Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Cell Surface Markers and their Targeted Drugs in Breast Cancer

Author(s): Yufei Ma, Weidong Li, Kai Ma, Tianyun Wang* and Huigen Feng*

Volume 23, Issue 5, 2022

Published on: 16 August, 2022

Page: [335 - 346] Pages: 12

DOI: 10.2174/1389203723666220530102720

Price: $65

Abstract

Breast cancer is the most common cancer affecting women's health, and its incidence rate is continuously increasing. With the development of immunohistochemistry and gene expression microarray technology, the study on breast cancer has gradually advanced, contributing to the development of targeted therapy for breast cancer. At present, the popular breast cancer cell surface markers includeG protein-coupled estrogen receptor 1 (GPER-1), human epidermal growth factor receptor 2 (HER-2), epidermal growth factor receptor (EGFR), c-mesenchymal-epithelial transition factor (CMet), folate receptor-α (FRα), integrin, programmed death-ligand 1 (PD-L1), trophoblast cell surface antigen 2 (Trop-2), etc. Targeted drugs for breast cancer cell surface markers mainly include antibody drugs and small molecule inhibitor drugs, which exert anti-tumor activity by targeting receptors or ligands. This review summarizes the surface markers of breast cancer cells and their targeted drugs, hoping to provide new ideas for breast cancer targeted therapy.

Keywords: Breast cancer, cell surface markers, targeted therapy, monoclonal antibodies, small molecule inhibitors, drugs.

Graphical Abstract
[1]
Yan, J.; Liu, Z.; Du, S.; Li, J.; Ma, L.; Li, L. Diagnosis and treatment of breast cancer in the precision medicine Era. Methods Mol. Biol., 2020, 2204, 53-61.
[http://dx.doi.org/10.1007/978-1-0716-0904-0_5] [PMID: 32710314]
[2]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[3]
McDonald, E.S.; Clark, A.S.; Tchou, J.; Zhang, P.; Freedman, G.M. Clinical diagnosis and management of breast cancer. J. Nucl. Med., 2016, 57(Suppl. 1), 9S-16S.
[http://dx.doi.org/10.2967/jnumed.115.157834]
[4]
Li, G.; Hu, J.; Hu, G. Biomarker studies in early detection and prognosis of breast cancer. Adv. Exp. Med. Biol., 2017, 1026, 27-39.
[http://dx.doi.org/10.1007/978-981-10-6020-5_2] [PMID: 29282678]
[5]
Allarakha, A.; Gao, Y.; Jiang, H.; Wang, P.J. Prediction and prognosis of biologically aggressive breast cancers by the combination of DWI/DCE-MRI and immunohistochemical tumor markers. Discov. Med., 2019, 27(146), 7-15.
[PMID: 30695671]
[6]
Donepudi, M.S.; Kondapalli, K.; Amos, S.J.; Venkanteshan, P. Breast cancer statistics and markers. J. Cancer Res. Ther., 2014, 10(3), 506-511.
[PMID: 25313729]
[7]
Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol., 2018, 834, 188-196.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.034] [PMID: 30031797]
[8]
Siersbæk, R.; Kumar, S.; Carroll, J.S. Signaling pathways and steroid receptors modulating estrogen receptor α function in breast cancer. Genes Dev., 2018, 32(17-18), 1141-1154.
[http://dx.doi.org/10.1101/gad.316646.118] [PMID: 30181360]
[9]
Hsu, L.H.; Chu, N.M.; Lin, Y.F.; Kao, S.H. G-Protein coupled estrogen receptor in breast cancer. Int. J. Mol. Sci., 2019, 20(2)E306
[http://dx.doi.org/10.3390/ijms20020306] [PMID: 30646517]
[10]
Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol., 2019, 116, 135-170.
[http://dx.doi.org/10.1016/bs.apcsb.2019.01.001] [PMID: 31036290]
[11]
Peng, J.; Sengupta, S.; Jordan, V.C. Potential of selective estrogen receptor modulators as treatments and preventives of breast cancer. Anticancer. Agents Med. Chem., 2009, 9(5), 481-499.
[http://dx.doi.org/10.2174/187152009788451833] [PMID: 19519291]
[12]
Yang, G.; Nowsheen, S.; Aziz, K.; Georgakilas, A.G. Toxicity and adverse effects of Tamoxifen and other anti-estrogen drugs. Pharmacol. Ther., 2013, 139(3), 392-404.
[http://dx.doi.org/10.1016/j.pharmthera.2013.05.005] [PMID: 23711794]
[13]
Mustonen, M.V.; Pyrhönen, S.; Kellokumpu-Lehtinen, P.L. Toremifene in the treatment of breast cancer. World J. Clin. Oncol., 2014, 5(3), 393-405.
[http://dx.doi.org/10.5306/wjco.v5.i3.393] [PMID: 25114854]
[14]
Sadler, T.M.; Gavriil, M.; Annable, T.; Frost, P.; Greenberger, L.M.; Zhang, Y. Combination therapy for treating breast cancer using anti-estrogen, ERA-923, and the mammalian target of rapamycin inhibitor, temsirolimus. Endocr. Relat. Cancer, 2006, 13(3), 863-873.
[http://dx.doi.org/10.1677/erc.1.01170] [PMID: 16954435]
[15]
Li, F.; Dou, J.; Wei, L.; Li, S.; Liu, J. The selective estrogen receptor modulators in breast cancer prevention. Cancer Chemother. Pharmacol., 2016, 77(5), 895-903.
[http://dx.doi.org/10.1007/s00280-016-2959-0] [PMID: 26787504]
[16]
Wickerham, D.L.; Costantino, J.P.; Vogel, V.G.; Cronin, W.M.; Cecchini, R.S.; Ford, L.G.; Wolmark, N. The use of tamoxifen and raloxi-fene for the prevention of breast cancer. Recent Results Cancer Res., 2009, 181, 113-119.
[http://dx.doi.org/10.1007/978-3-540-69297-3_12] [PMID: 19213563]
[17]
Tripathy, D. Im, S.A.; Colleoni, M.; Franke, F.; Bardia, A.; Harbeck, N.; Hurvitz, S.A.; Chow, L.; Sohn, J.; Lee, K.S.; Campos-Gomez, S.; Villanueva Vazquez, R.; Jung, K.H.; Babu, K.G.; Wheatley-Price, P.; De Laurentiis, M.; Im, Y.H.; Kuemmel, S.; El-Saghir, N.; Liu, M.C.; Carlson, G.; Hughes, G.; Diaz-Padilla, I.; Germa, C.; Hirawat, S.; Lu, Y.S. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): A randomised phase 3 trial. Lancet Oncol., 2018, 19(7), 904-915.
[http://dx.doi.org/10.1016/S1470-2045(18)30292-4] [PMID: 29804902]
[18]
Perrone, F.; De Laurentiis, M.; De Placido, S.; Orditura, M.; Cinieri, S.; Riccardi, F.; Angela, S.R.; Carlo, P.; Lucia, D.M.; Emanuela, R.; Vincenza, T.; Anna, M.M.; Francesco, N.; Di Rella, F.; Adriano, G.; Giovanni, I.; Gabriella, L.; Carmen, P.; Valeria, F.; Rossella, L.; Agnese, F.; Toni, I.; De Maio, E.; Sandro, B.; Stefania, G.; Vittorio, S.; Laura, A.; Gennaro, D.; Maria, C.P.; Nicola, N.; de Matteis, A.; Ci-ro, G. Adjuvant zoledronic acid and letrozole plus ovarian function suppression in premenopausal breast cancer: HOBOE phase 3 ran-domised trial. Eur. J. Cancer, 2019, 118, 178-186.
[19]
Zhang, H. 177 Lu-CHX-A''-DTPA-ABD-Affibody (Z HER2:342) 2. In: Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information (US);. , 2004-2013.
[20]
Iqbal, N. Human epidermal growth factor receptor 2 (HER2) in Cancers: Overexpression and therapeutic implications. Mol. Biol. Int., 2014.2014852748
[http://dx.doi.org/10.1155/2014/852748] [PMID: 25276427]
[21]
Figueroa-Magalhães, M.C.; Jelovac, D.; Connolly, R.; Wolff, A.C. Treatment of HER2-positive breast cancer. Breast (Edinburgh, Scotland), 2014, 23(2), 128-136.
[http://dx.doi.org/10.1016/j.breast.2013.11.011] [PMID: 24360619]
[22]
Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; Cameron, D.; Dowsett, M.; Barrios, C.H.; Steger, G.; Huang, C.S.; Andersson, M.; Inbar, M.; Lichinitser, M.; Láng, I.; Nitz, U.; Iwata, H.; Thomssen, C.; Lohrisch, C.; Suter, T.M.; Rüschoff, J.; Suto, T.; Greatorex, V.; Ward, C.; Straehle, C.; McFadden, E.; Dolci, M.S.; Gelber, R.D. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med., 2005, 353(16), 1659-1672.
[http://dx.doi.org/10.1056/NEJMoa052306] [PMID: 16236737]
[23]
Nami, B.; Maadi, H.; Wang, Z. Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancers (Basel), 2018, 10(10)E342
[http://dx.doi.org/10.3390/cancers10100342] [PMID: 30241301]
[24]
Morse, M.A.; Hobeika, A.; Osada, T.; Niedzwiecki, D.; Marcom, P.K.; Blackwell, K.L.; Anders, C.; Devi, G.R.; Lyerly, H.K.; Clay, T.M. Long term disease-free survival and T cell and antibody responses in women with high-risk Her2+ breast cancer following vaccination against Her2. J. Transl. Med., 2007, 5(1), 42.
[http://dx.doi.org/10.1186/1479-5876-5-42] [PMID: 17822557]
[25]
Genuino, A.J.; Chaikledkaew, U.; The, D.O.; Reungwetwattana, T.; Thakkinstian, A. Adjuvant trastuzumab regimen for HER2-positive early-stage breast cancer: A systematic review and meta-analysis. Expert Rev. Clin. Pharmacol., 2019, 12(8), 815-824.
[http://dx.doi.org/10.1080/17512433.2019.1637252] [PMID: 31287333]
[26]
Nahta, R.; O’Regan, R.M. Evolving strategies for overcoming resistance to HER2-directed therapy: Targeting the PI3K/Akt/mTOR path-way. Clin. Breast Cancer, 2010, 10(Suppl. 3), S72-S78.
[http://dx.doi.org/10.3816/CBC.2010.s.015] [PMID: 21115425]
[27]
von Minckwitz, G.; Procter, M.; de Azambuja, E.; Zardavas, D.; Benyunes, M.; Viale, G.; Suter, T.; Arahmani, A.; Rouchet, N.; Clark, E.; Knott, A.; Lang, I.; Levy, C.; Yardley, D.A.; Bines, J.; Gelber, R.D.; Piccart, M.; Baselga, J. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N. Engl. J. Med., 2017, 377(2), 122-131.
