Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Comparison of Cell-based and Nanoparticle-based Therapeutics in Treating Atherosclerosis

Author(s): Wen Xi Goh, Yih Yih Kok* and Chiew Yen Wong

Volume 29, Issue 35, 2023

Published on: 03 November, 2023

Page: [2827 - 2840] Pages: 14

DOI: 10.2174/0113816128272185231024115046

Price: $65

Abstract

Today, cardiovascular diseases are among the biggest public health threats worldwide. Atherosclerosis, a chronic inflammatory disease with complex aetiology and pathogenesis, predispose many of these conditions, including the high mortality rate-causing ischaemic heart disease and stroke. Nevertheless, despite the alarming prevalence and absolute death rate, established treatments for atherosclerosis are unsatisfactory in terms of efficacy, safety, and patient acceptance. The rapid advancement of technologies in healthcare research has paved new treatment approaches, namely cell-based and nanoparticle-based therapies, to overcome the limitations of conventional therapeutics. This paper examines the different facets of each approach, discusses their principles, strengths, and weaknesses, analyses the main targeted pathways and their contradictions, provides insights on current trends as well as highlights any unique mechanisms taken in recent years to combat the progression of atherosclerosis.

Keywords: Atherosclerosis, cell-based therapy, nanoparticle-based therapy, cardiovascular diseases, chronic inflammatory disease, complex aetiology.

« Previous
[1]
World Health Organization. WHO reveals leading causes of death and disability worldwide: 2000-2019. 2020. Available from: https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019
[2]
Barquera S, Pedroza-Tobías A, Medina C, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res 2015; 46(5): 328-38.
[http://dx.doi.org/10.1016/j.arcmed.2015.06.006] [PMID: 26135634]
[3]
Hong YM. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ J 2010; 40(1): 1-9.
[http://dx.doi.org/10.4070/kcj.2010.40.1.1] [PMID: 20111646]
[4]
Pahwa R, Jialal I. Atherosclerosis. In: StatPearls. Treasure Island, FL: StatPearls Publishing 2021.
[5]
Prilepskii AY, Serov NS, Kladko DV, Vinogradov VV. Nanoparticle-based approaches towards the treatment of atherosclerosis. Pharmaceutics 2020; 12(11): 1056.
[http://dx.doi.org/10.3390/pharmaceutics12111056] [PMID: 33167402]
[6]
Al-Shura AN. Atherosclerosis: The acute, chronic, recovery and prevention stages. In: Herbal, Bio-Nutrient and Drug Titration According to Disease Stages in Integrative Cardiovascular Chinese Medicine. Elsevier 2020; pp. 105-15.
[http://dx.doi.org/10.1016/B978-0-12-817580-4.00008-1]
[7]
Pasternak RC, Smith SC Jr, Bairey-Merz CN, Grundy SM, Cleeman JI, Lenfant C. ACC/AHA/NHLBI clinical advisory on the use and safety of statins. J Am Coll Cardiol 2002; 40(3): 567-72.
[http://dx.doi.org/10.1016/S0735-1097(02)02030-2] [PMID: 12142128]
[8]
Martinet W, Schrijvers DM, De Meyer GRY. Pharmacological modulation of cell death in atherosclerosis: A promising approach towards plaque stabilization? Br J Pharmacol 2011; 164(1): 1-13.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01342.x] [PMID: 21418184]
[9]
von Degenfeld G, Truebel H. Cardiovascular translational biomarkers: Translational aspects of hypertension, atherosclerosis, and heart failure in drug development in the digital era. In: Principles of Translational Science in Medicine. Elsevier 2021; pp. 177-93.
[http://dx.doi.org/10.1016/B978-0-12-820493-1.00017-9]
[10]
Groszek E, Grundy SM. The possible role of the arterial microcirculation in the pathogenesis of atherosclerosis. J Chronic Dis 1980; 33(11-12): 679-84.
[http://dx.doi.org/10.1016/0021-9681(80)90054-5] [PMID: 7430319]
[11]
Isner JM. Cancer and atherosclerosis. Circulation 1999; 99(13): 1653-5.
[http://dx.doi.org/10.1161/01.CIR.99.13.1653] [PMID: 10190871]
[12]
Fernández-Ortiz A, Badimon JJ, Falk E, et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components: Implications for consequences of plaque rupture. J Am Coll Cardiol 1994; 23(7): 1562-9.
[http://dx.doi.org/10.1016/0735-1097(94)90657-2 ] [PMID: 8195515]
[13]
Sato Y, Hatakeyama K, Yamashita A, Marutsuka K, Sumiyoshi A, Asada Y. Proportion of fibrin and platelets differs in thrombi on ruptured and eroded coronary atherosclerotic plaques in humans. Heart 2005; 91(4): 526-30.
[http://dx.doi.org/10.1136/hrt.2004.034058] [PMID: 15772220]
[14]
Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996; 93(7): 1354-63.
[http://dx.doi.org/10.1161/01.CIR.93.7.1354] [PMID: 8641024]
[15]
van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994; 89(1): 36-44.
[http://dx.doi.org/10.1161/01.CIR.89.1.36] [PMID: 8281670]
[16]
Fang C, Lu J, Zhang S, et al. Morphological characteristics of eroded plaques with noncritical coronary stenosis: An optical coherence tomography study. J Atheroscler Thromb 2022; 29(1): 126-40.
[http://dx.doi.org/10.5551/jat.60301] [PMID: 33455996]
[17]
Gopalan C, Kirk E. Atherosclerosis. In: Biology of Cardiovascular and Metabolic Diseases. Elsevier 2022; pp. 85-101.
[http://dx.doi.org/10.1016/B978-0-12-823421-1.00002-0]
[18]
Kim I. A brief overview of cell therapy and its product. J Korean Assoc Oral Maxillofac Surg 2013; 39(5): 201-2.
[http://dx.doi.org/10.5125/jkaoms.2013.39.5.201] [PMID: 24471045]
[19]
Mount NM, Ward SJ, Kefalas P, Hyllner J. Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc B Biol Sci 2015; 370(1680): 20150017.
[http://dx.doi.org/10.1098/rstb.2015.0017]
[20]
Zakrzewski W. Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[21]
Zhang X, Huang F, Chen Y, Qian X, Zheng SG. Progress and prospect of mesenchymal stem cell-based therapy in atherosclerosis. Am J Transl Res 2016; 8(10): 4017-24.
[PMID: 27829989]
[22]
Robbins CS, Chudnovskiy A, Rauch PJ, et al. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 2012; 125(2): 364-74.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.061986] [PMID: 22144566]
[23]
Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002; 8(4): 403-9.
[http://dx.doi.org/10.1038/nm0402-403] [PMID: 11927948]
[24]
Wei X, Sun G, Zhao X, et al. Human amnion mesenchymal stem cells attenuate atherosclerosis by modulating macrophage function to reduce immune response. Int J Mol Med 2019; 44(4): 1425-35.
[http://dx.doi.org/10.3892/ijmm.2019.4286] [PMID: 31364743]
[25]
Takafuji Y, Hori M, Mizuno T, Harada-Shiba M. Humoral factors secreted from adipose tissue-derived mesenchymal stem cells ameliorate atherosclerosis in Ldlr−/− mice. Cardiovasc Res 2019; 115(6): 1041-51.
[http://dx.doi.org/10.1093/cvr/cvy271] [PMID: 30388208]
[26]
Li J, Xue H, Li T, et al. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE−/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun 2019; 510(4): 565-72.
[http://dx.doi.org/10.1016/j.bbrc.2019.02.005] [PMID: 30739785]
[27]
Zhang X, Huang F, Li W, et al. Human gingiva-derived mesenchymal stem cells modulate monocytes/macrophages and alleviate atherosclerosis. Front Immunol 2018; 9: 878.
[http://dx.doi.org/10.3389/fimmu.2018.00878] [PMID: 29760701]
[28]
Ma J, Chen L, Zhu X, Li Q, Hu L, Li H. Mesenchymal stem cell-derived exosomal miR-21a-5p promotes M2 macrophage polarization and reduces macrophage infiltration to attenuate atherosclerosis. Acta Biochim Biophys Sin 2021; 53(9): 1227-36.
[http://dx.doi.org/10.1093/abbs/gmab102] [PMID: 34350954]
[29]
Hashem RM, Rashed LA, Abdelkader RM, Hashem KS. Stem cell therapy targets the neointimal smooth muscle cells in experimentally induced atherosclerosis: Involvement of intracellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM). Braz J Med Biol Res 2021; 54(8): e10807.
[http://dx.doi.org/10.1590/1414-431x2020e10807] [PMID: 34037094]
[30]
Xing X, Li Z, Yang X, et al. Adipose-derived mesenchymal stem cells-derived exosome-mediated microRNA-342-5p protects endothelial cells against atherosclerosis. Aging 2020; 12(4): 3880-98.
[http://dx.doi.org/10.18632/aging.102857] [PMID: 32096479]
[31]
Guo Z, Zhao Z, Yang C, Song C. Transfer of microRNA-221 from mesenchymal stem cell-derived extracellular vesicles inhibits atherosclerotic plaque formation. Transl Res 2020; 226: 83-95.
[http://dx.doi.org/10.1016/j.trsl.2020.07.003] [PMID: 32659442]
[32]
Lin F, Zhang S, Liu X, Wu M. RETRACTED: Mouse bone marrow derived mesenchymal stem cells-secreted exosomal microRNA-125b-5p suppresses atherosclerotic plaque formation via inhibiting Map4k4. Life Sci 2021; 274: 119249.
[http://dx.doi.org/10.1016/j.lfs.2021.119249] [PMID: 33652034]
[33]
Shi H, Liang M, Chen W, et al. Human induced pluripotent stem cell derived mesenchymal stem cells alleviate atherosclerosis by modulating inflammatory responses. Mol Med Rep 2018; 17(1): 1461-8.
[PMID: 29257199]
[34]
Zeitouni S, Ford BS, Harris SM, Whitney MJ, Gregory CA, Prockop DJ. Pharmaceutical induction of ApoE secretion by multipotent mesenchymal stromal cells (MSCs). BMC Biotechnol 2008; 8(1): 75.
[http://dx.doi.org/10.1186/1472-6750-8-75] [PMID: 18823563]
[35]
Asai K, Funaki C, Hayashi T, et al. Dexaniethasone-induced suppression of aortic atherosclerosis in cholesterol-fed rabbits. Arterioscler Thromb 1993; 13: 892-9.
[http://dx.doi.org/10.1161/01.ATV.13.6.892] [PMID: 8499410]
[36]
Lin YL, Yet SF, Hsu YT, Wang GJ, Hung SC. Mesenchymal stem cells ameliorate atherosclerotic lesions via restoring endothelial function. Stem Cells Transl Med 2015; 4(1): 44-55.
[http://dx.doi.org/10.5966/sctm.2014-0091] [PMID: 25504897]
[37]
Fang SM, Du DY, Li YT, et al. Allogeneic bone marrow mesenchymal stem cells transplantation for stabilizing and repairing of atherosclerotic ruptured plaque. Thromb Res 2013; 131(6): e253-7.
[http://dx.doi.org/10.1016/j.thromres.2013.04.002] [PMID: 23618388]
[38]
Wang S, Hu S, Zhang Q, Xia A, Jiang Z, Chen X. Mesenchymal stem cells stabilize atherosclerotic vulnerable plaque by anti-inflammatory properties. PLoS One 2015; 10(8): e0136026.
[http://dx.doi.org/10.1371/journal.pone.0136026] [PMID: 26288013]
[39]
Wang ZX, Wang CQ, Li XY, et al. Mesenchymal stem cells alleviate atherosclerosis by elevating number and function of CD4+CD25+FOXP3+ regulatory T-cells and inhibiting macrophage foam cell formation. Mol Cell Biochem 2015; 400(1-2): 163-72.
[http://dx.doi.org/10.1007/s11010-014-2272-3] [PMID: 25389006]
[40]
Kmiecik G. Niklińska W, Kuć P, et al. Fetal membranes as a source of stem cells. Adv Med Sci 2013; 58(2): 185-95.
[http://dx.doi.org/10.2478/ams-2013-0007] [PMID: 24327530]
[41]
Kim EY, Lee KB, Kim MK. The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. BMB Rep 2014; 47(3): 135-40.
[http://dx.doi.org/10.5483/BMBRep.2014.47.3.289] [PMID: 24499672]
[42]
Tomar GB, Srivastava RK, Gupta N, et al. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun 2010; 393(3): 377-83.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.126] [PMID: 20138833]
[43]
Diederichs S, Tuan RS. Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor. Stem Cells Dev 2014; 23(14): 1594-610.
[http://dx.doi.org/10.1089/scd.2013.0477] [PMID: 24625206]
[44]
Kretlow JD, Jin YQ, Liu W, et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 2008; 9(1): 60.
[http://dx.doi.org/10.1186/1471-2121-9-60] [PMID: 18957087]
[45]
Wagner W, Bork S, Horn P, et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 2009; 4(6): e5846.
[http://dx.doi.org/10.1371/journal.pone.0005846] [PMID: 19513108]
[46]
Li Y, Yu J, Li M, Qu Z, Ruan Q. Mouse mesenchymal stem cells from bone marrow differentiate into smooth muscle cells by induction of plaque-derived smooth muscle cells. Life Sci 2011; 88(3-4): 130-40.
[http://dx.doi.org/10.1016/j.lfs.2010.10.030] [PMID: 21094172]
[47]
Khedoe PPSJ, de Kleijn S, van Oeveren-Rietdijk AM, et al. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development. PLoS One 2017; 12(9): e0183741.
[http://dx.doi.org/10.1371/journal.pone.0183741] [PMID: 28910300]
[48]
Izzotti A, Piana A, Minniti G, Vercelli M, Perrone L, De Flora S. Survival of atherosclerotic patients as related to oxidative stress and gene polymorphisms. Mutat Res 2007; 621(1-2): 119-28.
[http://dx.doi.org/10.1016/j.mrfmmm.2006.12.012] [PMID: 17383690]
[49]
Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 2014; 129(15): 1551-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005015] [PMID: 24481950]
[50]
Depuydt MAC, Prange KHM, Slenders L, et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ Res 2020; 127(11): 1437-55.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.316770] [PMID: 32981416]
[51]
Ketelhuth D, Gisterå A, Johansson D, Hansson G. T cell-based therapies for atherosclerosis. Curr Pharm Des 2013; 19(33): 5850-8.
[http://dx.doi.org/10.2174/1381612811319330003] [PMID: 23438952]
[52]
Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2009; 120(5): 417-26.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.868158] [PMID: 19620499]
[53]
Kyaw T, Tipping P, Toh BH, Bobik A. Current understanding of the role of B cell subsets and intimal and adventitial B cells in atherosclerosis. Curr Opin Lipidol 2011; 22(5): 373-9.
[http://dx.doi.org/10.1097/MOL.0b013e32834adaf3] [PMID: 21881498]
[54]
Zhuang T, Liu J, Chen X, et al. Endothelial Foxp1 suppresses atherosclerosis via modulation of Nlrp3 inflammasome activation. Circ Res 2019; 125(6): 590-605.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314402] [PMID: 31318658]
[55]
Hori D, Nomura Y, Nakano M, et al. Endothelial-specific overexpression of histone deacetylase 2 protects mice against endothelial dysfunction and atherosclerosis. Cell Physiol Biochem 2020; 54(5): 947-58.
[http://dx.doi.org/10.33594/000000280] [PMID: 32975918]
[56]
Wang H, Wei Z, Li H, et al. MiR-377-3p inhibits atherosclerosis-associated vascular smooth muscle cell proliferation and migration via targeting neuropilin2. Biosci Rep 2020; 40(6): BSR20193425.
[http://dx.doi.org/10.1042/BSR20193425] [PMID: 32373927]
[57]
Wirka RC, Wagh D, Paik DT, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med 2019; 25(8): 1280-9.
[http://dx.doi.org/10.1038/s41591-019-0512-5] [PMID: 31359001]
[58]
Wei Z, Chong H, Jiang Q, et al. Smooth muscle overexpression of PGC1α attenuates atherosclerosis in rabbits. Circ Res 2021; 129(4): e72-86.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317705] [PMID: 34162227]
[59]
Wang F, Zhang Z, Fang A, et al. Macrophage foam cell-targeting immunization attenuates atherosclerosis. Front Immunol 2019; 9: 3127.
[http://dx.doi.org/10.3389/fimmu.2018.03127] [PMID: 30687328]
[60]
Bonacina F, Martini E, Svecla M, et al. Adoptive transfer of CX3CR1 transduced-T regulatory cells improves homing to the atherosclerotic plaques and dampens atherosclerosis progression. Cardiovasc Res 2021; 117(9): 2069-82.
[http://dx.doi.org/10.1093/cvr/cvaa264] [PMID: 32931583]
[61]
Mantani PT, Dunér P, Ljungcrantz I, Nilsson J, Björkbacka H, Fredrikson GN. ILC2 transfers to apolipoprotein E deficient mice reduce the lipid content of atherosclerotic lesions. BMC Immunol 2019; 20(1): 47.
[http://dx.doi.org/10.1186/s12865-019-0330-z] [PMID: 31823769]
[62]
Gao X, Lin J, Zheng Y, et al. Type 2 innate lymphoid cells regulation by regulatory T cells attenuates atherosclerosis. J Mol Cell Cardiol 2020; 145: 99-111.
[http://dx.doi.org/10.1016/j.yjmcc.2020.05.017] [PMID: 32526223]
[63]
Burger F, Miteva K, Baptista D, et al. Follicular regulatory helper T cells control the response of regulatory B cells to a high-cholesterol diet. Cardiovasc Res 2021; 117(3): 743-55.
[http://dx.doi.org/10.1093/cvr/cvaa069] [PMID: 32219371]
[64]
Lotfy H, Moaaz M, Moaaz M. The novel role of IL-37 to enhance the anti-inflammatory response of regulatory T cells in patients with peripheral atherosclerosis. Vascular 2020; 28(5): 629-42.
[http://dx.doi.org/10.1177/1708538120921735] [PMID: 32366176]
[65]
Liu J, Lin J, He S, et al. Transgenic overexpression of IL-37 protects against atherosclerosis and strengthens plaque stability. Cell Physiol Biochem 2018; 45(3): 1034-50.
[http://dx.doi.org/10.1159/000487344] [PMID: 29439249]
[66]
Douna H, Amersfoort J, Schaftenaar FH, et al. Bidirectional effects of IL-10+ regulatory B cells in Ldlr mice. Atherosclerosis 2019; 280: 118-25.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.11.019] [PMID: 30500604]
[67]
Grievink HW, Smit V, Verwilligen RAF, et al. Stimulation of the PD-1 pathway decreases atherosclerotic lesion development in Ldlr deficient mice. Front Cardiovasc Med 2021; 8: 740531.
[http://dx.doi.org/10.3389/fcvm.2021.740531] [PMID: 34790707]
[68]
Douna H, Amersfoort J, Schaftenaar FH, et al. B- and T-lymphocyte attenuator stimulation protects against atherosclerosis by regulating follicular B cells. Cardiovasc Res 2020; 116(2): 295-305.
[PMID: 31150053]
[69]
Lorenzo C, Delgado P, Busse CE, et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature 2021; 589(7841): 287-92.
[http://dx.doi.org/10.1038/s41586-020-2993-2] [PMID: 33268892]
[70]
Hosseini H, Yi L, Kanellakis P, et al. Anti-TIM-1 monoclonal antibody (RMT1-10) attenuates atherosclerosis by expanding IgM-producing B1a cells. J Am Heart Assoc 2018; 7(13): e008447.
[http://dx.doi.org/10.1161/JAHA.117.008447] [PMID: 29936416]
[71]
Puca AA, Carrizzo A, Spinelli C, et al. Single systemic transfer of a human gene associated with exceptional longevity halts the progression of atherosclerosis and inflammation in ApoE knockout mice through a CXCR4-mediated mechanism. Eur Heart J 2020; 41(26): 2487-97.
[http://dx.doi.org/10.1093/eurheartj/ehz459] [PMID: 31289820]
[72]
Li Y, Zhou H, Wang F, et al. Overexpression of PTPN2 in visceral adipose tissue ameliorated atherosclerosis via T cells polarization shift in diabetic Apoe-/- mice. Cell Physiol Biochem 2018; 46(1): 118-32.
[http://dx.doi.org/10.1159/000488415] [PMID: 29587266]
[73]
Zhao XJ, Liu LC, Guo C, et al. Hepatic paraoxonase 1 ameliorates dysfunctional high-density lipoprotein and atherosclerosis in scavenger receptor class B type I deficient mice. Ann Transl Med 2021; 9(13): 1063.
[http://dx.doi.org/10.21037/atm-21-682] [PMID: 34422975]
[74]
Zhao H, Li Y, He L, et al. In vivo AAV-CRISPR/Cas9-mediated gene editing ameliorates atherosclerosis in familial hypercholesterolemia. Circulation 2020; 141(1): 67-79.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.042476] [PMID: 31779484]
[75]
Chyu KY, Zhao X, Dimayuga PC, et al. CD8+ T cells mediate the athero-protective effect of immunization with an ApoB-100 peptide. PLoS One 2012; 7(2): e30780.
[http://dx.doi.org/10.1371/journal.pone.0030780] [PMID: 22347402]
[76]
Cardilo-Reis L, Gruber S, Schreier SM, et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med 2012; 4(10): 1072-86.
[http://dx.doi.org/10.1002/emmm.201201374] [PMID: 23027612]
[77]
Rosenson RS, Brewer HB Jr, Ansell BJ, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2016; 13(1): 48-60.
[http://dx.doi.org/10.1038/nrcardio.2015.124] [PMID: 26323267]
[78]
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108(6): 2064-110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[79]
Feugang JM. Novel agents for sperm purification, sorting, and imaging. Mol Reprod Dev 2017; 84(9): 832-41.
[http://dx.doi.org/10.1002/mrd.22831] [PMID: 28481043]
[80]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[81]
Lobatto ME, Fuster V, Fayad ZA, Mulder WJM. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discov 2011; 10(11): 835-52.
[http://dx.doi.org/10.1038/nrd3578] [PMID: 22015921]
[82]
Choi KA, Kim JH, Ryu K, Kaushik N. Current nanomedicine for targeted vascular disease treatment: Trends and perspectives. Int J Mol Sci 2022; 23(20): 12397.
[http://dx.doi.org/10.3390/ijms232012397] [PMID: 36293254]
[83]
Seijkens TTP, van Tiel CM, Kusters PJH, et al. Targeting CD40-induced TRAF6 signaling in macrophages reduces atherosclerosis. J Am Coll Cardiol 2018; 71(5): 527-42.
[http://dx.doi.org/10.1016/j.jacc.2017.11.055] [PMID: 29406859]
[84]
Chyu KY, Zhao X, Zhou J, et al. Immunization using ApoB-100 peptide–linked nanoparticles reduces atherosclerosis. JCI Insight 2022; 7(11): e149741.
[http://dx.doi.org/10.1172/jci.insight.149741] [PMID: 35536648]
[85]
Luo Y, Guo Y, Wang H, et al. Phospholipid nanoparticles: Therapeutic potentials against atherosclerosis via reducing cholesterol crystals and inhibiting inflammation. EBioMedicine 2021; 74: 103725.
[http://dx.doi.org/10.1016/j.ebiom.2021.103725] [PMID: 34879325]
[86]
Gao B, Xu J, Zhou J, et al. Multifunctional pathology-mapping theranostic nanoplatforms for US/MR imaging and ultrasound therapy of atherosclerosis. Nanoscale 2021; 13(18): 8623-38.
[http://dx.doi.org/10.1039/D1NR01096D] [PMID: 33929480]
[87]
Mehta S, Bongcaron V, Nguyen TK, et al. An ultrasound-responsive theranostic cyclodextrin-loaded nanoparticle for multimodal imaging and therapy for atherosclerosis. Small 2022; 18(31): 2200967.
[http://dx.doi.org/10.1002/smll.202200967] [PMID: 35710979]
[88]
Meng N, Gong Y, Zhang J, et al. A novel curcumin-loaded nanoparticle restricts atherosclerosis development and promotes plaques stability in apolipoprotein E deficient mice. J Biomater Appl 2019; 33(7): 946-54.
[http://dx.doi.org/10.1177/0885328218815328] [PMID: 30541364]
[89]
Liang X, Li H, Zhang A, et al. Red blood cell biomimetic nanoparticle with anti-inflammatory, anti-oxidative and hypolipidemia effect ameliorated atherosclerosis therapy. Nanomedicine 2022; 41: 102519.
[http://dx.doi.org/10.1016/j.nano.2022.102519] [PMID: 35038590]
[90]
Wang Y, Zhang K, Li T, et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics 2021; 11(1): 164-80.
[http://dx.doi.org/10.7150/thno.47841] [PMID: 33391468]
[91]
Gao C, Huang Q, Liu C, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun 2020; 11(1): 2622.
[http://dx.doi.org/10.1038/s41467-020-16439-7] [PMID: 32457361]
[92]
Flores AM, Hosseini-Nassab N, Jarr KU, et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat Nanotechnol 2020; 15(2): 154-61.
[http://dx.doi.org/10.1038/s41565-019-0619-3] [PMID: 31988506]
[93]
Pham LM, Kim EC, Ou W, et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials 2021; 269: 120677.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120677] [PMID: 33503557]
[94]
Yang J, Dang G, Lü S, et al. T-cell-derived extracellular vesicles regulate B-cell IgG production via pyruvate kinase muscle isozyme 2. FASEB J 2019; 33(11): 12780-99.
[http://dx.doi.org/10.1096/fj.201900863R] [PMID: 31480861]
[95]
He H, Wang J, Yannie PJ, Korzun WJ, Yang H, Ghosh S. Nanoparticle-based “Two-pronged” approach to regress atherosclerosis by simultaneous modulation of cholesterol influx and efflux. Biomaterials 2020; 260: 120333.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120333] [PMID: 32853832]
[96]
Wang Y, Li L, Zhao W, et al. Targeted therapy of atherosclerosis by a broad-spectrum reactive oxygen species scavenging nanoparticle with intrinsic anti-inflammatory activity. ACS Nano 2018; 12(9): 8943-60.
[http://dx.doi.org/10.1021/acsnano.8b02037] [PMID: 30114351]
[97]
Hossaini Nasr S, Huang X. Nanotechnology for targeted therapy of atherosclerosis. Front Pharmacol 2021; 12: 755569.
[http://dx.doi.org/10.3389/fphar.2021.755569] [PMID: 34867370]
[98]
Duong M, Collins HL, Jin W, Zanotti I, Favari E, Rothblat GH. Relative contributions of ABCA1 and SR-BI to cholesterol efflux to serum from fibroblasts and macrophages. Arterioscler Thromb Vasc Biol 2006; 26(3): 541-7.
[http://dx.doi.org/10.1161/01.ATV.0000203515.25574.19] [PMID: 16410457]
[99]
Chen J, Zhang X, Millican R, Creutzmann JE, Martin S, Jun HW. High density lipoprotein mimicking nanoparticles for atherosclerosis. Nano Converg 2020; 7(1): 6.
[http://dx.doi.org/10.1186/s40580-019-0214-1] [PMID: 31984429]
[100]
Stigliano C, Ramirez MR, Singh JV, et al. Methotraxate-loaded hybrid nanoconstructs target vascular lesions and inhibit atherosclerosis progression in ApoE−/− mice. Adv Healthc Mater 2017; 6(13): 1601286.
[http://dx.doi.org/10.1002/adhm.201601286] [PMID: 28402587]
[101]
Mehta NU, Grijalva V, Hama S, et al. Apolipoprotein E-/- mice lacking hemopexin develop increased atherosclerosis via mechanisms that include oxidative stress and altered macrophage function. Arterioscler Thromb Vasc Biol 2016; 36(6): 1152-63.
[http://dx.doi.org/10.1161/ATVBAHA.115.306991] [PMID: 27079878]
[102]
Nowak WN, Deng J, Ruan XZ, Xu Q. Reactive oxygen species generation and atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37(5): e41-52.
[http://dx.doi.org/10.1161/ATVBAHA.117.309228] [PMID: 28446473]
[103]
Wu CM, Zheng L, Wang Q, Hu YW. The emerging role of cell senescence in atherosclerosis. Clin Chem Lab Med 2021; 59(1): 27-38.
[http://dx.doi.org/10.1515/cclm-2020-0601] [PMID: 32692694]
[104]
Chen YY, Xin YZ, Wang XF, Chang J, Yang MW. Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed Pharmacother 2018; 97: 423-8.
[105]
Yang L. Cong HL, Wang SF, Liu T. AMP-activated protein kinase mediates the effects of lipoprotein-associated phospholipase A2 on endothelial dysfunction in atherosclerosis. Exp Ther Med 2017; 13(4): 1622-9.
[http://dx.doi.org/10.3892/etm.2017.4142] [PMID: 28413519]
[106]
Zhou X, Perez F, Han K, Jurivich DA. Clonal senescence alters endothelial ICAM-1 function. Mech Ageing Dev 2006; 127(10): 779-85.
[http://dx.doi.org/10.1016/j.mad.2006.07.003] [PMID: 16930678]
[107]
Liu Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007; 1(1): 50-6.
[http://dx.doi.org/10.1021/nn700040t] [PMID: 19203129]
[108]
Elkateb H, Cauldbeck H, Niezabitowska E, et al. High drug loading solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsions for the dual drug delivery of the HIV drugs darunavir and ritonavir. JCIS Open 2023; 11: 100087.
[http://dx.doi.org/10.1016/j.jciso.2023.100087]
[109]
Li H, Zhang N, Hao Y, et al. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug Deliv 2014; 21(5): 379-87.
[http://dx.doi.org/10.3109/10717544.2013.848246] [PMID: 24160816]
[110]
Gueon D, Hwang JT, Yang SB, et al. Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes. ACS Nano 2018; 12(1): 226-33.
[http://dx.doi.org/10.1021/acsnano.7b05869] [PMID: 29300088]
[111]
Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY. Nanomaterial shape influence on cell behavior. Int J Mol Sci 2021; 22(10): 5266.
[http://dx.doi.org/10.3390/ijms22105266] [PMID: 34067696]
[112]
Chen S, Su Y, Zhang M, et al. Insights into the toxicological effects of nanomaterials on atherosclerosis: mechanisms involved and influence factors. J Nanobiotechnology 2023; 21(1): 140.
[http://dx.doi.org/10.1186/s12951-023-01899-y] [PMID: 37118804]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy