Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

The Synthesis and Application of Ionic Liquid Functionalized Mesoporous Silica SBA-15 for Organic Synthesis

Author(s): Ghodsi Mohammadi Ziarani*, Fatemeh Javadi, Fatemeh Mohajer and Alireza Badiei

Volume 19, Issue 8, 2022

Published on: 10 August, 2022

Page: [874 - 904] Pages: 31

DOI: 10.2174/1570179419666220329161233

Price: $65

Abstract

Ionic liquid functionalized mesoporous silica compounds present significant advantages in organic synthesis as catalysts. There are various preparation procedures for the synthesis of diverse ionic liquid catalysts, which have different catalytic properties with various roles in organic reactions. Therefore, due to the increment in the usage of mesoporous materials in the industry and numerous pieces of research, in this article, the information on the development of ionic liquids supported on SBA-15 between the years 2014 and 2021 was gathered.

Keywords: SBA-15, mesoporous silica, ionic liquid, organic synthesis, organic catalysts, SBA-ILs, nanocatalysts, functionalization, immobilization, organic-inorganic catalyst.

Graphical Abstract
[1]
Kannapu, H.P.R.; Yadagiri, J.; Moogi, S.; Kwon, E.E.; Lam, S.S.; Park, Y-K. Natural marble powder-modified SBA-15 as an efficient cata-lyst for the selective production of 2-methyl-2-pentenal from n-propanal self-aldol condensation. J. Ind. Eng. Chem., 2021, 94, 448-456.
[2]
Wisniewska, J.; Sobczak, I.; Ziolek, M. Gold based on SBA-15 supports – Promising catalysts in base-free glucose oxidation. Chem. Eng. J., 2020, 127548.
[3]
Xu, J.; Zhu, P.; Liu, X.; Hou, Y.; Yang, X.; Shan, S.; Ma, Y.; Pan, D.; Dong, B.; Guo, Z. Preparation of high-density fuel through dimeriza-tion of β-pinene. Chem. Eng. Technol., 2020, 43(11), 2259-2265.
[http://dx.doi.org/10.1002/ceat.202000250]
[4]
Kharaji, A.G.; Beheshti, M.; Tangestani-nejad, S.; Görke, O.; Godini, H.R. Adjusting acidity and porosity of Al-SBA-15 catalyst for metha-nol to dimethyl ether reaction. Asia-Pac. J. Chem. Eng., 2020, 15(6), e2541.
[http://dx.doi.org/10.1002/apj.2541]
[5]
Murat, M.; Tišler, Z.; Šimek, J.; Hidalgo Herrador, J.M. Highly active catalysts for the dehydration of isopropanol. Catalysts, 2020, 10(6), 719.
[http://dx.doi.org/10.3390/catal10060719]
[6]
Chen, S-Y.; Chang, A.; Rungsi, A.N.; Attanatho, L.; Chang, C-L.; Pan, J-H.; Suemanotham, A.; Mochizuki, T.; Takagi, H.; Yang, C-M.; Lu-engnaruemitchai, A.; Chou, H-H. Superficial Pd nanoparticles supported on carbonaceous SBA-15 as efficient hydrotreating catalyst for up-grading biodiesel fuel. Appl. Catal. A Gen., 2020, 602, 117707.
[http://dx.doi.org/10.1016/j.apcata.2020.117707]
[7]
Souza, M.S.; Araújo, R.S.; Oliveira, A.C. Optimizing reaction conditions and experimental studies of selective catalytic reduction of NO by CO over supported SBA-15 catalyst. Environ. Sci. Pollut. Res. Int., 2020, 27(24), 30649-30660.
[http://dx.doi.org/10.1007/s11356-020-09391-y] [PMID: 32472510]
[8]
Hajiaghababaei, L.; Eslambolipour, M.; Badiei, A.; Ganjali, M.R. Controlled release of anticancer drug using o-phenylenediamine function-alized SBA-15 as a novel nanocarrier. Chem. Pap., 2021, 75, 1841-1850.
[9]
Malfait, B.; Correia, N.T.; Ciotonea, C.; Dhainaut, J.; Dacquin, J-P.; Royer, S.; Tabary, N.; Guinet, Y.; Hédoux, A. Manipulating the physical states of confined ibuprofen in SBA-15 based drug delivery systems obtained by solid-state loading: Impact of the loading degree. J. Chem. Phys., 2020, 153(15), 154506.
[http://dx.doi.org/10.1063/5.0020992] [PMID: 33092366]
[10]
Szewczyk, A.; Skwira, A.; Konopacka, A.; Sądej, R.; Walker, G.; Prokopowicz, M. Mesoporous silica pellets as bifunctional bone drug de-livery system for cefazolin. Int. J. Pharm., 2020, 588, 119718.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119718] [PMID: 32750441]
[11]
Choi, Y.; Kim, J.; Yu, S.; Hong, S. pH- and temperature-responsive radially porous silica nanoparticles with high-capacity drug loading for controlled drug delivery. Nanotechnology, 2020, 31(33), 335103.
[http://dx.doi.org/10.1088/1361-6528/ab9043] [PMID: 32369797]
[12]
Alkafajy, A.M.; Albayati, T.M. High performance of magnetic mesoporous modification for loading and release of meloxicam in drug de-livery implementation. Mater. Today Commun., 2020, 23, 100890.
[http://dx.doi.org/10.1016/j.mtcomm.2019.100890]
[13]
Shen, Z.; Cai, N.; Xue, Y.; Yu, B.; Wang, J.; Song, H.; Deng, H.; Yu, F. Porous SBA-15/cellulose membrane with prolonged anti-microbial drug release characteristics for potential wound dressing application. Cellulose, 2020, 27(5), 2737-2756.
[http://dx.doi.org/10.1007/s10570-020-02967-4]
[14]
Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed., 2007, 46(40), 7548-7558.
[http://dx.doi.org/10.1002/anie.200604488] [PMID: 17854012]
[15]
Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.W.; Lin, V.S.Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), 1278-1288.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[16]
Sengar, M.S.; Saxena, S.; Satsangee, S.P.; Jain, R. Silver nanoparticles decorated functionalized multiwalled carbon nanotubes modified screen printed sensor for the voltammetric determination of butorphanol. Appl. Organomet. Chem., 2021, 1(2), 95-108.
[17]
Gao, K.; Ma, M.; Liu, Y.; Ma, Z. A comparative study of the removal of o-xylene from gas streams using mesoporous silicas and their sili-ca supported sulfuric acids. J. Hazard. Mater., 2021, 409, 124965.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124965] [PMID: 33440323]
[18]
Wahab, M.A.; Na, J.; Masud, M.K.; Hossain, M.S.A.; Alothman, A.A.; Abdala, A. Nanoporous carbon nitride with a high content of inbuilt N site for the CO2 capture. J. Hazard. Mater., 2021, 408, 124843.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124843] [PMID: 33421849]
[19]
Dong, Z.; Tian, X.; Chen, Y.; Hou, J.; Ma, J. Rhodamine group modified SBA-15 fluorescent sensor for highly selective detection of Hg2+ and its application as an INHIBIT logic device. RSC Advances, 2013, 3(7), 2227-2233.
[http://dx.doi.org/10.1039/C2RA21864J]
[20]
Tomer, V.K.; Duhan, S.; Malik, R.; Nehra, S.P.; Devi, S. A novel highly sensitive humidity sensor based on ZnO/SBA-15 hybrid nanocom-posite. J. Am. Ceram. Soc., 2015, 98(12), 3719-3725.
[http://dx.doi.org/10.1111/jace.13836]
[21]
Zhang, T.; Wang, R.; Geng, W.; Li, X.; Qi, Q.; He, Y.; Wang, S. Study on humidity sensing properties based on composite materials of Li-doped mesoporous silica A-SBA-15. Sens. Actuators B Chem., 2008, 128(2), 482-487.
[http://dx.doi.org/10.1016/j.snb.2007.07.012]
[22]
Zhao, J.; Gao, F.; Fu, Y.; Jin, W.; Yang, P.; Zhao, D. Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography. Chem. Commun. (Camb.), 2002, (7), 752-753.
[http://dx.doi.org/10.1039/b110637f] [PMID: 12119706]
[23]
Buonomenna, M.G.; Golemme, G.; Tone, C.M.; De Santo, M.P.; Ciuchi, F.; Perrotta, E. Amine-functionalized SBA-15 in poly(styrene-b-butadiene-b-styrene) (SBS) yields permeable and selective nanostructured membranes for gas separation. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(38), 11853-11866.
[http://dx.doi.org/10.1039/c3ta12180a]
[24]
Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gédéon, A. Understanding the stability in water of mesoporous SBA-15 and MCM-41. J. Phys. Chem. C, 2007, 111(23), 111.
[http://dx.doi.org/10.1021/jp068526e]
[25]
Zhang, F.; Yan, Y.; Yang, H.; Meng, Y.; Yu, C.; Tu, B.; Zhao, D. Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15. J. Phys. Chem. B, 2005, 109(18), 8723-8732.
[http://dx.doi.org/10.1021/jp044632+] [PMID: 16852033]
[26]
Badiei, A.; Razavi, B.; Goldooz, H.; Faridbod, F.; Ganjali, M. A novel fluorescent chemosensor assembled with 2,6-Bis(2-Benzimidazolyl)pyridine-functionalized nanoporous silica-type SBA-15 for recognition of Hg2+ ion in aqueous media. Int. J. Environ. Res., 2018, 12(1), 12.
[http://dx.doi.org/10.1007/s41742-018-0075-1]
[27]
Huang, J.; Liu, H-B.; Wang, J. Functionalized mesoporous silica as a fluorescence sensor for selective detection of Hg2+ in aqueous medi-um. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 246, 118974.
[http://dx.doi.org/10.1016/j.saa.2020.118974] [PMID: 33010539]
[28]
Paul, L.; Mukherjee, S.; Chatterjee, S.; Bhaumik, A.; Das, D. Organically functionalized mesoporous SBA-15 type material bearing fluores-cent sites for selective detection of HgII from aqueous medium. ACS Omega, 2019, 4(18), 17857-17863.
[http://dx.doi.org/10.1021/acsomega.9b02631] [PMID: 31681894]
[29]
Chaudhary, V.; Sharma, S. An overview of ordered mesoporous material SBA-15: Synthesis, functionalization and application in oxidation reactions. J. Porous Mater., 2017, 24(3), 741-749.
[http://dx.doi.org/10.1007/s10934-016-0311-z]
[30]
Colilla, M.; Izquierdo-Barba, I.; Sánchez-Salcedo, S.; Fierro, J.L.G.; Hueso, J.L.; Vallet-Regí, M. Synthesis and characterization of zwitteri-onic SBA-15 nanostructured materials. Chem. Mater., 2010, 22(23), 6459-6466.
[http://dx.doi.org/10.1021/cm102827y]
[31]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350), 548-552.
[http://dx.doi.org/10.1126/science.279.5350.548] [PMID: 9438845]
[32]
Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic triblock and star diblock copolymer and oligomeric sufactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Ceram. Soc., 1998, 120(24), 6024-6036.
[33]
Jaramillo, L.Y.; Henao, W.; Romero-Sáez, M. Synthesis and characterization of MCM-41–SBA-15 mixed-phase silica with trimodal meso-porous system and thick pore wall. J. Porous Mater., 2020, 27(6), 1669-1676.
[http://dx.doi.org/10.1007/s10934-020-00930-z]
[34]
Kusumawati, E.N.; Sasaki, T. Metal nanoparticles syntheses on ionic liquids functionalized mesoporous silica SBA-15. Chem. Rec., 2019, 19(9), 2058-2068.
[http://dx.doi.org/10.1002/tcr.201900014] [PMID: 31259473]
[35]
Mohammadi Ziarani, G. Rohani, S.; Ziarati, A.; Badiei, A. Applications of SBA-15 supported Pd metal catalysts as nanoreactors in C–C coupling reactions. RSC Advances, 2018, 8(71), 41048-41100.
[http://dx.doi.org/10.1039/C8RA09038F]
[36]
Crucianelli, M.; Bizzarri, B.M.; Saladino, R. SBA-15 Anchored metal containing catalysts in the oxidative desulfurization process. Catalysts, 2019, 9(12), 984.
[http://dx.doi.org/10.3390/catal9120984]
[37]
Mohajer, F.; Mohammadi Ziarani, G.; Badiei, A. The synthesis of SBA-Pr-3AP@Pd and its application as a highly dynamic, eco-friendly heterogeneous catalyst for Suzuki–Miyaura cross-coupling reaction. Res. Chem. Intermed., 2020, 46(11), 4909-4922.
[http://dx.doi.org/10.1007/s11164-020-04218-4]
[38]
Kiss, F.E.; Jovanović, M.; Bošković, G.C. Economic and ecological aspects of biodiesel production over homogeneous and heterogeneous catalysts. Fuel Process. Technol., 2010, 91(10), 1316-1320.
[http://dx.doi.org/10.1016/j.fuproc.2010.05.001]
[39]
Davies, I.W.; Matty, L.; Hughes, D.L.; Reider, P.J. Are heterogeneous catalysts precursors to homogeneous catalysts? J. Am. Chem. Soc., 2001, 123(41), 10139-10140.
[http://dx.doi.org/10.1021/ja016877v] [PMID: 11592910]
[40]
Hutchings, G.J. Heterogeneous catalysts-discovery and design. J. Mater. Chem., 2009, 19(9), 1222-1235.
[http://dx.doi.org/10.1039/B812300B]
[41]
Hicks, K.E.; Rosen, A.S.; Syed, Z.H.; Snurr, R.Q.; Farha, O.K.; Notestein, J.M. Zr6O8 Node-catalyzed butene hydrogenation and isomeriza-tion in the metal–organic framework NU-1000. ACS Catal., 2020, 10(24), 14959-14970.
[http://dx.doi.org/10.1021/acscatal.0c03579]
[42]
Cheng, W.; Chen, X.; Sun, J.; Wang, J.; Zhang, S. SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable cata-lysts for fixation of CO2 with epoxides. Catal. Today, 2013, 200, 117-124.
[http://dx.doi.org/10.1016/j.cattod.2012.10.001]
[43]
Udayakumar, S.; Lee, M-K.; Shim, H-L.; Park, D-W. Functionalization of organic ions on hybrid MCM-41 for cycloaddition reaction: The effective conversion of carbon dioxide. Appl. Catal. A Gen., 2009, 365(1), 88-95.
[http://dx.doi.org/10.1016/j.apcata.2009.05.057]
[44]
Steinrück, H-P.; Wasserscheid, P. Ionic liquids in catalysis. Catal. Lett., 2015, 145(1), 380-397.
[http://dx.doi.org/10.1007/s10562-014-1435-x]
[45]
Xiao, L-F.; Li, F-W.; Peng, J-J.; Xia, C-G. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Mol. Catal. Chem., 2006, 253(1), 265-269.
[http://dx.doi.org/10.1016/j.molcata.2006.03.047]
[46]
Udayakumar, S.; Raman, V.; Shim, H-L.; Park, D-W. Cycloaddition of carbon dioxide for commercially-imperative cyclic carbonates using ionic liquid-functionalized porous amorphous silica. Appl. Catal. A Gen., 2009, 368(1), 97-104.
[http://dx.doi.org/10.1016/j.apcata.2009.08.015]
[47]
Mehnert, C.P.; Cook, R.A.; Dispenziere, N.C.; Afeworki, M. Supported ionic liquid catalysis--a new concept for homogeneous hydro-formylation catalysis. J. Am. Chem. Soc., 2002, 124(44), 12932-12933.
[http://dx.doi.org/10.1021/ja0279242] [PMID: 12405804]
[48]
Valkenberg, M.H.; deCastro, C.; Holderich, W.F. Friedel-Crafts acylation of aromatics catalysed by supported ionic liquids. Appl. Catal. A Gen., 2001, 215(1-2), 185-190.
[http://dx.doi.org/10.1016/S0926-860X(01)00531-2]
[49]
Mehnert, C.P.; Mozeleski, E.J.; Cook, R.A. Supported ionic liquid catalysis investigated for hydrogenation reactions. Chem. Commun. (Camb.), 2002, (24), 3010-3011.
[http://dx.doi.org/10.1039/b210214e] [PMID: 12536791]
[50]
Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J.N. Biginelli reaction: an overview. Tetrahedron Lett., 2016, 57(47), 5135-5149.
[51]
Adole, V.A. Computational chemistry approach for the investigation of structural, electronic, chemical and quantum chemical facets of twelve biginelli adducts. Appl. Organomet. Chem., 2021, 1(1), 29-40.
[52]
Li, H.; Bhadury, P.S.; Song, B.; Yang, S. Immobilized functional ionic liquids: Efficient, green, and reusable catalysts. RSC Advances, 2012, 2(33), 12525-12551.
[http://dx.doi.org/10.1039/c2ra21310a]
[53]
Mohammadi Ziarani, G.; Khademi, M.; Mohajer, F.; Badiei, A. The application of modified SBA-15 as a chemosensor. Curr. Nanomater., 2021, 6, 1-23.
[http://dx.doi.org/10.2174/2405461506666210420132630]
[54]
Mohammadi Ziarani, G.; Akhgar, M.; Mohajer, F.; Badiei, A. SBA-Pr-IS-MN synthesis and its application as Ag+ optical sensor in aqueous media. Res. Chem. Intermed., 2021, 47(7), 2845-2855.
[http://dx.doi.org/10.1007/s11164-021-04431-9]
[55]
Mohammadi Ziarani, G.; Mohajer, F.; Badiei, A. A fluorescent chemosensor based on functionalized nanoporous silica (SBA-15 SBA-IC-MN) for detection of Hg 2+ in aqueous media. Arab. J. Sci. Eng., 2021.
[56]
Mohajer, F.; Mohammadi Ziarani, G.; Badiei, A.; Ghasemi, J.B. SBA-Pr-Imine-furan as an environmental adsorbent of Pd(II) in aqueous solutions. Environ. Chall., 2021, 3, 100032.
[http://dx.doi.org/10.1016/j.envc.2021.100032]
[57]
Mohammadi Ziarani, G.; Ebrahimi, Z.; Mohajer, F.; Badiei, A. Synthesis and application of SBA-Pr-Py@Pd in Suzuki-type cross-coupling reaction. Res. Chem. Intermed., 2021, 47(11), 4583-4594.
[http://dx.doi.org/10.1007/s11164-021-04544-1]
[58]
Dokhaee, Z.; Ghiaci, M.; Farrokhpour, H.; Buntkowsky, G.; Breitzke, H. SBA-15-Supported imidazolium ionic liquid through different linkers as a sustainable catalyst for the synthesis of cyclic carbonates: A kinetic study and theoretical DFT calculations. Ind. Eng. Chem. Res., 2020, 59(28), 12632-12644.
[http://dx.doi.org/10.1021/acs.iecr.0c01050]
[59]
Shi, Z.; Su, Q.; Ying, T.; Tan, X.; Deng, L.; Dong, L.; Cheng, W. Ionic liquids with multiple active sites supported by SBA-15 for catalyzing conversion of CO2into cyclic carbonates. J. CO2 Util 2020, 39 101162
[60]
Hu, Y.L.; Wang, H.B.; Chen, Z.W.; Li, X.G. Titanium incorporated mesoporous silica immobilized functional ionic liquid as an efficient reusable catalyst for cycloaddition of carbon dioxide to epoxides. ChemistrySelect, 2018, 3(18), 5087-5091.
[http://dx.doi.org/10.1002/slct.201800984]
[61]
Rostamnia, S.; Hassankhani, A. Covalently bonded ionic liquid-type sulfamic acid onto SBA-15: SBA-15/NHSO3H as a highly active, reus-able, and selective green catalyst for solvent-free synthesis of polyhydroquinolines and dihydropyridines. Synlett, 2014, 25(19), 2753-2756.
[http://dx.doi.org/10.1055/s-0034-1379477]
[62]
Jin, M.; Niu, Q.; Si, C.; Lv, Z.; Guo, H.; Guo, Z. Peroxotungstate-based ionic hybrid as a triphase heterogeneous catalyst for efficient benzyl alcohol oxidation under mild conditions. Catal. Lett., 2020, 150(6), 1692-1706.
[http://dx.doi.org/10.1007/s10562-019-03071-4]
[63]
Zhang, S.; Wang, H.; Lu, B.; Zhao, J.; Cai, Q. Ionic liquid dispersed Ti/SBA-15 for double-bond cleavage oxidation of α-methylstyrene into acetophenone. Catal. Lett., 2019, 149(12), 3491-3500.
[http://dx.doi.org/10.1007/s10562-019-02911-7]
[64]
Zhang, S.; Wang, H.; Cang, R.; Lu, B.; Zhao, J.; Cai, Q. Highly selective oxidation of styrene over FeCl3-imidazolium ionic liquid grafted SBA-15. Catal. Lett., 2019, 149(11), 2994-2999.
[http://dx.doi.org/10.1007/s10562-019-02866-9]
[65]
Cang, R.; Lu, B.; Li, X.; Niu, R.; Zhao, J.; Cai, Q. Iron-chloride ionic liquid immobilized on SBA-15 for solvent-free oxidation of benzyl alcohol to benzaldehyde with H2O2. Chem. Eng. Sci., 2015, 137, 268-275.
[http://dx.doi.org/10.1016/j.ces.2015.06.044]
[66]
Ding, W.; Zhu, W.; Xiong, J.; Yang, L.; Wei, A.; Zhang, M.; Li, H. Novel heterogeneous iron-based redox ionic liquid supported on SBA-15 for deep oxidative desulfurization of fuels. Chem. Eng. J., 2015, 266, 213-221.
[http://dx.doi.org/10.1016/j.cej.2014.12.040]
[67]
Sedrpoushan, A.; Hosseini-Eshbala, F.; Mohanazadeh, F.; Heydari, M. Tungstate supported mesoporous silica SBA-15 with imidazolium framework as a hybrid nanocatalyst for selective oxidation of sulfides in the presence of hydrogen peroxide. Appl. Organomet. Chem., 2018, 32(2)
[http://dx.doi.org/10.1002/aoc.4004]
[68]
Rostamnia, S.; Gholipour, B.; Golchin Hosseini, H. Metal- and halogen-free hydrogensulfate ionic liquid/SBA-15 as catalyst in clean oxida-tion of aromatic and aliphatic organic sulfides with aqueous hydrogen peroxide. Process Saf. Environ. Prot., 2016, 100, 74-79.
[http://dx.doi.org/10.1016/j.psep.2015.12.009]
[69]
Doustkhah, E.; Rostamnia, S. Single site supported N-sulfonic acid and N-sulfamate onto SBA-15 for green and sustainable oxidation of sulfides. Mater. Chem. Phys., 2016, 177, 229-235.
[http://dx.doi.org/10.1016/j.matchemphys.2016.04.023]
[70]
Cruz, P.; Pérez, Y.; Del Hierro, I.; Fajardo, M. Copper, copper oxide nanoparticles and copper complexes supported on mesoporous SBA-15 as catalysts in the selective oxidation of benzyl alcohol in aqueous phase. Microporous Mesoporous Mater., 2016, 220, 136-147.
[http://dx.doi.org/10.1016/j.micromeso.2015.08.029]
[71]
Zhuang, J.; Jin, X.; Shen, X.; Tan, J.; Nie, L.; Xiong, J.; Hu, B. Preparation of ionic liquid-modified SBA-15 doped with molybdovanado-phosphoric acid for oxidative desulfurization. Bull. Korean Chem. Soc., 2015, 36(7), 1784-1790.
[http://dx.doi.org/10.1002/bkcs.10336]
[72]
Carrasco, C.J.; Montilla, F.; Bobadilla, L.; Ivanova, S.; Odriozola, J.A.; Galindo, A. Oxodiperoxomolybdenum complex immobilized onto ionic liquid modified SBA-15 as an effective catalysis for sulfide oxidation to sulfoxides using hydrogen peroxide. Catal. Today, 2015, 255, 102-108.
[http://dx.doi.org/10.1016/j.cattod.2014.10.053]
[73]
Xiong, J.; Zhu, W.; Ding, W.; Yang, L.; Zhang, M.; Jiang, W.; Zhao, Z.; Li, H. Hydrophobic mesoporous silica-supported heteropolyacid induced by ionic liquid as a high efficiency catalyst for the oxidative desulfurization of fuel. RSC Advances, 2015, 5(22), 16847-16855.
[http://dx.doi.org/10.1039/C4RA14382E]
[74]
Chen, A.; Yu, Y.; Wang, R.; Yu, Y.; Zang, W.; Tang, P.; Ma, D. Nitrogen-doped dual mesoporous carbon for the selective oxidation of ethylbenzene. Nanoscale, 2015, 7(35), 14684-14690.
[http://dx.doi.org/10.1039/C5NR03802B] [PMID: 26274862]
[75]
Zhao, Q.; Yang, C.; Fang, M.; Jiang, T. Performance of brӧnsted-lewis acidic ionic liquids supported Ti-SBA-15 for the esterification of acetic acid to benzyl alcohol. Appl. Catal. A Gen., 2020, 594.
[76]
Wang, Y.; Zhao, D.; Wang, L.; Wang, X.; Li, L.; Xing, Z.; Ji, N.; Liu, S.; Ding, H. Immobilized phosphotungstic acid based ionic liquid: Ap-plication for heterogeneous esterification of palmitic acid. Fuel, 2018, 216, 364-370.
[http://dx.doi.org/10.1016/j.fuel.2017.11.153]
[77]
Li, R.; Song, H.; Wang, G.; Chen, J. Efficient and reusable SBA-15-immobilized Brønsted acidic ionic liquid for the ketalization of cyclo-hexanone with glycol. RSC Advances, 2018, 8(13), 7179-7185.
[http://dx.doi.org/10.1039/C7RA13385E]
[78]
Dai, L.; Zhao, Q.; Fang, M.; Liu, R.; Dong, M.; Jiang, T. Catalytic activity comparison of Zr-SBA-15 immobilized by a Brønsted-Lewis acid-ic ionic liquid in different esterifications. RSC Advances, 2017, 7(51), 32427-32435.
[http://dx.doi.org/10.1039/C7RA04950A]
[79]
Hung, C.T.; Liu, L.L.; Wang, J.J.; Wu, P.H.; Wang, C.B.; Tsai, T.C.; Liu, S.B. Acidity and alkylation activity of 12-tungstophosphoric acid supported on ionic liquid-functionalized SBA-15. Catal. Today, 2019, 327, 10-18.
[http://dx.doi.org/10.1016/j.cattod.2018.07.041]
[80]
Pathak, A.; Singh, A.P. Synthesis and characterization of D-2PA-Pd(II)@SBA-15 catalyst via “click chemistry”: Highly active catalyst for Suzuki coupling reactions. J. Porous Mater., 2017, 24(2), 327-340.
[http://dx.doi.org/10.1007/s10934-016-0266-0]
[81]
Giacalone, F.; Campisciano, V.; Calabrese, C.; La Parola, V.; Liotta, L.F.; Aprile, C.; Gruttadauria, M. Supported C60-IL-PdNPs as extreme-ly active nanocatalysts for C-C cross-coupling reactions. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(43), 17193-17206.
[http://dx.doi.org/10.1039/C6TA07599A]
[82]
Rostamnia, S.; Golchin Hossieni, H.; Doustkhah, E. Homoleptic chelating N-heterocyclic carbene complexes of palladium immobilized within the pores of SBA-15/IL (NHC-Pd@SBA-15/IL) as heterogeneous catalyst for Hiyama reaction. J. Organomet. Chem., 2015, 791, 18-23.
[http://dx.doi.org/10.1016/j.jorganchem.2015.05.019]
[83]
Sheng, X.; Zhou, Y.; Yang, Y.; Zhang, Y.; Zhang, Z.; Zhou, S.; Fu, X.; Zhao, S. Synthesis of immobilized heteropolyanion-based ionic liq-uids on mesoporous silica SBA-15 as a heterogeneous catalyst for alkylation. RSC Advances, 2014, 4(58), 30697-30703.
[http://dx.doi.org/10.1039/C4RA03531C]
[84]
Kusumawati, E.N.; Sasaki, T. Highly active and stable supported Pd catalysts on ionic liquid-functionalized SBA-15 for Suzuki-Miyaura cross-coupling and transfer hydrogenation reactions. Green Energy Environ., 2019, 4(2), 180-189.
[http://dx.doi.org/10.1016/j.gee.2019.02.003]
[85]
Xie, W.; Zhang, C.; Wang, H. Polymeric acidic ionic liquid-functionalized SBA-15 as a solid catalyst for production of low-calorie struc-tured lipids. J. Am. Oil Chem. Soc., 2018, 95(12), 1549-1559.
[http://dx.doi.org/10.1002/aocs.12155]
[86]
Kusumawati, E.N.; Nishio-Hamane, D.; Sasaki, T. Size-controllable gold nanoparticles prepared from immobilized gold-containing ionic liquids on SBA-15. Catal. Today, 2018, 309, 109-118.
[http://dx.doi.org/10.1016/j.cattod.2017.09.012]
[87]
Hierro, I.D.; Pérez, Y.; Fajardo, M. Supported choline hydroxide (ionic liquid) on mesoporous silica as heterogeneous catalyst for Knoevenagel condensation reactions. Microporous Mesoporous Mater., 2018, 263, 173-180.
[http://dx.doi.org/10.1016/j.micromeso.2017.12.024]
[88]
Abbasian, S.; Kabirifard, H.; Mahdavi, M. The synthesis of 2,3-dihydroquinazoline-4(1H)-one and dihydroisoindolo[2,1-a]quinazoline-5,11-dione derivatives in the presence of imidazolium ionic liquid sulfonic acid functionalized SBA-15: A novel feature of SBA-15. ARKIVOC, 2018, 2018(3), 302-314.
[http://dx.doi.org/10.24820/ark.5550190.p010.448]
[89]
Fallahi, M.; Ahmadi, E.; Ramazani, A.; Mohamadnia, Z. Trimerization of ethylene catalyzed by Cr-based catalyst immobilized on the sup-ported ionic liquid phase. J. Organomet. Chem., 2017, 848, 149-158.
[http://dx.doi.org/10.1016/j.jorganchem.2017.07.029]
[90]
Davarpanah, J.; Rezaee, P.; Elahi, S. Synthesis and characterization of a porous acidic catalyst functionalized with an imidazole ionic liquid, and its use for synthesis of phthalazinedione and phthalazinetrione heterocyclic compounds. Res. Chem. Intermed., 2015, 41(12), 9903-9915.
[http://dx.doi.org/10.1007/s11164-015-1997-2]
[91]
Rostamnia, S.; Hassankhani, A.; Hossieni, H.G.; Gholipour, B.; Xin, H. Brønsted acidic hydrogensulfate ionic liquid immobilized SBA-15: [MPIm][HSO4]@SBA-15 as an environmentally friendly, metal- and halogen-free recyclable catalyst for Knoevenagel-Michael-cyclization processes. J. Mater. Chem. A Mater. Energy Sustain., 2014, 395, 463-469.
[92]
Nasab, M.J.; Kiasat, A.R. Covalently anchored 2-amino ethyl-3-propyl imidazolium bromideon SBA-15 as a green, efficient and reusable Brønsted basic ionic liquid nanocatalyst for one-pot solvent-free synthesis of benzopyranopyrimidines under ultrasonic irradiation. RSC Advances, 2015, 5(92), 75491-75499.
[http://dx.doi.org/10.1039/C5RA11006H]
[93]
Mohammadi Ziarani, G.; Mollabagher, H.; Gholamzadeh, P.; Badiei, A.; Yazdian, F. Synthesis of the biologically active henna based benzo-chromene derivatives using ionic liquid functionalized SBA-15 as a nanoreactor. Iran. J. Catal., 2018, 8(1), 59-67.
[94]
Hosseini, H.G.; Doustkhah, E.; Kirillova, M.V.; Rostamnia, S.; Mahmoudi, G.; Kirillov, A.M. Combining ethylenediamine and ionic liquid functionalities within SBA-15: A promising catalytic pair for tandem Cu–AAC reaction. Appl. Catal. A Gen., 2017, 548, 96-102.
[http://dx.doi.org/10.1016/j.apcata.2017.07.006]
[95]
Sarmah, B.; Srivastava, R. Highly efficient and recyclable basic ionic liquids supported on SBA-15 for the synthesis of substituted styrenes, carbinolamides, and naphthopyrans. Mol. Catal., 2017, 427, 62-72.
[http://dx.doi.org/10.1016/j.molcata.2016.11.030]
[96]
Xie, W.; Hu, L.; Yang, X. Basic ionic liquid supported on mesoporous SBA-15 silica as an efficient heterogeneous catalyst for biodiesel production. Ind. Eng. Chem. Res., 2015, 54(5), 1505-1512.
[http://dx.doi.org/10.1021/ie5045007]
[97]
Yang, J.; Zeng, T.; Cai, D.; Li, L.; Tang, W.; Hong, R.; Qiu, T. Supported ionic liquids as green catalyst for 2-butanol synthesis from trans-esterification of sec-butyl acetate. Asia-Pac. J. Chem. Eng., 2016, 11(6), 901-909.
[http://dx.doi.org/10.1002/apj.2024]
[98]
Rostamnia, S.; Xin, H. Simultaneous application of ultrasonic irradiation and immobilized ionic liquid onto the SBA-15 nanoreactor (US/[MPIm]Cl@SBA-15): A robust, recyclable, and useful combined catalytic system for selective and waste-free Kabachnik Fields reac-tion. J. Mol. Liq., 2014, 195, 30-34.
[http://dx.doi.org/10.1016/j.molliq.2014.01.031]
[99]
Karimi, B.; Zamani, A.; Mansouri, F. Activity enhancement in cyanation of aryl halides through confinement of ionic liquid in the nano-spaces of SBA-15 -supported Pd complex. RSC Advances, 2014, 4(101), 57639-57645.
[http://dx.doi.org/10.1039/C4RA09428J]
[100]
Yuan, J.; Xiong, J.; Wang, J.; Ding, W.; Yang, L.; Zhang, M.; Zhu, W.; Li, H. Structure and catalytic oxidative desulfurization properties of SBA-15 supported silicotungstic acid ionic liquid. J. Porous Mater., 2016, 23(3), 823-831.
[http://dx.doi.org/10.1007/s10934-016-0137-8]
[101]
Malihan, L.B.; Nisola, G.M.; Mittal, N.; Lee, S.P.; Seo, J.G.; Kim, H.; Chung, W.J. SBA-15 supported ionic liquid phase (SILP) with H2PW12O40- for the hydrolytic catalysis of red macroalgal biomass to sugars. RSC Advances, 2016, 6(40), 33901-33909.
[http://dx.doi.org/10.1039/C6RA03740B]
[102]
Cruz, P.; Pérez, Y.; Hierro, I.D.; Fernández-Galán, R.; Fajardo, M. ε-Caprolactone polymerization using titanium complexes immobilized onto silica based materials functionalized with ionic liquids: Insights into steric, electronic and support effects. RSC Advances, 2016, 6(24), 19723-19733.
[http://dx.doi.org/10.1039/C6RA01220E]
[103]
Satapathy, A.; Gadge, S.T.; Kusumawati, E.N.; Harada, K.; Sasaki, T.; Nishio-Hamane, D.; Bhanage, B.M. Synthesis of polyester amide by carbonylation-polycondensation reaction using immobilized palladium metal containing ionic liquid on SBA-15 as a phosphine-free catalyt-ic system. Catal. Lett., 2015, 145(3), 824-833.
[http://dx.doi.org/10.1007/s10562-015-1489-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy