skip to main content
Menu
Original Article

A comprehensive investigation on electronic properties for quantum-confined Cobalt doped SiC nanotube: A DFT approach

Authors

Abstract

The investigation of the thermoelectric characterization of magnetic material doped Silicon Carbide (SiC) nanotube (NT) is a challenging aspect for the researchers. Thanks to the Density Functional Theory (DFT) based formalisms help to provide accurate electronic characterization for the nanoscale 2-D models. The investigation of the Device Density of States (DDOS) of the magnetically doped SiC NT is based on the prediction of molecular and atomic level data set. Spin polarization effect is observed for this doped single wall (6,0) chiral type SiC NT. The energy band gap is lower for doped quantum-confined structure (0.98eV) compared to bulk structure (3.3 eV). The spin density approximation is based on the Hubbard U method. The observed magnetic moment for the doped structure is equal to 1.9 µB. Comparing between anti-ferromagnetic and ferromagnetic stages, the ferromagnetic stage is observed as a more stable phase.

 

Graphical Abstract

Keywords

References

  1. He S. Y., Shi H. L., Yang J., Ren Y. H., Han Q. Z., Gong L. J., Jiang Z. T., (2023), A comparative investigation into the thermoelectric properties of doped graphene nanoribbons in different doping manners. Diam. Relat. Mater. 135: 109889. https://doi.org/10.1016/j.diamond.2023.109889
  2. Seko A., Hayashi H., Nakayama K., Takahashi A., Tanaka I., (2017), Representation of compounds for machine-learning prediction of physical properties. Phys. Rev. B. 95: 144110. https://doi.org/10.1103/PhysRevB.95.144110
  3. Xue D., Balachandran P. V., Hogden J., Theiler J., Xue D., Lookman T., (2016), Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7: 11241-11246. https://doi.org/10.1038/ncomms11241
  4. Ghiringhelli L. M., Vybiral J., Levchenko S. V., Draxl C., Scheffler M., (2015), Big data of materials science: Critical role of the descriptor. Phys Rev Lett, 114: 105503. https://doi.org/10.1103/PhysRevLett.114.105503
  5. Von Lilienfeld O. A., Ramakrishnan R., Rupp M., Knoll A., (2015), Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties. Int. J. Quant. Chem. 115: 1084–1093. https://doi.org/10.1002/qua.24912
  6. Chowdhury S., Venkateswaran P., Somvanshi D., (2023), Biaxial strain-modulated electronic and optical properties of transition metals doped-WSe2 monolayer. Phys. B: Condens. Matter. 653: 414668. https://doi.org/10.1016/j.physb.2023.414668
  7. Su X. Q., Wang X. F., (2023), Electronic and spintronic properties of armchair MoSi2N4 nanoribbons doped by 3D transition metals. Nanomater. 13: 676-681. https://doi.org/10.3390/nano13040676
  8. Ikram M., Raees R., Haider A., Ul-Hamid A., Haider J., Shahzadi I., Nabgan W., Goumri-Said S., Kanoun M. B., Ali S., (2023), Enhanced photocatalytic and antibacterial activity of TiO2 quantum dots doped with Cerium/Chitosan for environmental remediation: Experimental and theoretical approaches. Mater. Chem. Phys. 297: 127462. https://doi.org/10.1016/j.matchemphys.2023.127462
  9. Slimani Y., Almessiere M. A., Mohamed M. J., Hannachi E., Caliskan S., Akhtar S., Baykal A., Gondal M. A., (2023), Synthesis of Ce and Sm Co-Doped TiO2 nanoparticles with enhanced photocatalytic activity for rhodamine B dye degradation. Catalys. 13: 668-673. https://doi.org/10.3390/catal13040668
  10. Ünlü Ö., Morkan İ. A., (2022), A computational study: Structural and electronic properties of some transition metal doped bilayer graphene systems. Int. J. Innovat. Approach. Sci. Res. 6: 34-45. https://doi.org/10.29329/ijiasr.2022.454.2
  11. Roy D. D., Chanda M., De, D., (2022), Spin transport properties in DNA & electrically doped iron QD organo-metallic junction. Mater. Today: Proceed. 71: 165-173. https://doi.org/10.1016/j.matpr.2022.08.332
  12. Dey Roy D., Roy P., De D., (2023), Bio-molecular nano scale devices using first principle paradigm: A comprehensive survey. Int. J. Nano Dimens. 14: 115-125. 10.22034/ijnd.2023.1980309.2206
  13. Roy P., Dey D., De D., (2022), Computational investigation of quantum transport to design single-strand DNA logic gate using silicon carbide nanotube electrode. IETE J. Res. 68: 299-307. https://doi.org/10.1080/03772063.2019.1604171
  14. Roy D. D., Roy P., Chanda M., De D., (2023), Ultra-low voltage adenine based gas sensor to detect H2 and NH3 at room temperature: First-principles paradigm. Int. J. Hydrogen Energy. 48: 4931-4941. https://doi.org/10.1016/j.ijhydene.2022.11.040
  15. Roy D. D., De D., (2023), Predicting model of I–V characteristics of quantum-confined GaAs nanotube: A machine learning and DFT-based combined framework. J. Comput. Electron. 22: 999-1009. https://doi.org/10.1007/s10825-023-02056-2
  16. Saini S., Choudhary S., (2022), A DFT study of transition metal doped two-dimensional bismuth (bismuthene) for spintronics applications. Adv. Nat. Sci: Nanosc. Nanotechnol. 13: 53-58. 015005. https://doi.org/10.1088/2043-6262/ac53fe
  17. Guo C., Li J., Wang, T., (2023), A theoretical study on adjustment of negative differential resistance effect in monolayer GeS via substitutional doping. Phys. Status Solidi (B). 260: 2200499. https://doi.org/10.1002/pssb.202200499
  18. Nasir N., Rashid M. H., Cheema S. A., Rasheed A., Sabir N., Tanveer Z., Hassan T., Anjam Q., (2022), An experimental and simulation evaluation of the structural, morphological and optical characters of ZnO-based nano-fibers doped with Ag and ZrO2Optik. 265: 169383. https://doi.org/10.1016/j.ijleo.2022.169383.
  19. Sharma R., Kaur N., Choudhary B. C., Goswamy J. K., (2022), DFT based study of transition metals (Au, Ag, Pd& Pt) doped graphitic carbon nitride (gCN) monolayer as a CO gas sensor. Phys. Scripta. 97: 065706. http://doi.org/10.1088/1402-4896/ac6e98
  20. Zhu H. H., Liu N., Feng Y. L., Yao K. L., Wang S. Y., (2022), Dual spin filtering and negative differential resistance effects in vanadium doped zigzag phosphorene nanoribbons with different edge passivations. AIP Adv. 12: 75687. https://doi.org/10.1063/5.0075687.
  21. Sadjadi M. S., Sadeghi B., Zare K., (2007), Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes, [NSOX (NPCl2)2]; X= F (1), X= Cl (2). J. Molec. Struc: THEOCHEM. 817: 27-33. https://doi.org/10.1016/j.theochem.2007.04.015.
  22. Dey D., Ro, P., De, D., (2017), Atomic scale modeling of electrically doped pin FET from adenine based single wall nanotube. J. Molec. Graph. Modell. 76: 118-127. https://doi.org/10.1016/j.jmgm.2017.06.024.
  23. Jyoti R., Kashyap R., Chauhan M., Choudhary B. C., Kumar A., Sharma R. K., (2022), Adsorption study of pristine and manganese doped graphene nanoribbon for effective methane gas sensing-A DFT study. Phys. B: Condens. Matter. 644: 414212. https://doi.org/10.1016/j.physb.2022.414212.
  24. Dey D., Roy P., De D., (2019), Electronic transport properties of electrically doped cytosine based optical molecular switch with single‐wall carbon nanotube electrodes. IET Nanobiotechnol. 13: 484-492. https://doi.org/10.1049/iet-nbt.2018.5375
  25. Dey D., Roy P., De D., (2019), First principle study of the self‐switching characteristics of the guanine based single optical molecular switch using carbon nanotube electrodes. IET Nanobiotechnol. 13: 237-241. https://doi.org/10.1049/iet-nbt.2018.5227
  26. Phuc V. T., Thao P. T. B., Ahuja R., Tien N. T., (2022), Effect of phosphorus doping positions on electronic transport properties in the sawtooth penta-graphene nanoribbon: First-principles insights. Solid State Communic. 353: 114859. https://doi.org/10.1016/j.ssc.2022.114859
  27. Zhao M., Xia Y., Li F., Zhang R. Q., Lee S. T., (2005), Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculation. Phys. Rev. B. 71: 085312. https://doi.org/10.1103/PhysRevB.71.085312.
  28. Mulatu A. T., Nigussa K. N., Daja L. D., (2021), Structural and electronic properties of zigzag single wall (8, 0),(9, 0), and (10, 0) silicon carbide nanotubes. Materialia. 20: 101257. https://doi.org/10.1016/j.mtla.2021.101257.
  29. Larina E. V., Chmyrev V. I., Skorikov V. M., D’yachkov P. N., Makaev D. V., (2008), Band Structure of silicon carbide nanotubes. Inorg. Mater. 44: 823–834. https://doi.org/10.1134/S0020168508080086.
  30. Methfessel M., Paxton A., (1989), High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B. 40: 3616-3621. https://doi.org/10.1103/PhysRevB.40.3616.
  31. Sun X. K., Liu J. W., Liu K. L., Wang S. H., Zhao L. L., Qin, W., Wang G. L., Meng M., Li J. T., Dong X., (2017), Effect of temperature on the structure and magnetic properties of Co doped SiC films. Superlatt. Microstruc. 107: 144–149. https://doi.org/10.1016/j.spmi.2017.04.024.
  32. Slater J. C., Koster G. F., (1954), Simplified LCAO method for the periodic potential problem. Phys. Rev. 94: 1498–1524. https://doi.org/10.1103/PhysRev.94.1498.