doi.org/10.1016/j.pharmthera.2016.10.015] [PMID: 27773782]
[35]
Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism, 2019, 92, 82-97.
[http://dx.doi.org/10.1016/j.metabol.2018.11.014] [PMID: 30502373]
[36]
Caroline, O.B. Effect of Allium sativum extract in combination -with orlistat on insulin resistance and disrupted metabolic hormones in high fat diet induced obese rats. Sci. Am., 2021, 14, e00994.
[37]
Kumar, A.; Chauhan, S. Pancreatic lipase inhibitors: The road voyaged and successes. Life Sci., 2021, 271, 119115.
[http://dx.doi.org/10.1016/j.lfs.2021.119115] [PMID: 33515565]
[38]
Kopelman, P.; de Groot, H.G.; Rissanen, A.; Rossner, S.; Toubro, S.; Palmer, R.; Hallam, R.; Bryson, A.; Hickling, R.I. Weight loss, HbA1c reduction, and tolerability of cetilistat in a randomized, placebo-controlled phase 2 trial in obese diabetics: Comparison with orlistat (Xenical). Obesity, 2010, 18(1), 108-115.
[http://dx.doi.org/10.1038/oby.2009.155] [PMID: 19461584]
[39]
Daneschvar, H.L.; Aronson, M.D.; Smetana, G.W. FDAapproved anti-obesity drugs in the United States. Am. J. Med., 2016, 129(8), 879-e1-6.
[40]
Martin, C.K.; Redman, L.M.; Zhang, J.; Sanchez, M.; Anderson, C.M.; Smith, S.R.; Ravussin, E. Lorcaserin, a 5-HT(2C) receptor agonist, reduces body weight by decreasing energy intake without influencing energy expenditure. J. Clin. Endocrinol. Metab., 2011, 96(3), 837-845.
[http://dx.doi.org/10.1210/jc.2010-1848] [PMID: 21190985]
[41]
Styne, D.M.; Arslanian, S.A.; Connor, E.L.; Farooqi, I.S.; Murad, M.H.; Silverstein, J.H.; Yanovski, J.A. Pediatric obesity-assessment, treatment, and prevention: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab., 2017, 102(3), 709-757.
[http://dx.doi.org/10.1210/jc.2016-2573] [PMID: 28359099]
[42]
Defronzo, R.A.; Barzilai, N.; Simonson, D.C. Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. J. Clin. Endocrinol. Metab., 1991, 73(6), 1294-1301.
[http://dx.doi.org/10.1210/jcem-73-6-1294] [PMID: 1955512]
[43]
Matos, C.; van Hunsel, F.; Tavares Ribeiro, R. Nascimento do Ó, D.; Raposo, J.F. Diabetes patient’s pharmacovigilance knowledge and risk perception: The influence of being part of a patient organisation. Ther. Adv. Drug Saf., 2020, 11, 2042098620953935.
[http://dx.doi.org/10.1177/2042098620953935] [PMID: 35173953]
[44]
Angi, A.; Chiarelli, F. Obesity and diabetes: A sword of damocles for future generations. Biomedicines, 2020, 8(11), 478.
[http://dx.doi.org/10.3390/biomedicines8110478] [PMID: 33171922]
[45]
Morrison, J.A.; Cottingham, E.M.; Barton, B.A. Metformin for weight loss in pediatric patients taking psychotropic drugs. Am. J. Psychiatry, 2002, 159(4), 655-657.
[http://dx.doi.org/10.1176/appi.ajp.159.4.655] [PMID: 11925306]
[46]
Song, Y.; Wang, H.; Huang, H.; Zhu, Z. Comparison of the efficacy between NAC and metformin in treating PCOS patients: A meta-analysis. Gynecol. Endocrinol., 2020, 36(3), 204-210.
[http://dx.doi.org/10.1080/09513590.2019.1689553] [PMID: 31749393]
[47]
Wiegand, S.; l’Allemand, D.; Hübel, H.; Krude, H.; Bürmann, M.; Martus, P.; Grüters, A.; Holl, R.W. Metformin and placebo therapy both improve weight management and fasting insulin in obese insulin-resistant adolescents: A prospective, placebo-controlled, randomized study. Eur. J. Endocrinol., 2010, 163(4), 585-592.
[http://dx.doi.org/10.1530/EJE-10-0570] [PMID: 20639355]
[48]
Astrup, A.; Meier, D.H.; Mikkelsen, B.O.; Villumsen, J.S.; Larsen, T.M. Weight loss produced by tesofensine in patients with Parkinson’s or Alzheimer’s disease. Obesity, 2008, 16(6), 1363-1369.
[http://dx.doi.org/10.1038/oby.2008.56] [PMID: 18356831]
[49]
Gilbert, J.A.; Gasteyger, C.; Raben, A.; Meier, D.H.; Astrup, A.; Sjödin, A. The effect of tesofensine on appetite sensations. Obesity, 2012, 20(3), 553-561.
[http://dx.doi.org/10.1038/oby.2011.197] [PMID: 21720440]
[50]
Kim, G.W.; Lin, J.E.; Blomain, E.S.; Waldman, S.A. New advances in models and strategies for developinganti-obesity drugs. Expert Opin. Drug Discov., 2013, 8(6), 655-671.
[http://dx.doi.org/10.1517/17460441.2013.792804] [PMID: 23621300]
[51]
Sjödin, A.; Gasteyger, C.; Nielsen, A.L.; Raben, A.; Mikkelsen, J.D.; Jensen, J.K.S.; Meier, D.; Astrup, A. The effect of the triple monoamine reuptake inhibitor tesofensine on energy metabolism and appetite in overweight and moderately obese men. Int. J. Obes., 2010, 34(11), 1634-1643.
[http://dx.doi.org/10.1038/ijo.2010.87] [PMID: 20479765]
[52]
Di Marzo, V.; Després, J.P. CB1 antagonists for obesity—what lessons have we learned from rimonabant? Nat. Rev. Endocrinol., 2009, 5(11), 633-638.
[http://dx.doi.org/10.1038/nrendo.2009.197] [PMID: 19844251]
[53]
James, W.P.T.; Caterson, I.D.; Coutinho, W.; Finer, N.; an Gaal, L.F.; Maggioni, A.P.; Torp-Pedersen, C.; Sharma, A.M.; Shepherd, G.M.; Rode, R.A.; Renz, C.L. Effectof sibutramine on cardiovascular outcomes in overweightand obese subjects. N. Engl. J. Med., 2010, 363(10), 905-917.
[http://dx.doi.org/10.1056/NEJMoa1003114] [PMID: 20818901]
[54]
Klonoff, D.C.; Greenway, F. Drugs in the pipeline forthe obesity market. J. Diabetes Sci. Technol., 2008, 2(5), 913-918.
[http://dx.doi.org/10.1177/193229680800200525] [PMID: 19885278]
[55]
Lambert, G.W.; Straznicky, N.E.; Lambert, E.A.; Dixon, J.B.; Schlaich, M.P. Sympathetic nervous activation inobesity and the metabolic syndrome—Causes, consequences and therapeutic implications. Pharmacol. Ther., 2010, 126(2), 159-172.
[http://dx.doi.org/10.1016/j.pharmthera.2010.02.002] [PMID: 20171982]
[56]
Pilitsi, E.; Farr, O.M.; Polyzos, S.A.; Perakakis, N.; Nolen-Doerr, E.; Papathanasiou, A.E.; Mantzoros, C.S. Pharmacotherapy of obesity: Available medications and drugs under investigation. Metabolism, 2019, 92, 170-192.
[http://dx.doi.org/10.1016/j.metabol.2018.10.010] [PMID: 30391259]
[57]
Verpeut, J.L.; Bello, N.T. Drug safety evaluation of naltrexone/bupropion for the treatment of obesity. Expert Opin. Drug Saf., 2014, 13(6), 1-11.
[http://dx.doi.org/10.1517/14740338.2014.909405] [PMID: 24766397]
[58]
Garvey, W.T.; Ryan, D.H.; Look, M.; Gadde, K.M.; Allison, D.B.; Peterson, C.A.; Schwiers, M.; Day, W.W.; Bowden, C.H. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): A randomized, placebo-controlled, phase 3 extension study. Am. J. Clin. Nutr., 2012, 95(2), 297-308.
[http://dx.doi.org/10.3945/ajcn.111.024927] [PMID: 22158731]
[59]
Foye, W.O. Foye’s principles of medicinal chemistry; Lippincott williams & wilkins, 2008.
[60]
Allison, D.B.; Gadde, K.M.; Garvey, W.T.; Peterson, C.A.; Schwiers, M.L.; Najarian, T.; Tam, P.Y.; Troupin, B.; Day, W.W. Controlled-release phentermine/topiramate in severely obese adults: A randomized controlled trial (EQUIP). Obesity, 2012, 20(2), 330-342.
[http://dx.doi.org/10.1038/oby.2011.330] [PMID: 22051941]
[61]
Ornellas, T.; Chavez, B. Naltrexone SR/Bupropion SR (Contrave): A new approach to weight loss in obese adults. PT, 2011, 36(5), 255-262.
[PMID: 21785538]
[62]
Shi, Q.; Wang, Y.; Hao, Q.; Vandvik, P.O.; Guyatt, G.; Li, J.; Chen, Z.; Xu, S.; Shen, Y.; Ge, L.; Sun, F.; Li, L.; Yu, J.; Nong, K.; Zou, X.; Zhu, S.; Wang, C.; Zhang, S.; Qiao, Z.; Jian, Z.; Li, Y.; Zhang, X.; Chen, K.; Qu, F.; Wu, Y.; He, Y.; Tian, H.; Li, S. Pharmacotherapy for adults with overweight and obesity: A systematic review and network meta-analysis of randomised controlled trials. Lancet, 2022, 399(10321), 259-269.
[http://dx.doi.org/10.1016/S0140-6736(21)01640-8] [PMID: 34895470]
[63]
Greenway, F.L.; Fujioka, K.; Plodkowski, R.A.; Mudaliar, S.; Guttadauria, M.; Erickson, J.; Kim, D.D.; Dunayevich, E. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2010, 376(9741), 595-605.
[http://dx.doi.org/10.1016/S0140-6736(10)60888-4] [PMID: 20673995]
[64]
Gong, R. Hindbrain double-negative feedback mediates palatability-guided food and water consumption. Cell, 2020, 182(6), 1589-1605.
[http://dx.doi.org/10.1016/j.cell.2020.07.031]
[65]
Greenway, F.; Anderson, J.; Atkinson, R. Bupropion and zonisamide for the treatment of obesity. Obes. Res., 2006, 14, A17.
[66]
Leibel, R.L.; Watanabe, K.; Chung, W.K.; Fischer, S.G.; Leduc, C.; Watson, E.; Cremona, M.L. Methods of treating metabolic diseases; U.S.P.a; T. Office: USA, 2017.
[67]
Ioannides-Demos, L.L.; Piccenna, L.; McNeil, J.J. Pharmacotherapies for obesity: Past, current, and future therapies. J. Obes., 2011, 2011, 179674.
[http://dx.doi.org/10.1155/2011/179674]
[68]
Rubenstrunk, A.; Hanf, R.; Hum, D.; Fruchart, J.; Staels, B. Safety issues and prospects for future generations of PPAR modulators. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2007, 1771(8), 1065-1081.
[http://dx.doi.org/10.1016/j.bbalip.2007.02.003] [PMID: 17428730]
[69]
Feng, L.; Luo, H.; Xu, Z.; Yang, Z.; Du, G.; Zhang, Y.; Yu, L.; Hu, K.; Zhu, W.; Tong, Q.; Chen, K.; Guo, F.; Huang, C.; Li, Y. Bavachinin, as a novel natural pan-PPAR agonist, exhibits unique synergistic effects with synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid metabolism in db/db and diet-induced obese mice. Diabetologia, 2016, 59(6), 1276-1286.
[http://dx.doi.org/10.1007/s00125-016-3912-9] [PMID: 26983922]
[70]
Shishodia, S.; Sethi, G.; Aggarwal, B.B. Curcumin: Getting back to the roots. Ann. N. Y. Acad. Sci., 2005, 1056(1), 206-217.
[http://dx.doi.org/10.1196/annals.1352.010] [PMID: 16387689]
[71]
Vatsavai, L.K. K, E.K. Influence of curcumin on the pharmacodynamics and pharmacokinetics of gliclazide in animal models. J. Exp. Pharmacol., 2016, 8, 69-76.
[http://dx.doi.org/10.2147/JEP.S117042] [PMID: 27895517]
[72]
Park, S.H.; Lee, D.H.; Choi, H.I.; Ahn, J.; Jang, Y.J.; Ha, T.Y.; Jung, C.H. Synergistic lipid-lowering effects of Zingiber mioga and Hippophae rhamnoides extracts. Exp. Ther. Med., 2020, 20(3), 2270-2278.
[http://dx.doi.org/10.3892/etm.2020.8913] [PMID: 32765704]
[73]
Zhu, X.; Yang, L.; Xu, F.; Lin, L.; Zheng, G. Combination therapy with catechins and caffeine inhibits fat accumulation in 3T3-L1 cells. Exp. Ther. Med., 2017, 13(2), 688-694.
[http://dx.doi.org/10.3892/etm.2016.3975] [PMID: 28352352]
[74]
Gautron, L.; Elmquist, J.K.; Williams, K.W. Neural control of energy balance: Translating circuits to therapies. Cell, 2015, 161(1), 133-145.
[http://dx.doi.org/10.1016/j.cell.2015.02.023] [PMID: 25815991]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy