Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Mitochondria-targeted Uncouplers Decrease Inflammatory Reactions in Endothelial Cells by Enhancing Methylation of the ICAM1 Gene Promoter

Author(s): Liudmila A. Zinovkina, Ciara I. Makievskaya, Ivan I. Galkin and Roman A. Zinovkin*

Volume 17, 2024

Published on: 14 September, 2023

Article ID: e150823219723 Pages: 9

DOI: 10.2174/1874467217666230815142556

open_access

Abstract

Introduction: The study aimed to investigate the effects of low concentrations of mitochondrial uncouplers in endothelial cells on the CpG dinucleotide methylation of the ICAM1 gene promoter. The excessive inflammatory response in the endothelium is responsible for the development of many cardiovascular diseases. Mitochondria are important regulators of endothelial cell functions. Mild uncoupling of oxidative phosphorylation and respiration in endothelial mitochondria exerts a long lasting anti-inflammatory effect. However, the detailed mechanism of the anti-inflammatory activity of mitochondrial uncouplers remains unclear.We hypothesized that mild mitochondrial uncoupling leads to epigenetic changes in genomic DNA contributing to the anti-inflammatory response.

Methods: We studied the long-term effects of mitochondria-targeted compounds with the uncoupler’s activities: the antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1), dodecyl-triphenylphosphonium (C12TPP), and 2,4-dinitrophenol (DNP). The mRNA expression of the intercellular adhesion molecule 1 (ICAM1), a marker of inflammatory activation of endothelial cells, was measured by RT-qPCR. Cytosine methylation in the CpG sites of the ICAM1 gene promoter was estimated by bisulfite sequencing of individual clones.

Results: It was found that downregulation of ICAM1 expression caused by DNP and C12TPP was accompanied by an increase in the methylation of CpG sites in the ICAM1 gene promoter. None of the compounds affected intracellular or intramitochondrial ATP levels.

Conclusion: Low concentrations of mitochondrial oxidative phosphorylation uncouplers are able to increase methylation of ICAM1 gene promoter, which corresponds to the observed decrease in the levels of mRNA of this gene. Thus, the change in methylation of the ICAM1 gene promoter may underlie the mechanism of decreased ICAM1 expression caused by mild mitochondrial depolarization. Mitochondrial uncouplers may be exploited as possible therapeutic candidates to treat excessive inflammation in endothelium, by changing the methylation status of genomic DNA.

Keywords: Mitochondria, Epigenetics, Endothelium, Inflammation, ICAM1, Uncouplers of oxidative phosphorylation.

[1]
Hirata, Y.; Nagata, D.; Suzuki, E.; Nishimatsu, H.; Suzuki, J.; Nagai, R. Diagnosis and treatment of endothelial dysfunction in cardiovascular disease. Int. Heart J., 2010, 51(1), 1-6.
[http://dx.doi.org/10.1536/ihj.51.1] [PMID: 20145343]
[2]
Li, M.; van Esch, B.C.A.M.; Henricks, P.A.J.; Garssen, J.; Folkerts, G. Time and concentration dependent effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-induced endothelial activation. Front. Pharmacol., 2018, 9, 233.
[http://dx.doi.org/10.3389/fphar.2018.00233] [PMID: 29615908]
[3]
Davies, M.J.; Gordon, J.L.; Gearing, A.J.H.; Pigott, R.; Woolf, N.; Katz, D.; Kyriakopoulos, A. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J. Pathol., 1993, 171(3), 223-229.
[http://dx.doi.org/10.1002/path.1711710311] [PMID: 7506307]
[4]
Watanabe, T.; Fan, J. Atherosclerosis and inflammation mononuclear cell recruitment and adhesion molecules with reference to the implication of ICAM-1/LFA-1 pathway in atherogenesis. Int. J. Cardiol., 1998, 66(S1), S45-53.
[http://dx.doi.org/10.1016/s0167-5273(98)00147-8] [PMID: 9951802]
[5]
Collins, R.G.; Velji, R.; Guevara, N.V.; Hicks, M.J.; Chan, L.; Beaudet, A.L. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J. Exp. Med., 2000, 191(1), 189-194.
[http://dx.doi.org/10.1084/jem.191.1.189] [PMID: 10620617]
[6]
Lawson, C.; Wolf, S. ICAM-1 signaling in endothelial cells. Pharmacol. Rep., 2009, 61(1), 22-32.
[http://dx.doi.org/10.1016/S1734-1140(09)70004-0] [PMID: 19307690]
[7]
Nourshargh, S.; Alon, R. Leukocyte migration into inflamed tissues. Immunity, 2014, 41(5), 694-707.
[http://dx.doi.org/10.1016/j.immuni.2014.10.008] [PMID: 25517612]
[8]
Kluge, M.A.; Fetterman, J.L.; Vita, J.A. Mitochondria and endothelial function. Circ. Res., 2013, 112(8), 1171-1188.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.300233] [PMID: 23580773]
[9]
Cunha, F.M.; Caldeira da Silva, C.C.; Cerqueira, F.M.; Kowaltowski, A.J. Mild mitochondrial uncoupling as a therapeutic strategy. Curr. Drug Targets, 2011, 12(6), 783-789.
[http://dx.doi.org/10.2174/138945011795528778] [PMID: 21275885]
[10]
Korshunov, S.S.; Skulachev, V.P.; Starkov, A.A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett., 1997, 416(1), 15-18.
[http://dx.doi.org/10.1016/S0014-5793(97)01159-9] [PMID: 9369223]
[11]
Zinovkin, R.A.; Romaschenko, V.P.; Galkin, I.I.; Zakharova, V.V.; Pletjushkina, O.Y.; Chernyak, B.V.; Popova, E.N. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium. Aging, 2014, 6(8), 661-674.
[http://dx.doi.org/10.18632/aging.100685] [PMID: 25239871]
[12]
Romaschenko, V.P.; Zinovkin, R.A.; Galkin, I.I.; Zakharova, V.V.; Panteleeva, A.A.; Tokarchuk, A.V.; Lyamzaev, K.G.; Pletjushkina, O.Y.; Chernyak, B.V.; Popova, E.N. Low concentrations of uncouplers of oxidative phosphorylation prevent inflammatory activation of endothelial cells by tumor necrosis factor. Biochemistry, 2015, 80(5), 610-619.
[http://dx.doi.org/10.1134/S0006297915050144] [PMID: 26071781]
[13]
Zakharova, V.V.; Pletjushkina, O.Y.; Zinovkin, R.A.; Popova, E.N.; Chernyak, B.V. Mitochondria-targeted antioxidants and uncouplers of oxidative phosphorylation in treatment of the Systemic Inflammatory Response Syndrome (SIRS). J. Cell. Physiol., 2017, 232(5), 904-912.
[http://dx.doi.org/10.1002/jcp.25626] [PMID: 27684052]
[14]
Holliday, R. DNA methylation and epigenetic inheritance. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1990, 326(1235), 329-338.
[http://dx.doi.org/10.1098/rstb.1990.0015] [PMID: 1968668]
[15]
Zinovkina, L.A.; Zinovkin, R.A. DNA methylation, mitochondria, and programmed aging. Biochemistry, 2015, 80(12), 1571-1577.
[http://dx.doi.org/10.1134/S0006297915120044] [PMID: 26638681]
[16]
Mohammed, S.A.; Ambrosini, S.; Lüscher, T.; Paneni, F.; Costantino, S. Epigenetic control of mitochondrial function in the vasculature. Front. Cardiovasc. Med., 2020, 7, 28.
[http://dx.doi.org/10.3389/fcvm.2020.00028] [PMID: 32195271]
[17]
Tian, Y.; Garcia, G.; Bian, Q.; Steffen, K.K.; Joe, L.; Wolff, S.; Meyer, B.J.; Dillin, A. Mitochondrial stress induces chromatin reorganization to promote longevity and UPR mt. Cell, 2016, 165(5), 1197-1208.
[http://dx.doi.org/10.1016/j.cell.2016.04.011] [PMID: 27133166]
[18]
Merkwirth, C.; Jovaisaite, V.; Durieux, J.; Matilainen, O.; Jordan, S.D.; Quiros, P.M.; Steffen, K.K.; Williams, E.G.; Mouchiroud, L.; Tronnes, S.U.; Murillo, V.; Wolff, S.C.; Shaw, R.J.; Auwerx, J.; Dillin, A. Two conserved histone demethylases regulate mitochondrial stress-induced longevity. Cell, 2016, 165(5), 1209-1223.
[http://dx.doi.org/10.1016/j.cell.2016.04.012] [PMID: 27133168]
[19]
Russell-Hallinan, A.; Watson, C.J.; O’Dwyer, D.; Grieve, D.J.; O’Neill, K.M. Epigenetic regulation of endothelial cell function by nucleic acid methylation in cardiac homeostasis and disease. Cardiovasc. Drugs Ther., 2021, 35(5), 1025-1044.
[http://dx.doi.org/10.1007/s10557-020-07019-4] [PMID: 32748033]
[20]
Costantino, S.; Paneni, F.; Cosentino, F. Targeting chromatin remodeling to prevent cardiovascular disease in diabetes. Curr. Pharm. Biotechnol., 2015, 16(6), 531-543.
[http://dx.doi.org/10.2174/138920101606150407113644] [PMID: 25860064]
[21]
Chen, H.; Kazemier, H.G.; de Groote, M.L.; Ruiters, M.H.J.; Xu, G.L.; Rots, M.G. Induced DNA demethylation by targeting ten-eleven translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res., 2014, 42(3), 1563-1574.
[http://dx.doi.org/10.1093/nar/gkt1019] [PMID: 24194590]
[22]
Mallona, I.; Díez-Villanueva, A.; Peinado, M.A. Methylation plotter: A web tool for dynamic visualization of DNA methylation data. Source Code Biol. Med., 2014, 9(1), 11.
[http://dx.doi.org/10.1186/1751-0473-9-11] [PMID: 25260021]
[23]
Lobas, M.A.; Tao, R.; Nagai, J.; Kronschläger, M.T.; Borden, P.M.; Marvin, J.S.; Looger, L.L.; Khakh, B.S. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat. Commun., 2019, 10(1), 711.
[http://dx.doi.org/10.1038/s41467-019-08441-5] [PMID: 30755613]
[24]
Pavlyuchenkova, A.N.; Zinovkin, R.A.; Makievskaya, C.I.; Galkin, I.I.; Chelombitko, M.A. Mitochondria-targeted triphenylphosphonium-based compounds inhibit FcεRI-dependent degranulation of mast cells by preventing mitochondrial dysfunction through Erk1/2. Life Sci., 2022, 288, 120174.
[http://dx.doi.org/10.1016/j.lfs.2021.120174] [PMID: 34826439]
[25]
Wawryk, S.O.; Cockerill, P.N.; Wicks, I.P.; Boyd, A.W. Isolation and characterization of the promoter region of the human intercellular adhesion molecule-1 gene. Int. Immunol., 1991, 3(1), 83-93.
[http://dx.doi.org/10.1093/intimm/3.1.83] [PMID: 1904768]
[26]
Lee, K.U.; Lee, I.K.; Han, J.; Song, D.K.; Kim, Y.M.; Song, H.S.; Kim, H.S.; Lee, W.J.; Koh, E.H.; Song, K.H.; Han, S.M.; Kim, M.S.; Park, I.S.; Park, J.Y. Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis. Circ. Res., 2005, 96(11), 1200-1207.
[http://dx.doi.org/10.1161/01.RES.0000170075.73039.5b] [PMID: 15905464]
[27]
Toime, L.J.; Brand, M.D. Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radic. Biol. Med., 2010, 49(4), 606-611.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.010] [PMID: 20493945]
[28]
Demine, S.; Renard, P.; Arnould, T. Mitochondrial uncoupling: A key controller of biological processes in physiology and diseases. Cells, 2019, 8(8), 795.
[http://dx.doi.org/10.3390/cells8080795] [PMID: 31366145]
[29]
Maunakea, A.K.; Nagarajan, R.P.; Bilenky, M.; Ballinger, T.J.; D’Souza, C.; Fouse, S.D.; Johnson, B.E.; Hong, C.; Nielsen, C.; Zhao, Y.; Turecki, G.; Delaney, A.; Varhol, R.; Thiessen, N.; Shchors, K.; Heine, V.M.; Rowitch, D.H.; Xing, X.; Fiore, C.; Schillebeeckx, M.; Jones, S.J.M.; Haussler, D.; Marra, M.A.; Hirst, M.; Wang, T.; Costello, J.F. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 2010, 466(7303), 253-257.
[http://dx.doi.org/10.1038/nature09165] [PMID: 20613842]
[30]
Liu, T.; Sun, J.; Wang, Z.; Yang, W.; Zhang, H.; Fan, C.; Shan, Z.; Teng, W. Changes in the DNA methylation and hydroxymethylation status of the intercellular adhesion molecule 1 gene promoter in thyrocytes from autoimmune thyroiditis patients. Thyroid, 2017, 27(6), 838-845.
[http://dx.doi.org/10.1089/thy.2016.0576] [PMID: 28388873]
[31]
Lee, P.P.; Fitzpatrick, D.R.; Beard, C.; Jessup, H.K.; Lehar, S.; Makar, K.W.; Pérez-Melgosa, M.; Sweetser, M.T.; Schlissel, M.S.; Nguyen, S.; Cherry, S.R.; Tsai, J.H.; Tucker, S.M.; Weaver, W.M.; Kelso, A.; Jaenisch, R.; Wilson, C.B. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity, 2001, 15(5), 763-774.
[http://dx.doi.org/10.1016/S1074-7613(01)00227-8] [PMID: 11728338]
[32]
Antonenko, Y.N.; Khailova, L.S.; Knorre, D.A.; Markova, O.V.; Rokitskaya, T.I.; Ilyasova, T.M.; Severina, I.I.; Kotova, E.A.; Karavaeva, Y.E.; Prikhodko, A.S.; Severin, F.F.; Skulachev, V.P. Penetrating cations enhance uncoupling activity of anionic protonophores in mitochondria. PLoS One, 2013, 8(4), e61902.
[http://dx.doi.org/10.1371/journal.pone.0061902] [PMID: 23626747]
[33]
Muers, M. A haul of new histone modifications. Nat. Rev. Genet., 2011, 12(11), 744.
[http://dx.doi.org/10.1038/nrg3086] [PMID: 21946920]
[34]
Li, X.; Shao, Y.; Sha, X.; Fang, P.; Kuo, Y.M.; Andrews, A.J.; Li, Y.; Yang, W.Y.; Maddaloni, M.; Pascual, D.W.; Luo, J.J.; Jiang, X.; Wang, H.; Yang, X. IL-35 (Interleukin-35) suppresses endothelial cell activation by inhibiting mitochondrial reactive oxygen species-mediated site-specific acetylation of H3K14 (Histone 3 Lysine 14). Arterioscler. Thromb. Vasc. Biol., 2018, 38(3), 599-609.
[http://dx.doi.org/10.1161/ATVBAHA.117.310626] [PMID: 29371247]

© 2024 Bentham Science Publishers | Privacy Policy