Education, Science, Technology, Innovation and Life
Open Access
Sign In

Mechanisms and Research Progress of Type 2 Diabetes Mellitus and Its Hepatic Complications

Download as PDF

DOI: 10.23977/medsc.2023.040514 | Downloads: 20 | Views: 394

Author(s)

Dandan Liu 1, Tiantian Ban 1, Shenghe Jiang 1

Affiliation(s)

1 Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China

Corresponding Author

Dandan Liu

ABSTRACT

Type 2 diabetes (T2DM) is the most common form of diabetes and is a heterogeneous disease that is typically associated with compensatory insulin secretion impairment and insulin resistance. Insulin resistance (IR) is a common pathological feature of metabolic diseases, including obesity, non-alcoholic fatty liver disease (NAFLD), and T2DM, which can reduce the metabolic response of target cells to insulin, leading to impaired ability of circulating or injected insulin to lower blood glucose levels at the whole-body level. This review summarizes the common pathogenic mechanism of T2DM and NAFLD, IR and its concomitant factors, and the current status of traditional Chinese medicine compound therapy, providing a theoretical basis for clinical medicine treatment.

KEYWORDS

Type 2 diabetes, Non-alcoholic fatty liver disease, Insulin resistance, Mechanism

CITE THIS PAPER

Dandan Liu, Tiantian Ban, Shenghe Jiang, Mechanisms and Research Progress of Type 2 Diabetes Mellitus and Its Hepatic Complications. MEDS Clinical Medicine (2023) Vol. 4: 95-105. DOI: http://dx.doi.org/10.23977/medsc.2023.040514.

REFERENCES

[1] G. Wang, J. Xu, H. Ma, Y. Mu, W. Xu, N. Yan, W. Liu, D. Zheng, X. Huang, L. Li. Phenolipid JE improves metabolic profile and inhibits gluconeogenesis via modulating AKT-mediated insulin signaling in STZ-induced diabetic mice. Pharmacol Res, (2023) 187, 106569. 
[2] C. E. Henderson, H. Nezam, K. M. Castillo. Centers for Disease Control and Prevention-Recognized Diabetes Prevention Program After Gestational Diabetes Mellitus. AJOG Glob Rep, (2023) 3, 100150. 
[3] D. M. Tanase, E. M. Gosav, C. F. Costea, M. Ciocoiu, C. M. Lacatusu, M. A. Maranduca, A. Ouatu, M. Floria. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J Diabetes Res, (2020) 2020, 3920196. 
[4] W. W. Zhang, R. Xue, T. Y. Mi, X. M. Shen, J. C. Li, S. Li, Y. Zhang, Y. Li, L. X. Wang, X. L. Yin, H. L. Wang, Y. Z. Zhang. Propofol ameliorates acute postoperative fatigue and promotes glucagon-regulated hepatic gluconeogenesis by activating CREB/PGC-1alpha and accelerating fatty acids beta-oxidation. Biochem Biophys Res Commun, (2022) 586, 121-128. 
[5] J. Heeren, L. Scheja. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab, (2021) 50, 101238. 
[6] R. Makhuvele, K. Foubert, N. Hermans, L. Pieters, L. Verschaeve, E. Elgorashi. Protective effects of methanolic leaf extracts of Monanthotaxis caffra against aflatoxin B1-induced hepatotoxicity in rats. Onderstepoort J Vet Res, (2022) 89, e1-e6. 
[7] Z. M. Younossi, P. Golabi, L. de Avila, J. M. Paik, M. Srishord, N. Fukui, Y. Qiu, L. Burns, A. Afendy, F. Nader. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol, (2019) 71, 793-801. 
[8] E. P. Homan, B. B. Brandao, S. Softic, A. El Ouaamari, B. T. O'Neill, R. N. Kulkarni, J. K. Kim, C. R. Kahn. Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue. J Clin Invest, (2021) 131. 
[9] J. Silva, X. Yu, R. Moradian, C. Folk, M. H. Spatz, P. Kim, A. A. Bhatti, D. L. Davies, J. Liang. Dihydromyricetin Protects the Liver via Changes in Lipid Metabolism and Enhanced Ethanol Metabolism. Alcohol Clin Exp Res, (2020) 44, 1046-1060. 
[10] A. Caron, D. Richard, M. Laplante. The Roles of mTOR Complexes in Lipid Metabolism. Annu Rev Nutr, (2015) 35, 321-348. 
[11] K. V. S. Hari Kumar. The good, the bad, and the ugly facets of insulin resistance. Med J Armed Forces India, (2020) 76, 4-7. 
[12] T. L. Laursen, C. A. Hagemann, C. Wei, K. Kazankov, K. L. Thomsen, F. K. Knop, H. Gronbaek. Bariatric surgery in patients with non-alcoholic fatty liver disease - from pathophysiology to clinical effects. World J Hepatol, (2019) 11, 138-149. 
[13] G. Targher, K. E. Corey, C. D. Byrne, M. Roden. The complex link between NAFLD and type 2 diabetes mellitus - mechanisms and treatments. Nat Rev Gastroenterol Hepatol, (2021) 18, 599-612. 
[14] A. Chadt, H. Al-Hasani. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch, (2020) 472, 1273-1298. 
[15] L. He, Y. Li, N. Zeng, B. L. Stiles. Regulation of basal expression of hepatic PEPCK and G6Pase by AKT2. Biochem J, (2020) 477, 1021-1031. 
[16] L. Wang, J. Li, L. J. Di. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev, (2022) 42, 946-982. 
[17] Y. Tanaka, T. Nagoshi, H. Takahashi, Y. Oi, A. Yoshii, H. Kimura, K. Ito, Y. Kashiwagi, T. D. Tanaka, M. Yoshimura. URAT1-selective inhibition ameliorates insulin resistance by attenuating diet-induced hepatic steatosis and brown adipose tissue whitening in mice. Mol Metab, (2022) 55, 101411. 
[18] T. Shintani, R. Suzuki, Y. Takeuchi, T. Shirasawa, M. Noda. Deletion or inhibition of PTPRO prevents ectopic fat accumulation and induces healthy obesity with markedly reduced systemic inflammation. Life Sci, (2023) 313, 121292. 
[19] X. Du, M. Liu, W. Tai, H. Yu, X. Hao, J. J. Loor, Q. Jiang, Z. Fang, X. Gao, M. Fan, W. Gao, L. Lei, Y. Song, Z. Wang, C. Zhang, G. Liu, X. Li. Tumor necrosis factor-alpha promotes lipolysis and reduces insulin sensitivity by activating nuclear factor kappa B and c-Jun N-terminal kinase in primary bovine adipocytes. J Dairy Sci, (2022) 105, 8426-8438. 
[20] K. M. Pflug, R. Sitcheran. Targeting NF-kappaB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer. Int J Mol Sci, (2020) 21. 
[21] H. Yaribeygi, T. Sathyapalan, S. L. Atkin, A. Sahebkar. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxid Med Cell Longev, (2020) 2020, 8609213. 
[22] N. Eguchi, N. D. Vaziri, D. C. Dafoe, H. Ichii. The Role of Oxidative Stress in Pancreatic beta Cell Dysfunction in Diabetes. Int J Mol Sci, (2021) 22. 
[23] S. Hurrle, W. H. Hsu. The etiology of oxidative stress in insulin resistance. Biomed J, (2017) 40, 257-262. 
[24] S. Chen, F. Wu, C. Yang, C. Zhao, N. Cheng, W. Cao, H. Zhao. Alternative to Sugar, Honey Does Not Provoke Insulin Resistance in Rats Based on Lipid Profiles, Inflammation, and IRS/PI3K/AKT Signaling Pathways Modulation. J Agric Food Chem, (2022) 70, 10194-10208. 
[25] M. Balbaa, S. A. Abdulmalek, S. Khalil. Oxidative stress and expression of insulin signaling proteins in the brain of diabetic rats: Role of Nigella sativa oil and antidiabetic drugs. PLoS One, (2017) 12, e0172429. 
[26] C. Morgantini, J. Jager, X. Li, L. Levi, V. Azzimato, A. Sulen, E. Barreby, C. Xu, M. Tencerova, E. Naslund, C. Kumar, F. Verdeguer, S. Straniero, K. Hultenby, N. K. Bjorkstrom, E. Ellis, M. Ryden, C. Kutter, T. Hurrell, V. M. Lauschke, J. Boucher, A. Tomcala, G. Krejcova, A. Bajgar, M. Aouadi. Liver macrophages regulate systemic metabolism through non-inflammatory factors. Nat Metab, (2019) 1, 445-459. 
[27] R. Loomba, S. L. Friedman, G. I. Shulman. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell, (2021) 184, 2537-2564. 
[28] T. Hironaka, N. Takizawa, Y. Yamauchi, Y. Horii, M. Nakaya. The well-developed actin cytoskeleton and Cthrc1 expression by actin-binding protein drebrin in myofibroblasts promote cardiac and hepatic fibrosis. J Biol Chem, (2023) 102934. 
[29] V. F. D'Alessandro, A. Takeshita, T. Yasuma, M. Toda, C. N. D'Alessandro-Gabazza, Y. Okano, S. Tharavecharak, C. Inoue, K. Nishihama, H. Fujimoto, T. Kobayashi, Y. Yano, E. C. Gabazza. Transforming Growth Factorbeta1 Overexpression Is Associated with Insulin Resistance and Rapidly Progressive Kidney Fibrosis under Diabetic Conditions. Int J Mol Sci, (2022) 23. 
[30] D. Xiang, J. Zou, X. Zhu, X. Chen, J. Luo, L. Kong, H. Zhang. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-beta/Smad and YAP signaling. Phytomedicine, (2020) 78, 153294. 
[31] D. Zhang, W. Jin, R. Wu, J. Li, S. A. Park, E. Tu, P. Zanvit, J. Xu, O. Liu, A. Cain, W. Chen. High Glucose Intake Exacerbates Autoimmunity through Reactive-Oxygen-Species-Mediated TGF-beta Cytokine Activation. Immunity, (2019) 51, 671-681 e675. 
[32] Zhang YJ, Cao H, Xu J, Han YQ, Gong SX, Zhang TJ, and Liu CX (2016). Expression of bitter properties of traditional Chinese medicine and its application in clinical compatibility[J]. Chinese Traditional and Herbal Drugs, 47, 187-193. 
[33] T.P. Hsueh, W.L. Lin, J.W. Dalley, T.H. Tsai. The Pharmacological Effects and Pharmacokinetics of Active Compounds of Artemisia capillaris. Biomedicines, (2021) 9, 10. 
[34] F.E. Wirngo, M.N. Lambert, P.B.Jeppesen. The Physiological Effects of Dandelion (Taraxacum Officinale) in Type 2 Diabetes. Rev Diabet Stud, (2016) 13, 2-3: 113-131. 
[35] Zhang XJ, Wang HF, Sun YX, Xing DJ (2021). Effect of dandelion water extract on insulin resistance in type 2 diabetic rats[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 32, 17-22. 
[36] Z. Hu, M. Yang, Y. Liu, Q. Yang, H. Xie, S. Peng, J. Gao, C. Xie. Effect of Huang-Lian Jie-Du Decoction on Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Front Pharmacol, (2021) 12, 648861. 
[37] Y. Xu, J. Huang, N. Wang, H. Y. Tan, C. Zhang, S. Li, G. Tang, Y. Feng. Network Pharmacology-Based Analysis and Experimental Exploration of Antidiabetic Mechanisms of Gegen Qinlian Decoction. Front Pharmacol, (2021) 12, 649606. 
[38] M. Li, H. Shang, T. Wang, S. Yang, L. Li. Huanglian decoction suppresses the growth of hepatocellular carcinoma cells by reducing CCNB1 expression. World J Gastroenterol, (2021) 27, 10: 939-958.

Downloads: 4754
Visits: 207259

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.