Skip to main content

Advertisement

Log in

Construction strategies for developing expression vectors for recombinant monoclonal antibody production in CHO cells

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recent years have seen the use of recombinant proteins in the treatment of different diseases. Among them, monoclonal antibodies (mAbs) are currently the fastest growing class of bio-therapeutic recombinant proteins. Chinese hamster ovary (CHO) cells are the most commonly used host cells for production of these recombinant mAbs. Expression vectors determine the expression level and quality of recombinant mAbs. Currently, few construction strategies for recombinant mAbs expression vectors in CHO cells have been developed, including monocistronic vector, multiple-promoter expression vector, and tricistronic vector mediated by internal ribosome entry site (IRES) or Furin-2A element. Among them, Furin-2A-mediated vector is an effective approach due to advantages of high “self-cleavage” efficiency, and equal expression of light and heavy chains from a single open reading frame. Here, we have reviewed the progress in development of different strategies for constructing recombinant mAb expression vectors in CHO cells and its potential advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Ho RJ, Chien J (2014) Trends in translational medicine and drug targeting and delivery: new insights on an old concept-targeted drug delivery with antibody-drug conjugates for cancers. J Pharm Sci 103:71–77. https://doi.org/10.1002/jps.23761

    Article  CAS  PubMed  Google Scholar 

  2. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707. https://doi.org/10.1016/j.copbio.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  3. Sun H, Chen Q, Lai H (2017) Development of antibody therapeutics against flaviviruses. Int J Mol Sci 19:54. https://doi.org/10.3390/ijms19010054

    Article  CAS  PubMed Central  Google Scholar 

  4. Singh S, Kumar N, Dwiwedi P, Charan J, Kaur R, Sidhu P (2017) Monoclonal antibodies: a review. Curr Clin Pharmacol 12:1–15. https://doi.org/10.2174/1574884712666170809124728

    Article  CAS  Google Scholar 

  5. Bayat H, Hossienzadeh S, Pourmaleki E, Ahani R, Rahimpour A (2018) Evaluation of different vector design strategies for the expression of recombinant monoclonal antibody in CHO cells. Prep Biochem Biotechnol 48:160–164. https://doi.org/10.1080/10826068.2017.1421966

    Article  CAS  PubMed  Google Scholar 

  6. Mikhail BA, Zang L, Sebastiano R, Santos MR, Bush DR, Karger BL, Ivanov AR (2018) Complementary middle-down and intact monoclonal antibody proteoform characterization bycapillary zone electrophoresis-mass spectrometry. Electrophoresis. https://doi.org/10.1002/elps.201800067

    Article  Google Scholar 

  7. Li CH, Narhi LO, Wen J, Dimitrova M, Wen ZQ, Li J, Pollastrini J, Nguyen X, Tsuruda T, Jiang Y (2012) The Effect of pH, temperature and salt on the stability of E. coli- and CHO -derived IgG1 Fc. Biochemistry 5:10056–10065. https://doi.org/10.1021/bi300702e

    Article  CAS  Google Scholar 

  8. Robinson MP, Ke N, Lobstein J, Peterson C, Szkodny A, Mansell TJ, Tuckey C, Riggs PD, Colussi PA, Noren CJ (2015) Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat Commun 6:8072. https://doi.org/10.1038/ncomms9072

    Article  CAS  PubMed  Google Scholar 

  9. Dalton AC, Barton WA (2014) Over-expression of secreted proteins from mammalian cell lines. Protein Sci 23:517–525. https://doi.org/10.1002/pro.2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohan C, Kim YG, Koo J, Lee GM (2008) Assessment of cell engineering strategies for improved therapeutic protein productioon in CHO cells. Biotechnol J 3:624–630. https://doi.org/10.1002/biot.200700249

    Article  CAS  PubMed  Google Scholar 

  11. Lim Y, Wong NSC, Lee YY, Ku SC, Wong DC, Yap MG (2010) Engineering mammalian cells in bioprocessing-current achievements and future perspectives. Biotechnol Appl Biochem 55:175. https://doi.org/10.1042/BA20090363

    Article  CAS  PubMed  Google Scholar 

  12. Mullard A (2013) 2012 FDA drug approvals. Nat Rev Drug Discov 12:87–90. https://doi.org/10.1038/nrd3946

    Article  CAS  PubMed  Google Scholar 

  13. Mullard A (2012) 2011 FDA drug approvals. Nat Rev Drug Discov 11:91–94. https://doi.org/10.1038/nrd3657

    Article  CAS  PubMed  Google Scholar 

  14. You M, Yang Y, Zhong C, Chen FT, Wang X, Jia TR, Chen YZ, Zhou B, Mi QY, Zhao QJ, An ZQ, Luo EX, SXia N (2018) Efficient mAb production in CHO cells with optimized signal peptide, codon, and UTR. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-018-8986-5

    Article  PubMed  Google Scholar 

  15. Jayapal KR, Wlaschin KF, Hu WS, Yap MGS (2007) Recombinant protein therapeutics from CHO cells-20 years and counting. Chem Eng Prog 103:40–47

    CAS  Google Scholar 

  16. Lai T, Yang Y, Ng SK (2013) Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel) 6:579–603. https://doi.org/10.3390/ph6050579

    Article  CAS  Google Scholar 

  17. Boeger H, Bushnell DA, Davis R, Griesenbeck J, Lorch Y, trattan JS, Westover KD, Kornberg RD (2005) Structural basis of eukaryotic gene transcription. FEBS Lett 579:899–903. https://doi.org/10.1016/j.febslet.2004.11.027

    Article  CAS  PubMed  Google Scholar 

  18. Ho SC, Bardor M, Li B et al (2013) Comparison of internal ribosome entry site (IRES) and Furin-2A (F2A) for monoclonal antibody expression level and quality in CHO cells. PLoS ONE 8:e63247. https://doi.org/10.1371/journal.pone.0063247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rita Costa A, Elisa Rodrigues M, Henriques M, Azeredo J, Oliveira R (2010) Guidelines to cell engineering for monoclonal antibody production. Eur J Pharm Biopharm 74:127–138. https://doi.org/10.1016/j.ejpb.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  20. Wum FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398. https://doi.org/10.1038/nbt1026

    Article  CAS  Google Scholar 

  21. Pei Z, Chu L, Zou WG, Qiu S, Qi R, Gu J, Qian C (2004) An oncoliti c adenovrial vector of smac increasee antitumor activity of against HCC in human cells and in mice. Hepatology 39:1371–1381. https://doi.org/10.1002/hep.20203

    Article  CAS  PubMed  Google Scholar 

  22. Abbott WM, Middleton B, Kartberg F, Claesson J, Roth R, Fisher D (2015) Optimisation of a simple method to transiently transfect a CHO cell line in high-throughput and at large scale. Protein Expr Purif 116:113–119. https://doi.org/10.1016/j.pep.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  23. Bhoskar P, Belongia B, Smith R, Yoon S, Carter T, Xu J (2013) Free light chain content in culture media reflects recombinant monoclonal antibody productivity and quality. Biotechnol Prog 29:1131–1139. https://doi.org/10.1002/btpr.1767

    Article  CAS  PubMed  Google Scholar 

  24. Schlatter S, Stansfield SH, Dinnis DM, Racher AJ, Birch JR, James DC(2005) Onthe optimal ratio of heavy to light chain genes for efficient recombinant antibody productionby CHO cells. Biotechnol Prog 2:122–133. https://doi.org/10.1021/bp049780w

    Article  CAS  Google Scholar 

  25. Allera-Moreau C, Chomarat P, Audinot V, Cogé F, Gillard M, Martineau Y, Boutin JA, Prats AC (2006) The use of IRES-based bicistronic vectors allows the stable expression of recombinant G-protein coupled receptors such as NPY5 and histamine 4. Biochimie 88:737–746. https://doi.org/10.1016/j.biochi.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  26. Davies SL, O’Callaghan PM, McLeod J, Pybus LP, Sung YH, Rance J, Wilkinson SJ, Racher AJ, Young RJ, James DC (2011) Impact of gene vector design on the control of recombinant monoclonal antibody production by Chinese hamster ovary cells. Biotechnol Prog 27:1689–1699. https://doi.org/10.1002/btpr.692

    Article  CAS  PubMed  Google Scholar 

  27. Wang W, Jia YL, Li YC, Jing CQ, Guo X, Shang XF, Zhao CP, Wang TY (2017) Impact of different promoters, promoter mutation, and an enhancer on recombinant protein expression in CHO cells. Sci Rep 7:10416. https://doi.org/10.1038/s41598-017-10966-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ho SC, Bardor M, Feng H, Tong YW, Song Z, Yap MG, Yang Y (2012) IRES-mediated tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. J Biotechnol 157:130–139. https://doi.org/10.1016/j.jbiotec.2011.09.023

    Article  CAS  PubMed  Google Scholar 

  29. Chng J, Wang T, Nian R, .Lau A, Hoi KM, Ho SC, Gagnon P, Bi X, Yang Y (2015) Cleavage efficient 2A peptides for high level monoclona lantibody expression in CHO cells. MAbs 7:403–412. https://doi.org/10.1080/19420862.2015.1008351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shatsky IN, Dmitriev SE, Terenin IM, Andreev DE (2010) Cap-and IRES independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells 30:285–293. https://doi.org/10.1007/s10059-010-0149-1

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto H, Unbehaun A, Spahn CMT (2017) Ribosomal chamber music: toward an understanding of IRES mechanisms. Trends Biochem Sci 42:655–668. https://doi.org/10.1016/j.tibs.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  32. Nakajima K, Ikenaka K, Nakahira K, Morita N, Mikoshiba K (1993) An improved retroviral vector for assaying promoter activity. Analysis of promoter interference in pIP211 vector. FEBS Lett 315:129–133

    Article  CAS  PubMed  Google Scholar 

  33. Barnes LM, Bentley CM, Moy N, Dickson AJ (2007) Molecular analysis ofsuccessful cell line selection in transfected GS-NS0 myeloma cells. Biotechnol Bioeng 96:337–348. https://doi.org/10.1002/bit.21119

    Article  CAS  PubMed  Google Scholar 

  34. Ng SK, Lin W, Sachdeva R, Wang DI, Yap MG (2010) Vector fragmentation: characterizing vector integrity in transfected clones by Southern blotting. Biotechnol Prog 26:11–20. https://doi.org/10.1002/btpr.281

    Article  CAS  PubMed  Google Scholar 

  35. Li JL, Cui WY, Wang XY, Liu J, Hao SJ, Xu J (2017) Construction of internal ribosome entry site-mediated tricistronic vector for expression of monoclonal antibody against human tumor necrosis factor-α in CHO cells (Chinese). Chin J Biol 30:1252–1257

    Google Scholar 

  36. Hennecke M, Kwissa M, Metzger K, Oumard A, Kröger A, Schirmbeck R, Reimann J, Hauser H (2001) Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 29:3327–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Doronina VA, de Felipe P, Wu C, Sharma P, Sachs MS et al (2008) Dissection of a co-translational nascent chain separation event. Biochem Soc Trans 36:712–716. https://doi.org/10.1042/BST0360712

    Article  CAS  PubMed  Google Scholar 

  38. Doronina VA, Wu C, de Felipe P, Sachs MS, Ryan MD et al (2008) Site specific release of nascent chains from ribosomes at a sense codon. Mol Cell Biol 28:4227–4239. https://doi.org/10.1128/MCB.00421-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Donnelly ML et al (2001) Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol 82:1013–1025. https://doi.org/10.1099/0022-1317-82-5-1013

    Article  CAS  PubMed  Google Scholar 

  40. Liu Z, Chen O, Wall JBJ, Zheng M, Zhou Y, Wang L, Ruth Vaseghi H, Qian L, Liu J (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep 7:2193. https://doi.org/10.1038/s41598-017-02460-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fang J, Qian JJ, Yi S, Harding TC, Tu GH, VanRoey M, Jooss K (2005) Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 23:584–590. https://doi.org/10.1038/nbt1087

    Article  CAS  PubMed  Google Scholar 

  42. Ebadat S, Ahmadi S, Ahmadi M, Nematpour F, Barkhordari F, Mahdian R, Davami F, Mahboudi F (2017) Evaluating the efficiency of CHEF and CMV promoter with IRES and Furin/2A linker sequences for monoclonal antibody expression in CHO cells. PLoS ONE 12:e0185967. https://doi.org/10.1371/journal.pone.0185967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81673337), and Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No. 18IRTSTHN027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-yun Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human and animal rights

This article contains no studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ym., Tian, Zw., Xu, Dh. et al. Construction strategies for developing expression vectors for recombinant monoclonal antibody production in CHO cells. Mol Biol Rep 45, 2907–2912 (2018). https://doi.org/10.1007/s11033-018-4351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4351-0

Keywords

Navigation