[http://dx.doi.org/10.1056/NEJMoa1703643] [PMID: 28581356]
[28]
Arkin, M.; Moasser, M.M. HER-2-directed, small-molecule antagonists. Curr. Opin. Investig. Drugs, 2008, 9(12), 1264-1276.
[PMID: 19037833]
[29]
Rabindran, S.K.; Discafani, C.M.; Rosfjord, E.C.; Baxter, M.; Floyd, M.B.; Golas, J.; Hallett, W.A.; Johnson, B.D.; Nilakantan, R.; Over-beek, E.; Reich, M.F.; Shen, R.; Shi, X.; Tsou, H.R.; Wang, Y.F.; Wissner, A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res., 2004, 64(11), 3958-3965.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2868] [PMID: 15173008]
[30]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124] [PMID: 23020162]
[31]
Hunter, F.W.; Barker, H.R.; Lipert, B.; Rothé, F.; Gebhart, G.; Piccart-Gebhart, M.J.; Sotiriou, C.; Jamieson, S.M.F. Mechanisms of re-sistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br. J. Cancer, 2020, 122(5), 603-612.
[http://dx.doi.org/10.1038/s41416-019-0635-y] [PMID: 31839676]
[32]
Xu, M.J.; Johnson, D.E.; Grandis, J.R. EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev., 2017, 36(3), 463-473.
[http://dx.doi.org/10.1007/s10555-017-9687-8] [PMID: 28866730]
[33]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[34]
Liu, X.; Wang, P.; Zhang, C.; Ma, Z. Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung can-cer. Oncotarget, 2017, 8(30), 50209-50220.
[http://dx.doi.org/10.18632/oncotarget.16854] [PMID: 28430586]
[35]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer thera-py. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[36]
Wu, S.G.; Shih, J.Y. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol. Cancer, 2018, 17(1), 38.
[http://dx.doi.org/10.1186/s12943-018-0777-1] [PMID: 29455650]
[37]
Bernsdorf, M.; Ingvar, C.; Jörgensen, L.; Tuxen, M.K.; Jakobsen, E.H.; Saetersdal, A.; Kimper-Karl, M.L.; Kroman, N.; Balslev, E.; Ejlertsen, B. Effect of adding gefitinib to neoadjuvant chemotherapy in estrogen receptor negative early breast cancer in a randomized phase II trial. Breast Cancer Res. Treat., 2011, 126(2), 463-470.
[http://dx.doi.org/10.1007/s10549-011-1352-2] [PMID: 21234672]
[38]
Baselga, J.; Albanell, J.; Ruiz, A.; Lluch, A.; Gascón, P.; Guillém, V.; González, S.; Sauleda, S.; Marimón, I.; Tabernero, J.M.; Koehler, M.T.; Rojo, F. Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J. Clin. Oncol., 2005, 23(23), 5323-5333.
[http://dx.doi.org/10.1200/JCO.2005.08.326] [PMID: 15939921]
[39]
Ye, J.; Tian, T.; Chen, X. The efficacy of gefitinib supplementation for breast cancer: A meta-analysis of randomized controlled studies. Medicine (Baltimore), 2020, 99(43)e22613
[http://dx.doi.org/10.1097/MD.0000000000022613] [PMID: 33120749]
[40]
El Guerrab, A.; Bamdad, M.; Bignon, Y.J.; Penault-Llorca, F.; Aubel, C. Co-targeting EGFR and mTOR with gefitinib and everolimus in triple-negative breast cancer cells. Sci. Rep., 2020, 10(1), 6367.
[http://dx.doi.org/10.1038/s41598-020-63310-2] [PMID: 32286420]
[41]
Kalykaki, A.; Agelaki, S.; Kallergi, G.; Xyrafas, A.; Mavroudis, D.; Georgoulias, V. Elimination of EGFR-expressing circulating tumor cells in patients with metastatic breast cancer treated with gefitinib. Cancer Chemother. Pharmacol., 2014, 73(4), 685-693.
[http://dx.doi.org/10.1007/s00280-014-2387-y] [PMID: 24493157]
[42]
Nolting, M.; Schneider-Merck, T.; Trepel, M. Lapatinib. Recent Results Cancer Res., 2014, 201, 125-143.
[http://dx.doi.org/10.1007/978-3-642-54490-3_7] [PMID: 24756789]
[43]
Liu, T.; Yacoub, R.; Taliaferro-Smith, L.D.; Sun, S.Y.; Graham, T.R.; Dolan, R.; Lobo, C.; Tighiouart, M.; Yang, L.; Adams, A.; O’Regan, R.M. Combinatorial effects of lapatinib and rapamycin in triple-negative breast cancer cells. Mol. Cancer Ther., 2011, 10(8), 1460-1469.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0925] [PMID: 21690228]
[44]
Fenn, K.; Maurer, M.; Lee, S.M.; Crew, K.D.; Trivedi, M.S.; Accordino, M.K.; Hershman, D.L.; Kalinsky, K. Phase 1 study of erlotinib and metformin in metastatic triple-negative breast cancer. Clin. Breast Cancer, 2020, 20(1), 80-86.
[http://dx.doi.org/10.1016/j.clbc.2019.08.004] [PMID: 31570268]
[45]
Hoshi, H.; Hiyama, G.; Ishikawa, K.; Inageda, K.; Fujimoto, J.; Wakamatsu, A.; Togashi, T.; Kawamura, Y.; Takahashi, N.; Higa, A.; Go-shima, N.; Semba, K.; Watanabe, S.; Takagi, M. Construction of a novel cell-based assay for the evaluation of anti-EGFR drug efficacy against EGFR mutation. Oncol. Rep., 2017, 37(1), 66-76.
[http://dx.doi.org/10.3892/or.2016.5227] [PMID: 27840973]
[46]
Liao, W.S.; Ho, Y.; Lin, Y.W.; Naveen Raj, E.; Liu, K.K.; Chen, C.; Zhou, X.Z.; Lu, K.P.; Chao, J.I. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomater., 2019, 86, 395-405.
[http://dx.doi.org/10.1016/j.actbio.2019.01.025] [PMID: 30660004]
[47]
Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat., 2012, 136(2), 331-345.
[http://dx.doi.org/10.1007/s10549-012-2289-9] [PMID: 23073759]
[48]
Ho-Yen, C.M.; Jones, J.L.; Kermorgant, S. The clinical and functional significance of c-Met in breast cancer: A review. Breast Cancer Res., 2015, 17(1), 52.
[http://dx.doi.org/10.1186/s13058-015-0547-6] [PMID: 25887320]
[49]
Jia, L.; Yang, X.; Tian, W.; Guo, S.; Huang, W.; Zhao, W. Increased expression of c-met is associated with chemotherapy-resistant breast cancer and poor clinical outcome. Med. Sci. Monit., 2018, 24, 8239-8249.
[http://dx.doi.org/10.12659/MSM.913514] [PMID: 30444219]
[50]
Fu, R.; Jiang, S.; Li, J.; Chen, H.; Zhang, X. Activation of the HGF/c-MET axis promotes lenvatinib resistance in hepatocellular carcinoma cells with high c-MET expression. Med. Oncol., 2020, 37(4), 24.
[http://dx.doi.org/10.1007/s12032-020-01350-4] [PMID: 32166604]
[51]
Eder, J.P.; Vande Woude, G.F.; Boerner, S.A.; LoRusso, P.M. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin. Cancer Res., 2009, 15(7), 2207-2214.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1306] [PMID: 19318488]
[52]
Tsarfaty, I.; Resau, J.H.; Rulong, S.; Keydar, I.; Faletto, D.L.; Vande Woude, G.F. The met proto-oncogene receptor and lumen formation. Science, 1992, 257(5074), 1258-1261.
[http://dx.doi.org/10.1126/science.1387731] [PMID: 1387731]
[53]
Neijssen, J.; Cardoso, R.M.F.; Chevalier, K.M.; Wiegman, L.; Valerius, T.; Anderson, G.M.; Moores, S.L.; Schuurman, J.; Parren, P.W.H.I.; Strohl, W.R.; Chiu, M.L. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J. Biol. Chem., 2021.296100641
[http://dx.doi.org/10.1016/j.jbc.2021.100641] [PMID: 33839159]
[54]
Cavaliere, A.; Sun, S.; Lee, S.; Bodner, J.; Li, Z.; Huang, Y.; Moores, S.L.; Marquez-Nostra, B. Development of [89Zr]ZrDFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(2), 383-394.
[http://dx.doi.org/10.1007/s00259-020-04978-6] [PMID: 32770372]
[55]
Shinagare, A.B.; Somarouthu, B.; Guo, H.; Tolaney, S.M.; Ramaiya, N.H. Occurrence and significance of morphologic changes in patients with metastatic triple negative breast cancer treated with Cabozantinib. Clin. Imaging, 2018, 48, 44-47.
[http://dx.doi.org/10.1016/j.clinimag.2017.09.014] [PMID: 29028513]
[56]
Tolaney, S.M.; Ziehr, D.R.; Guo, H.; Ng, M.R.; Barry, W.T.; Higgins, M.J.; Isakoff, S.J.; Brock, J.E.; Ivanova, E.V.; Paweletz, C.P.; Demeo, M.K.; Ramaiya, N.H.; Overmoyer, B.A.; Jain, R.K.; Winer, E.P.; Duda, D.G. Phase II and biomarker study of cabozantinib in metastatic triple-negative breast cancer patients. Oncologist, 2017, 22(1), 25-32.
[http://dx.doi.org/10.1634/theoncologist.2016-0229] [PMID: 27789775]
[57]
Eder, J.P.; Shapiro, G.I.; Appleman, L.J.; Zhu, A.X.; Miles, D.; Keer, H.; Cancilla, B.; Chu, F.; Hitchcock-Bryan, S.; Sherman, L.; McCallum, S.; Heath, E.I.; Boerner, S.A.; LoRusso, P.M. A phase I study of foretinib, a multi-targeted inhibitor of c-Met and vascular en-dothelial growth factor receptor 2. Clin. Cancer Res., 2010, 16(13), 3507-3516.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0574] [PMID: 20472683]
[58]
Tchou, J.; Zhao, Y.; Levine, B.L.; Zhang, P.J.; Davis, M.M.; Melenhorst, J.J.; Kulikovskaya, I.; Brennan, A.L.; Liu, X.; Lacey, S.F.; Posey, A.D., Jr; Williams, A.D.; So, A.; Conejo-Garcia, J.R.; Plesa, G.; Young, R.M.; McGettigan, S.; Campbell, J.; Pierce, R.H.; Matro, J.M. DeM-ichele, A.M.; Clark, A.S.; Cooper, L.J.; Schuchter, L.M.; Vonderheide, R.H.; June, C.H. Safety and efficacy of intratumoral injections of Chimeric Antigen Receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol. Res., 2017, 5(12), 1152-1161.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0189] [PMID: 29109077]
[59]
Kim, Y.J.; Choi, J.S.; Seo, J.; Song, J.Y.; Lee, S.E.; Kwon, M.J.; Kwon, M.J.; Kundu, J.; Jung, K.; Oh, E.; Shin, Y.K.; Choi, Y.L. MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer. Int. J. Cancer, 2014, 134(10), 2424-2436.
[http://dx.doi.org/10.1002/ijc.28566] [PMID: 24615768]
[60]
Ab, O.; Whiteman, K.R.; Bartle, L.M.; Sun, X.; Singh, R.; Tavares, D.; LaBelle, A.; Payne, G.; Lutz, R.J.; Pinkas, J.; Goldmacher, V.S.; Chittenden, T.; Lambert, J.M. IMGN853, a Folate Receptor-α (FRα)-targeting antibody-drug conjugate, exhibits potent targeted antitumor activity against FRα-expressing tumors. Mol. Cancer Ther., 2015, 14(7), 1605-1613.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-1095] [PMID: 25904506]
[61]
Scaranti, M.; Cojocaru, E.; Banerjee, S.; Banerji, U. Exploiting the folate receptor α in oncology. Nat. Rev. Clin. Oncol., 2020, 17(6), 349-359.
[http://dx.doi.org/10.1038/s41571-020-0339-5] [PMID: 32152484]
[62]
Cheung, A.; Bax, H.J.; Josephs, D.H.; Ilieva, K.M.; Pellizzari, G.; Opzoomer, J.; Bloomfield, J.; Fittall, M.; Grigoriadis, A.; Figini, M.; Ca-nevari, S.; Spicer, J.F.; Tutt, A.N.; Karagiannis, S.N. Targeting folate receptor alpha for cancer treatment. Oncotarget, 2016, 7(32), 52553-52574.
[http://dx.doi.org/10.18632/oncotarget.9651] [PMID: 27248175]
[63]
Hansen, M.F.; Greibe, E.; Skovbjerg, S.; Rohde, S.; Kristensen, A.C.; Jensen, T.R.; Stentoft, C.; Kjær, K.H.; Kronborg, C.S.; Martensen, P.M. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha. Cell. Signal., 2015, 27(7), 1356-1368.
[http://dx.doi.org/10.1016/j.cellsig.2015.03.020] [PMID: 25841994]
[64]
Molthoff, CF; Buist, MR; Kenemans, P; Pinedo, HM; Boven, E 1992.
[65]
Cheung, A.; Opzoomer, J.; Ilieva, K.M.; Gazinska, P.; Hoffmann, R.M.; Mirza, H.; Marlow, R.; Francesch-Domenech, E.; Fittall, M.; Dominguez Rodriguez, D.; Clifford, A.; Badder, L.; Patel, N.; Mele, S.; Pellizzari, G.; Bax, H.J.; Crescioli, S.; Petranyi, G.; Larcombe-Young, D.; Josephs, D.H.; Canevari, S.; Figini, M.; Pinder, S.; Nestle, F.O.; Gillett, C.; Spicer, J.F.; Grigoriadis, A.; Tutt, A.N.J.; Karagian-nis, S.N. Anti-folate receptor alpha-directed antibody therapies restrict the growth of triple-negative breast cancer. Clin. Cancer Res., 2018, 24(20), 5098-5111.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0652] [PMID: 30068707]
[66]
Heo, G.S.; Detering, L.; Luehmann, H.P.; Primeau, T.; Lee, Y.S.; Laforest, R.; Li, S.; Stec, J.; Lim, K.H.; Lockhart, A.C.; Liu, Y. Folate receptor α-targeted 89Zr-M9346A immuno-pet for image-guided intervention with mirvetuximab soravtansine in triple-negative breast can-cer. Mol. Pharm., 2019, 16(9), 3996-4006.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00653] [PMID: 31369274]
[67]
Yam, C.; Rauch, G.M.; Rahman, T.; Karuturi, M.; Ravenberg, E.; White, J.; Clayborn, A.; McCarthy, P.; Abouharb, S.; Lim, B.; Litton, J.K.; Ramirez, D.L.; Saleem, S.; Stec, J.; Symmans, W.F.; Huo, L.; Damodaran, S.; Sun, R.; Moulder, S.L. A phase II study of Mirvetuxi-mab Soravtansine in triple-negative breast cancer. Invest. New Drugs, 2021, 39(2), 509-515.
[http://dx.doi.org/10.1007/s10637-020-00995-2] [PMID: 32984932]
[68]
Yang, V.; Gouveia, M.J.; Santos, J.; Koksch, B.; Amorim, I.; Gärtner, F. Breast cancer: Insights in disease and influence of drug metho-trexate. RSC Med. Chem., 2020, 11, 646-664.
[http://dx.doi.org/10.1039/D0MD00051E]
[69]
Reddy, J.A.; Nelson, M.; Dircksen, C.; Vetzel, M.; Johnson, T.; Cross, V.; Westrick, E.; Qi, L.; Hahn, S.; Santhapuram, H.K.; Parham, G.; Wang, K.; Vaughn, J.F.; Felten, A.; Pugh, M.; Lu, J.; Klein, P.; Vlahov, I.R.; Leamon, C.P. Pre-clinical studies of EC2629, a highly potent folate- receptor-targeted DNA crosslinking agent. Sci. Rep., 2020, 10(1), 12772.
[http://dx.doi.org/10.1038/s41598-020-69682-9] [PMID: 32728172]
[70]
Ju, J.A.; Godet, I.; Ye, I.C.; Byun, J.; Jayatilaka, H.; Lee, S.J.; Xiang, L.; Samanta, D.; Lee, M.H.; Wu, P.H.; Wirtz, D.; Semenza, G.L.; Gilkes, D.M. Hypoxia selectively enhances integrin α5β1 receptor expression in breast cancer to promote metastasis. MCR, 2017, 15(6), 723-734.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0338] [PMID: 28213554]
[71]
Campbell, I.D.; Humphries, M.J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol., 2011, 3(3)a004994
[http://dx.doi.org/10.1101/cshperspect.a004994] [PMID: 21421922]
[72]
Glukhova, M.A.; Streuli, C.H. How integrins control breast biology. Curr. Opin. Cell Biol., 2013, 25(5), 633-641.
[http://dx.doi.org/10.1016/j.ceb.2013.06.010] [PMID: 23886475]
[73]
Jeanes, A.I.; Wang, P.; Moreno-Layseca, P.; Paul, N.; Cheung, J.; Tsang, R.; Akhtar, N.; Foster, F.M.; Brennan, K.; Streuli, C.H. Specific β-containing integrins exert differential control on proliferation and two-dimensional collective cell migration in mammary epithelial cells. J. Biol. Chem., 2012, 287(29), 24103-24112.
[http://dx.doi.org/10.1074/jbc.M112.360834] [PMID: 22511753]
[74]
Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer, 2010, 10(1), 9-22.
[http://dx.doi.org/10.1038/nrc2748] [PMID: 20029421]
[75]
Gvozdenovic, A.; Boro, A.; Meier, D.; Bode-Lesniewska, B.; Born, W.; Muff, R.; Fuchs, B. Targeting αvβ3 and αvβ5 integrins inhibits pulmonary metastasis in an intratibial xenograft osteosarcoma mouse model. Oncotarget, 2016, 7(34), 55141-55154.
[http://dx.doi.org/10.18632/oncotarget.10461] [PMID: 27409827]
[76]
Lautenschlaeger, T.; Perry, J.; Peereboom, D.; Li, B.; Ibrahim, A.; Huebner, A.; Meng, W.; White, J.; Chakravarti, A. In vitro study of combined cilengitide and radiation treatment in breast cancer cell lines. Radiat. Oncol., 2013, 8(1), 246.
[http://dx.doi.org/10.1186/1748-717X-8-246] [PMID: 24153102]
[77]
Park, C.C.; Zhang, H.; Pallavicini, M.; Gray, J.W.; Baehner, F.; Park, C.J.; Bissell, M.J. Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res., 2006, 66(3), 1526-1535.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3071] [PMID: 16452209]
[78]
Pantano, F.; Croset, M.; Driouch, K.; Bednarz-Knoll, N.; Iuliani, M.; Ribelli, G.; Bonnelye, E.; Wikman, H.; Geraci, S.; Bonin, F.; Simo-netti, S.; Vincenzi, B.; Hong, S.S.; Sousa, S.; Pantel, K.; Tonini, G.; Santini, D.; Clézardin, P. Integrin alpha5 in human breast cancer is a mediator of bone metastasis and a therapeutic target for the treatment of osteolytic lesions. Oncogene, 2021, 40(7), 1284-1299.
[http://dx.doi.org/10.1038/s41388-020-01603-6] [PMID: 33420367]
[79]
Harms, J.F.; Welch, D.R.; Samant, R.S.; Shevde, L.A.; Miele, M.E.; Babu, G.R.; Goldberg, S.F.; Gilman, V.R.; Sosnowski, D.M.; Campo, D.A.; Gay, C.V.; Budgeon, L.R.; Mercer, R.; Jewell, J.; Mastro, A.M.; Donahue, H.J.; Erin, N.; Debies, M.T.; Meehan, W.J.; Jones, A.L.; Mbalaviele, G.; Nickols, A.; Christensen, N.D.; Melly, R.; Beck, L.N.; Kent, J.; Rader, R.K.; Kotyk, J.J.; Pagel, M.D.; Westlin, W.F.; Griggs, D.W. A small molecule antagonist of the alpha(v)beta3 integrin suppresses MDA-MB-435 skeletal metastasis. Clin. Exp. Metastasis, 2004, 21(2), 119-128.
[http://dx.doi.org/10.1023/B:CLIN.0000024763.69809.64] [PMID: 15168729]
[80]
Zhao, Y.; Bachelier, R.; Treilleux, I.; Pujuguet, P.; Peyruchaud, O.; Baron, R.; Clément-Lacroix, P.; Clézardin, P. Tumor alphavbeta3 integ-rin is a therapeutic target for breast cancer bone metastases. Cancer Res., 2007, 67(12), 5821-5830.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4499] [PMID: 17575150]
[81]
Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res., 2020, 10(3), 727-742.
[PMID: 32266087]
[82]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Ge, J.; Xiang, B.; Wu, X.; Ma, J.; Zhou, M.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Guo, C.; Zeng, Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1), 10.
[http://dx.doi.org/10.1186/s12943-018-0928-4] [PMID: 30646912]
[83]
Gil Del Alcazar, C.R.; Alečković, M.; Polyak, K. Immune escape during breast tumor progression. Cancer Immunol. Res., 2020, 8(4), 422-427.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0786] [PMID: 32238387]
[84]
Reddy, S.M.; Carroll, E.; Nanda, R. Atezolizumab for the treatment of breast cancer. Expert Rev. Anticancer Ther., 2020, 20(3), 151-158.
[http://dx.doi.org/10.1080/14737140.2020.1732211] [PMID: 32067545]
[85]
Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R. Im, S.A.; Shaw Wright, G.; Henschel, V.; Molinero, L.; Chui, S.Y.; Funke, R.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med., 2018, 379(22), 2108-2121.
[http://dx.doi.org/10.1056/NEJMoa1809615] [PMID: 30345906]
[86]
Nanda, R.; Chow, L.Q.; Dees, E.C.; Berger, R.; Gupta, S.; Geva, R.; Pusztai, L.; Pathiraja, K.; Aktan, G.; Cheng, J.D.; Karantza, V.; Bu-isseret, L. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 study. J. Clin. Oncol., 2016, 34(21), 2460-2467.
[http://dx.doi.org/10.1200/JCO.2015.64.8931] [PMID: 27138582]
[87]
PD-L1 Inhibitor improves survival in TNBC. Cancer Discov., 2019, 9(1), OF5.
[http://dx.doi.org/10.1158/2159-8290.CD-NB2018-154] [PMID: 30464002]
[88]
Yamashita, T.; Mori, Y.; Alzaaqi, S.M.; Yashiro, M.; Sawada, T.; Hirakawa, K.; Nakada, H. Induction of Trop-2 expression through the binding of galectin-3 to MUC1. Biochem. Biophys. Res. Commun., 2019, 516(1), 44-49.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.003] [PMID: 31196625]
[89]
Zaman, S.; Jadid, H.; Denson, A.C.; Gray, J.E. Targeting Trop-2 in solid tumors: Future prospects. OncoTargets Ther., 2019, 12, 1781-1790.
[http://dx.doi.org/10.2147/OTT.S162447] [PMID: 30881031]
[90]
Trerotola, M.; Cantanelli, P.; Guerra, E.; Tripaldi, R.; Aloisi, A.L.; Bonasera, V.; Lattanzio, R.; de Lange, R.; Weidle, U.H.; Piantelli, M.; Alberti, S. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene, 2013, 32(2), 222-233.
[http://dx.doi.org/10.1038/onc.2012.36] [PMID: 22349828]
[91]
Ripani, E.; Sacchetti, A.; Corda, D.; Alberti, S. Human Trop-2 is a tumor-associated calcium signal transducer. Int. J. Cancer, 1998, 76(5), 671-676.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19980529)76:5<671:AID-IJC10>3.0.CO;2-7] [PMID: 9610724]
[92]
Vidmar, T.; Pavšič, M.; Lenarčič, B. Biochemical and preliminary X-ray characterization of the tumor-associated calcium signal transducer 2 (Trop2) ectodomain. Protein Expr. Purif., 2013, 91(1), 69-76.
[http://dx.doi.org/10.1016/j.pep.2013.07.006] [PMID: 23872121]
[93]
Guan, H.; Guo, Z.; Liang, W.; Li, H.; Wei, G.; Xu, L.; Xiao, H.; Li, Y. Trop2 enhances invasion of thyroid cancer by inducing MMP2 through ERK and JNK pathways. BMC Cancer, 2017, 17(1), 486.
[http://dx.doi.org/10.1186/s12885-017-3475-2] [PMID: 28709407]
[94]
Lin, J.C.; Wu, Y.Y.; Wu, J.Y.; Lin, T.C.; Wu, C.T.; Chang, Y.L.; Jou, Y.S.; Hong, T.M.; Yang, P.C. TROP2 is epigenetically inactivated and modulates IGF-1R signalling in lung adenocarcinoma. EMBO Mol. Med., 2012, 4(6), 472-485.
[http://dx.doi.org/10.1002/emmm.201200222] [PMID: 22419550]
[95]
Syed, Y.Y. Sacituzumab Govitecan: First Approval. Drugs, 2020, 80(10), 1019-1025.
[http://dx.doi.org/10.1007/s40265-020-01337-5] [PMID: 32529410]
[96]
Sharkey, R.M.; McBride, W.J.; Cardillo, T.M.; Govindan, S.V.; Wang, Y.; Rossi, E.A.; Chang, C.H.; Goldenberg, D.M. Enhanced delivery of SN-38 to human tumor xenografts with an anti-trop-2-SN-38 antibody conjugate (Sacituzumab Govitecan). Clin. Cancer Res., 2015, 21(22), 5131-5138.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0670] [PMID: 26106073]
[97]
Cardillo, T.M.; Govindan, S.V.; Sharkey, R.M.; Trisal, P.; Goldenberg, D.M. Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: Preclinical studies in human cancer xenograft models and monkeys. Clin. Cancer Res., 2011, 17(10), 3157-3169.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2939] [PMID: 21372224]
[98]
Bardia, A.; Mayer, I.A.; Diamond, J.R.; Moroose, R.L.; Isakoff, S.J.; Starodub, A.N.; Shah, N.C.; O’Shaughnessy, J.; Kalinsky, K.; Gua-rino, M.; Abramson, V.; Juric, D.; Tolaney, S.M.; Berlin, J.; Messersmith, W.A.; Ocean, A.J.; Wegener, W.A.; Maliakal, P.; Sharkey, R.M.; Govindan, S.V.; Goldenberg, D.M.; Vahdat, L.T. Efficacy and safety of anti-trop-2 antibody drug conjugate Sacituzumab Govitecan (IM-MU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J. Clin. Oncol., 2017, 35(19), 2141-2148.
[http://dx.doi.org/10.1200/JCO.2016.70.8297] [PMID: 28291390]
[99]
Blucher, A.S.; Choonoo, G.; Kulesz-Martin, M.; Wu, G.; McWeeney, S.K. Evidence-based precision oncology with the cancer targetome. Trends Pharmacol. Sci., 2017, 38(12), 1085-1099.
[http://dx.doi.org/10.1016/j.tips.2017.08.006] [PMID: 28964549]
[100]
Jhan, J.R.; Andrechek, E.R. Triple-negative breast cancer and the potential for targeted therapy. Pharmacogenomics, 2017, 18(17), 1595-1609.
[http://dx.doi.org/10.2217/pgs-2017-0117] [PMID: 29095114]
[101]
Kakarala, M.; Wicha, M.S. Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J. Clin. Oncol., 2008, 26(17), 2813-2820.
[http://dx.doi.org/10.1200/JCO.2008.16.3931] [PMID: 18539959]
[102]
Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y.S. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer, 2018, 17(1), 36.
[http://dx.doi.org/10.1186/s12943-018-0801-5] [PMID: 29455664]
[103]
Mullard, A. FDA approves 100th monoclonal antibody product. Nat. Rev. Drug Discov., 2021, 20(7), 491-495.
[http://dx.doi.org/10.1038/d41573-021-00079-7] [PMID: 33953368]
[104]
Meric-Bernstam, F.; Johnson, A.M.; Dumbrava, E.E.I.; Raghav, K.; Balaji, K.; Bhatt, M.; Murthy, R.K.; Rodon, J.; Piha-Paul, S.A. Advanc-es in HER2-targeted therapy: Novel agents and opportunities beyond breast and gastric cancer. Clin. Cancer Res., 2019, 25(7), 2033-2041.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2275] [PMID: 30442682]
[105]
Kreutzfeldt, J.; Rozeboom, B.; Dey, N.; De, P. The trastuzumab era: Current and upcoming targeted HER2+ breast cancer therapies. Am. J. Cancer Res., 2020, 10(4), 1045-1067.
[PMID: 32368385]
[106]
Kiewe, P.; Thiel, E. Ertumaxomab: A trifunctional antibody for breast cancer treatment. Expert Opin. Investig. Drugs, 2008, 17(10), 1553-1558.
[http://dx.doi.org/10.1517/13543784.17.10.1553] [PMID: 18808314]
[107]
Modi, S.; Saura, C.; Yamashita, T.; Park, Y.H.; Kim, S.B.; Tamura, K.; Andre, F.; Iwata, H.; Ito, Y.; Tsurutani, J.; Sohn, J.; Denduluri, N.; Perrin, C.; Aogi, K.; Tokunaga, E. Im, S.A.; Lee, K.S.; Hurvitz, S.A.; Cortes, J.; Lee, C.; Chen, S.; Zhang, L.; Shahidi, J.; Yver, A.; Krop, I. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med., 2020, 382(7), 610-621.
[http://dx.doi.org/10.1056/NEJMoa1914510] [PMID: 31825192]
[108]
McGuinness, J.E.; Kalinsky, K. Antibody-drug conjugates in metastatic triple negative breast cancer: A spotlight on Sacituzumab Govitecan, Ladiratuzumab Vedotin, And Trastuzumab Deruxtecan. Expert Opin. Biol. Ther., 2021, 21(7), 903-913.
[http://dx.doi.org/10.1080/14712598.2021.1840547] [PMID: 33089726]
[109]
Xu, D.H.; Wang, X.Y.; Jia, Y.L.; Wang, T.Y.; Tian, Z.W.; Feng, X.; Zhang, Y.N. SV40 intron, a potent strong intron element that effective-ly increases transgene expression in transfected Chinese hamster ovary cells. J. Cell. Mol. Med., 2018, 22(4), 2231-2239.
[http://dx.doi.org/10.1111/jcmm.13504] [PMID: 29441681]
[110]
Li, Y.M.; Tian, Z.W.; Xu, D.H.; Wang, X.Y.; Wang, T.Y. Construction strategies for developing expression vectors for recombinant mon-oclonal antibody production in CHO cells. Mol. Biol. Rep., 2018, 45(6), 2907-2912.
[http://dx.doi.org/10.1007/s11033-018-4351-0] [PMID: 30191354]
[111]
Li, W.; Fan, Z.; Lin, Y.; Wang, T.Y. Serum-free medium for recombinant protein expression in Chinese hamster ovary cells. Front. Bioeng. Biotechnol., 2021.9646363
[http://dx.doi.org/10.3389/fbioe.2021.646363] [PMID: 33791287]
[112]
André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; Yamashita, T.; Lu, Y.S.; Inoue, K.; Takahashi, M.; Pápai, Z.; Longin, A.S.; Mills, D.; Wilke, C.; Hirawat, S.; Juric, D. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med., 2019, 380(20), 1929-1940.
[http://dx.doi.org/10.1056/NEJMoa1813904] [PMID: 31091374]
[113]
Esteva, F.J.; Hubbard-Lucey, V.M.; Tang, J.; Pusztai, L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol., 2019, 20(3), e175-e186.
[http://dx.doi.org/10.1016/S1470-2045(19)30026-9] [PMID: 30842061]
[114]
Wu, H.J.; Chu, P.Y. Recent discoveries of macromolecule and cell-based biomarkers and therapeutic implications in breast cancer. Int. J. Mol. Sci., 2021, 22(2)E636
[http://dx.doi.org/10.3390/ijms22020636] [PMID: 33435254]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy