Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Anti-Naegleria fowleri and Anti-Balamuthia mandrillaris Activities of Propolis

Author(s): Mohammad Ridwane Mungroo, Ayaz Anwar, Abolghasem Siyadatpanah, Roghayeh Norouzi, Tommy Tong, Naveed Ahmed Khan* and Ruqaiyyah Siddiqui

Volume 12, Issue 6, 2022

Published on: 24 February, 2022

Article ID: e140122200227 Pages: 11

DOI: 10.2174/2210315512666220114103359

Price: $65

Abstract

Aim: Herein, we determined the anti-amoebic properties of propolis collected from different regions in Iran against Naegleria fowleri and Balamuthia mandrillaris.

Background: Natural products remain a valuable source of compounds that are biologically active. Approximately one-third of well-known therapeutic drugs worldwide are derived from natural products.

Objectives: Considering the use of propolis in folk medicine, here, for the first time, we evaluated anti-amoebic properties of propolis against free-living pathogenic amoebae, B. mandrillaris and N. fowleri.

Methods: Propolis was collected from different regions of Iran and ethanolic extracts were prepared. Amoebicidal and cysticidal assays were accomplished to determine the effects of propolis against N. fowleri and B. mandrillaris. In vitro cytotoxicity assays were carried out to establish propolis effects on host cell damage. Finally, propolis metabolites were determined using spectrometric methods.

Results: It was observed that propolis exhibited potent antiamoebic effects against trophozoites and cysts of both N. fowleri and B. mandrillaris at μg concentrations. When tested against cysts of both amoebae, only selected propolis exhibited cysticidal properties. The best activity was observed by propolis from the Kermanshah region, which depicted more than 95% amoebicidal activity and more than 60% cysticidal activity against both amoebae, respectively. Liquid chromatography- tandem mass spectrometry revealed that each extract is comprised of various components.

Conclusion: For the first time, we showed that propolis has amoebicidal activity against both amoebae tested. Investigation into the individual activity of the components of propolis extracts and their mechanism of action against the aforementioned parasites might lead to the discovery of novel anti-amoebic compounds.

Keywords: Naegleria, Balamuthia, amoebicidal, cysticidal, propolis, antiparasitic, antimicrobial, cytotoxicity.

Graphical Abstract
[1]
Castaldo, S.; Capasso, F. Propolis, an old remedy used in modern medicine. Fitoterapia, 2002, 73(Suppl. 1), S1-S6.
[http://dx.doi.org/10.1016/S0367-326X(02)00185-5] [PMID: 12495704]
[2]
Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol., 2011, 133(2), 253-260.
[http://dx.doi.org/10.1016/j.jep.2010.10.032] [PMID: 20970490]
[3]
Topalkara, A.; Vural, A.; Polat, Z.; Toker, M.I.; Arici, M.K.; Ozan, F.; Cetin, A. In vitro amoebicidal activity of propolis on Acanthamoeba castellanii. J. Ocul. Pharmacol. Ther., 2007, 23(1), 40-45.
[http://dx.doi.org/10.1089/jop.2006.0053] [PMID: 17341149]
[4]
Vural, A.; Polat, Z.A.; Topalkara, A.; Toker, M.I.; Erdogan, H.; Arici, M.K.; Cetin, A. The effect of propolis in experimental Acanthamoeba keratitis. Clin. Exp. Ophthalmol., 2007, 35(8), 749-754.
[http://dx.doi.org/10.1111/j.1442-9071.2007.01620.x] [PMID: 17997780]
[5]
Martinez, A.J. Free-living amoebas; natural history, prevention, diagnosis, pathology and treatment of disease; CRC Press: Boca Raton, Florida, USA, 1985, p. 166.
[6]
Schuster, F.L.; Visvesvara, G.S. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol., 2004, 34(9), 1001-1027.
[http://dx.doi.org/10.1016/j.ijpara.2004.06.004] [PMID: 15313128]
[7]
Visvesvara, G.S. Infections with free-living amebae. Handb. Clin. Neurol., 2013, 114, 153-168.
[http://dx.doi.org/10.1016/B978-0-444-53490-3.00010-8] [PMID: 23829906]
[8]
Anwar, A.; Siddiqui, R.; Shah, M.R.; Khan, N.A. Gold nanoparticle-conjugated cinnamic acid exhibits antiacanthamoebic and antibacterial properties. Antimicrob. Agents Chemother., 2018, 62(9), e00630-e18.
[http://dx.doi.org/10.1128/AAC.00630-18] [PMID: 29967024]
[9]
De Jonckheere, J.F. Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infect. Genet. Evol., 2011, 11(7), 1520-1528.
[http://dx.doi.org/10.1016/j.meegid.2011.07.023] [PMID: 21843657]
[10]
Mungroo, M.R.; Khan, N.A.; Siddiqui, R. Naegleria fowleri: Diagnosis, treatment options and pathogenesis. Expert Opin. Orphan Drugs, 2019, 7(2), 67-80.
[http://dx.doi.org/10.1080/21678707.2019.1571904]
[11]
Heggie, T.W. Swimming with death: Naegleria fowleri infections in recreational waters. Travel Med. Infect. Dis., 2010, 8(4), 201-206.
[http://dx.doi.org/10.1016/j.tmaid.2010.06.001] [PMID: 20970721]
[12]
Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol., 2007, 50(1), 1-26.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00232.x] [PMID: 17428307]
[13]
Kalsoom, H.; Baig, A.M.; Khan, N.A.; Siddiqui, R. Laboratory testing of clinically approved drugs against Balamuthia mandrillaris. World J. Microbiol. Biotechnol., 2014, 30(9), 2337-2342.
[http://dx.doi.org/10.1007/s11274-014-1658-4] [PMID: 24875138]
[14]
Laurie, M.T.; White, C.V.; Retallack, H.; Wu, W.; Moser, M.S.; Sakanari, J.A.; Ang, K.; Wilson, C.; Arkin, M.R.; DeRisi, J.L. Functional Assessment of 2,177 U.S. and International drugs identifies the quinoline nitroxoline as a potent amoebicidal agent against the pathogen Balamuthia mandrillaris. MBio, 2018, 9(5), e02051-e18.
[http://dx.doi.org/10.1128/mBio.02051-18] [PMID: 30377287]
[15]
Siddiqui, R.; Khan, N.A. Balamuthia amoebic encephalitis: An emerging disease with fatal consequences. Microb. Pathog., 2008, 44(2), 89-97.
[http://dx.doi.org/10.1016/j.micpath.2007.06.008] [PMID: 17913450]
[16]
Jeyamogan, S.; Khan, N.A.; Anwar, A.; Shah, M.R.; Siddiqui, R. Cytotoxic effects of benzodioxane, naphthalene diimide, porphyrin and acetamol derivatives on hela cells. SAGE Open Med., 2018, 6, 2050312118781962.
[http://dx.doi.org/10.1177/2050312118781962] [PMID: 30034805]
[17]
Mungroo, M.R.; Anwar, A.; Khan, N.A.; Siddiqui, R. Gold-conjugated curcumin as a novel therapeutic agent against brain-eating amoebae. ACS Omega, 2020, 5(21), 12467-12475.
[http://dx.doi.org/10.1021/acsomega.0c01305] [PMID: 32548431]
[18]
Rajendran, K.; Anwar, A.; Khan, N.A.; Siddiqui, R. Brain-eating amoebae: Silver nanoparticle conjugation enhanced efficacy of anti-amoebic drugs against Naegleria fowleri. ACS Chem. Neurosci., 2017, 8(12), 2626-2630.
[http://dx.doi.org/10.1021/acschemneuro.7b00430] [PMID: 29206032]
[19]
Hexamethylene bisacetamide. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Hexamethylene-bisacetamide [Accessed on: 13 April 2021].
[20]
Environmental protection agency 2021. Available from: https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID50236034 [Accessed on 13 April 2021].
[21]
Eplerenone. 2021. Available from: https://go.drugbank.com/drugs/DB00700 [Accessed on: 13 April 2021].
[22]
Kong, B.S.; Im, S.J.; Lee, Y.J.; Cho, Y.H.; Do, Y.R.; Byun, J.W.; Ku, C.R.; Lee, E.J. Vasculoprotective effects of 3-hydroxybenzaldehyde against VSMCs proliferation and ECs inflammation. PLoS One, 2016, 11(3), e0149394.
[http://dx.doi.org/10.1371/journal.pone.0149394] [PMID: 27002821]
[23]
Drugbank. Trolamine. 2021. Available from: https://go.drugbank.com/drugs/DB13747 [Accessed on 13 April 2021].
[24]
Pubchem. 3-Hydroxycinnamic acid. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/3-Hydroxycinnamic-acid [Accessed on: 13 April 2021].
[25]
Aung, H.T.; Furukawa, T.; Nikai, T.; Niwa, M.; Takaya, Y. Contribution of cinnamic acid analogues in rosmarinic acid to inhibition of snake venom induced hemorrhage. Bioorg. Med. Chem., 2011, 19(7), 2392-2396.
[http://dx.doi.org/10.1016/j.bmc.2011.02.013] [PMID: 21388814]
[26]
United States Environmental Protection Agency. 2021. Available from: https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID80166017 [Accessed on: 13 April 2021].
[27]
Drugbank. Ethambutol. 2021. Available from: https://go.drugbank.com/drugs/DB00330 [Accessed on: 13 April 2021].
[28]
Pubchem. 4'-Hydroxy-7-methoxyflavone 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/4_-Hydroxy-7-methoxyflavone [Accessed on: 13 April 2021].
[29]
Souza, T.; Jennen, D.; van Delft, J.; van Herwijnen, M.; Kyrtoupolos, S.; Kleinjans, J. New insights into BaP-induced toxicity: Role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch. Toxicol., 2016, 90(6), 1449-1458.
[http://dx.doi.org/10.1007/s00204-015-1572-z] [PMID: 26238291]
[30]
Pubchem. Olprinone. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Olprinone [Accessed on: 13 April 2021].
[31]
Georgieva, I.; Koychev, D.; Wang, Y.; Holstein, J.; Hopfenmüller, W.; Zeitz, M.; Grabowski, P. ZM447439, a novel promising aurora kinase inhibitor, provokes antiproliferative and proapoptotic effects alone and in combination with bio- and chemotherapeutic agents in gastroenteropancreatic neuroendocrine tumor cell lines. Neuroendocrinology, 2010, 91(2), 121-130.
[http://dx.doi.org/10.1159/000258705] [PMID: 19923785]
[32]
Pubchem. Iberin. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Iberin [Accessed on: 13 April 2021].
[33]
Fong, J.; Yuan, M.; Jakobsen, T.H.; Mortensen, K.T.; Delos Santos, M.M.S.; Chua, S.L.; Yang, L.; Tan, C.H.; Nielsen, T.E.; Givskov, M. Disulfide bond-containing ajoene analogues as novel quorum sensing inhibitors of Pseudomonas aeruginosa. J. Med. Chem., 2017, 60(1), 215-227.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01025] [PMID: 27977197]
[34]
Drugbank. Methenamine. Available from: https://go.drugbank.com/drugs/DB06799 [Accessed on: 13 April 2021].
[35]
Lo, T.S.; Hammer, K.D.; Zegarra, M.; Cho, W.C. Methenamine: A forgotten drug for preventing recurrent urinary tract infection in a multidrug resistance era. Expert Rev. Anti Infect. Ther., 2014, 12(5), 549-554.
[http://dx.doi.org/10.1586/14787210.2014.904202] [PMID: 24689705]
[36]
Pubchem. Dazomet. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Dazomet [Accessed on: 13 April 2021].
[37]
Pubchem. Prenyletin.. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Prenyletin [Accessed on: 13 April 2021].
[38]
Pubchem. Acetoxyeugenol-acetate. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/1_-Acetoxyeugenol-acetate [Accessed on: 13 April 2021].
[39]
Pubchem. Ethyl 10H-phenothiazin-2-ylcarbamate. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ethyl-10H-phenothiazin-2-ylcarbamate [Accessed on: 13 April 2021].
[40]
Drugbank. Pioglitazone. 2021. Available from: https://go.drugbank.com/drugs/DB01132 [Accessed on: 13 April 2021].
[41]
Pubchem. Ascorbyl stearate. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ascorbyl-stearate [Accessed on: 13 April 2021].
[42]
Pubchem. Prostaglandin-A1. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Prostaglandin-A1 [Accessed on: 13 April 2021].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy