Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

The Protective Effect of Bajijiasu on the Treatment of Hypertensive Nephropathy in Rats

Author(s): Minyi Li, Beifeng Lie, Tingting Duan, Deqi Chen, Tao Xia, Heng Xie, Guixuan Lin, Junzheng Yang* and Zhenghai Li*

Volume 16, Issue 7, 2023

Published on: 29 December, 2022

Article ID: e051022209617 Pages: 8

DOI: 10.2174/1874467215666221005141210

Price: $65

Abstract

Backgrounds: Hypertensive nephropathy (HN) is a kind of renal disease caused by essential hypertension that eventually worsens into end-stage renal disease (ESRD). HN could damage the renal tubules, induce kidney damage and renal failure, and increase the risk of stroke, heart disease or death, but there are few ideal drugs for HN treatment.

Methods: In this study, we explored the therapeutic effect of bajijiasu (a compound from Morinda officinalis how and a common traditional Chinese medicine for tonifying the kidney) on the HN rat model. Biochemical analysis, HE staining, and PAS staining were used to assess the effects of bajijiasu on HN rat model. Western blotting was used to analyze the potential mechanisms.

Results: The results of HE staining and PAS staining showed that bajijiasu could alleviate the pathological changes in HN rat models; biochemical analysis found that the concentration of Malondialdehyde (MDA), total protein (TP), albumin (ALB), microalbuminuria (MALB), blood urea nitrogen (BUN), creatinine (Cr), triglyceride (TG), and low-density lipoprotein-cholesterol (LDL-C) were significantly decreased compared with the model group after bajijiasu treatment; and bajijiasu could regulate the expression of TNF-α, IL-6, MDA, SOD1 and AGEs in HN rats; the result of western blotting demonstrated that bajijiasu could down-regulate the expression of TGFβ1, NOX4, JNK, p- JNK and up-regulate the expression PPARγ and SOD 1 in HN rats.

Conclusion: Those results demonstrated that bajijiasu could alleviate the pathological changes and physiological and biochemical symptoms of HN rat models by regulating the expression of TGFβ1, PPARγ, JNK, p-JNK, NOX4 and SOD1 but could not lower the blood pressure of HN rats. Those pieces of evidence may provide a new therapeutic method for HN treatment.

Keywords: Hypertensive, nephropathy, bajijiasu, rat, TGFβ1, PPARγ, JNK.

Graphical Abstract
[1]
Costantino, V.V.; Gil Lorenzo, A.F.; Bocanegra, V.; Vallés, P.G. Molecular mechanisms of hypertensive nephropathy: Renoprotective effect of losartan through Hsp70. Cells, 2021, 10(11)
[http://dx.doi.org/10.3390/cells10113146]
[2]
Udani, S.; Lazich, I.; Bakris, G.L. Epidemiology of hypertensive kidney disease. Nat. Rev. Nephrol., 2011, 7(1), 11-21.
[http://dx.doi.org/10.1038/nrneph.2010.154] [PMID: 21079654]
[3]
Freedman, B.I.; Cohen, A.H. Hypertension attributed nephropathy: What’s in a name? Nat. Rev. Nephrol., 2016, 12, 27-36. Available from: https://www.nature.com/articles/nrne
[4]
Bidani, A.K.; Griffin, K.A.; Williamson, G.; Wang, X.; Loutzenhiser, R. Protective importance of the myogenic response in the renal circulation. Hypertension, 2009, 54, 393-398.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.133777]
[5]
Zhang, C.; Booz, G.W.; Yu, Q.; He, X.; Wang, S.; Fan, F. Conflicting roles of 20-HETE in hypertension and renal end organ damage. Eur. J. Pharmacol., 2018, 833, 190-200.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.010] [PMID: 29886242]
[6]
Mendoza-Torres, E.; Oyarzún, A.; Mondaca-Ruff, D.; Azocar, A.; Castro, P.F.; Jalil, J.E.; Chiong, M.; Lavandero, S.; Ocaranza, M.P. ACE2 and vasoactive peptides: Novel players in cardiovascular/renal remodeling and hypertension. Ther. Adv. Cardiovasc. Dis., 2015, 9(4), 217-237.
[http://dx.doi.org/10.1177/1753944715597623] [PMID: 26275770]
[7]
Seccia, T.M.; Caroccia, B.; Calò, L.A. Hypertensive nephropathy. Moving from classic to emerging pathogenetic mechanisms. J. Hypertens., 2017, 35(2), 205-212.
[http://dx.doi.org/10.1097/HJH.0000000000001170] [PMID: 27782909]
[8]
Hart, P.D.; Bakris, G.L. Hypertensive nephropathy: Prevention and treatment recommendations. Expert Opin. Pharmacother., 2010, 11(16), 2675-2686.
[http://dx.doi.org/10.1517/14656566.2010.485612] [PMID: 20718588]
[9]
Li, N.; Qin, L.P.; Han, T.; Wu, Y.B.; Zhang, Q.Y.; Zhang, H. Inhibitory effects of morinda officinalis extract on bone loss in ovariectomized rats. Molecules, 2009, 14(6), 2049-2061.
[http://dx.doi.org/10.3390/molecules14062049] [PMID: 19513005]
[10]
Li, Y.F.; Yuan, L.; Xu, Y.K.; Yang, M.; Zhao, Y.M.; Luo, Z.P. Antistress effect of oligosaccharides extracted from Morinda officinalis in mice and rats. Acta Pharmacol. Sin., 2001, 22(12), 1084-1088.
[PMID: 11749804]
[11]
Li, Y.F.; Liu, Y.Q.; Yang, M.; Wang, H.L.; Huang, W.C.; Zhao, Y.M.; Luo, Z.P. The cytoprotective effect of inulin-type hexasaccharide extracted from Morinda officinalis on PC12 cells against the lesion induced by corticosterone. Life Sci., 2004, 75(13), 1531-1538.
[http://dx.doi.org/10.1016/j.lfs.2004.02.029] [PMID: 15261759]
[12]
Chen, D.L.; Zhang, P.; Lin, L.; Zhang, H.M.; Liu, S.H. Effect of oligosaccharides from Morinda officinalis on β-amyloid-induced learning and memory dysfunction in rats. Chin. Pharmacol. Bull, 2013, 29, 273-276.
[http://dx.doi.org/10.3969/j.issn.1001-1978.2013.02.28]
[13]
Chen, D.; Yang, X.; Yang, J.; Lai, G.; Yong, T.; Tang, X.; Shuai, O.; Zhou, G.; Xie, Y.; Wu, Q. Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front. Aging Neurosci., 2017, 9, 403.
[http://dx.doi.org/10.3389/fnagi.2017.00403] [PMID: 29276488]
[14]
Abarikwu, S.O.; Onuah, C.L.; Singh, S.K. Plants in the management of male infertility. Andrologia, 2020, 52(3), e13509.
[http://dx.doi.org/10.1111/and.13509] [PMID: 31989693]
[15]
Wu, Z.Q.; Chen, D.L.; Lin, F.H.; Lin, L.; Shuai, O.; Wang, J.Y.; Qi, L.K.; Zhang, P. Effect of bajijiasu isolated from Morinda officinalis F. C. how on sexual function in male mice and its antioxidant protection of human sperm. J. Ethnopharmacol., 2015, 164, 283-292.
[http://dx.doi.org/10.1016/j.jep.2015.02.016] [PMID: 25686781]
[16]
Yang, X.; Hu, G.; Lv, L.; Liu, T.; Qi, L.; Huang, G.; You, D.; Zhao, J. Regulation of P-glycoprotein by Bajijiasu in vitro and in vivo by activating the Nrf2-mediated signalling pathway. Pharm. Biol., 2019, 57(1), 184-192.
[http://dx.doi.org/10.1080/13880209.2019.1582679] [PMID: 30929555]
[17]
Cai, B.; Cui, C.B.; Chen, Y.H. Evaluation of antidepressant effect of bajitian, a traditional chinese medicine from the roots of Morinda officinalis. How, in mouse and rat models. Pharm. J. Chin. PLA, 2005, 21, 321-325.
[18]
Li, X.J.; Xu, K.; Shi, Y.Y.; Xie, Y. Clinical trial of bajitian oligosaccharide capsules in the treatment of depression. Chin. J. Clin. Pharm., 2017, 33, 216-221.
[19]
Hong, G.; Zhou, L.; Shi, X.; He, W.; Wang, H.; Wei, Q.; Chen, P.; Qi, L.; Tickner, J.; Lin, L.; Xu, J. Bajijiasu abrogates osteoclast differentiation via the suppression of RANKL signaling pathways through NF-κB and NFAT. Int. J. Mol. Sci., 2017, 18(1), 203.
[http://dx.doi.org/10.3390/ijms18010203] [PMID: 28106828]
[20]
Zhang, J.; Xin, H.; Xu, Y.; Shen, Y.; He, Y.Q. Hsien-Yeh; Lin, B.; Song, H.; Juan-Liu; Yang, H.; Qin, L.; Zhang, Q.; Du, J. Morinda officinalis How. - A comprehensive review of traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol., 2018, 213, 230-255.
[http://dx.doi.org/10.1016/j.jep.2017.10.028] [PMID: 29126988]
[21]
Zhang, Z.; Zhang, Q.; Yang, H.; Liu, W.; Zhang, N.; Qin, L.; Xin, H. Monotropein isolated from the roots of Morinda officinalis increases osteoblastic bone formation and prevents bone loss in ovariectomized mice. Fitoterapia, 2016, 110, 166-172.
[http://dx.doi.org/10.1016/j.fitote.2016.03.013] [PMID: 26996879]
[22]
Chen, D.L.; Zhang, P.; Lin, L.; Zhang, H.M.; Deng, S.D.; Wu, Z.Q.; Ou, S.; Liu, S.H.; Wang, J.Y. Protective effects of bajijiasu in a rat model of Aβ25–35-induced neurotoxicity. J. Ethnopharmacol., 2014, 154, 206-217.
[23]
Zou, Z.J.; Xie, Y.Y.; Gong, M.J.; Han, B.; Wang, S.M.; Liang, S.W. Urine metabonomic study of intervention effects of Morinda officinalis how. on ‘kidney-yang deficiency syndrome’. Yao Xue Xue Bao, 2013, 48(11), 1733-1737.
[PMID: 24475714]
[24]
Cai, H.; Wang, Y.; He, J.; Cai, T.; Wu, J.; Fang, J.; Zhang, R.; Guo, Z.; Guan, L.; Zhan, Q.; Lin, L.; Xiao, Y.; Pan, H.; Wang, Q. Neuroprotective effects of bajijiasu against cognitive impairment induced by amyloid-β in APP/PS1 mice. Oncotarget, 2017, 8(54), 92621-92634.
[http://dx.doi.org/10.18632/oncotarget.21515] [PMID: 29190943]
[25]
Du, H.; Xiao, G.; Xue, Z.; Li, Z.; He, S.; Du, X.; Zhou, Z.; Cao, L.; Wang, Y.; Yang, J.; Wang, X.; Zhu, Y. QiShenYiQi ameliorates salt-induced hypertensive nephropathy by balancing ADRA1D and SIK1 expression in Dahl salt-sensitive rats. Biomed. Pharmacother., 2021, 141, 111941.
[http://dx.doi.org/10.1016/j.biopha.2021.111941] [PMID: 34328102]
[26]
Yan, D.; Yue, B.; Qian, M.; Zhao, L.; Zhang, Z.; Qian, H.; Yan, S.; Qian, Y.; Fang, Z. JYYS granule mitigates renal injury in clinic and in spontaneously hypertensive rats by inhibiting NF-κ B signaling-mediated microinflammation. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/8472963] [PMID: 30598687]
[27]
Qian, L.; Ren, S.; Xu, Z. Zheng, Y Qian Yang Yu Yin Granule improves renal injury of hypertension by regulating metabolic reprogramming mediated by HIF-1α/PKM2 positive feedback loop. Front. Pharmacol., 2021, 12.
[http://dx.doi.org/10.3389/fphar.2021.667433]
[28]
Achari, R.; Laddu, A. Terazosin: A new alpha adrenoceptor blocking drug. J. Clin. Pharmacol., 1992, 32(6), 520-523.
[http://dx.doi.org/10.1177/009127009203200605] [PMID: 1353083]
[29]
Papadopoulos, D.P.; Papademetriou, V. Metoprolol succinate combination in the treatment of hypertension. Angiology, 2009, 60(5), 608-613.
[http://dx.doi.org/10.1177/0003319708326450] [PMID: 19033265]
[30]
Miyagishi, A.; Nakahara, H.; Hara, Y. Adrenoceptor blocking effects of arotinolol, a new combined alpha- and beta-adrenoceptor blocking agent. Arch. Int. Pharmacodyn. Ther., 1984, 271(2), 249-262.
[PMID: 6210068]
[31]
Elliott, W.J.; Bistrika, E.A. Perindopril arginine and amlodipine besylate for hypertension: A safety evaluation. Expert Opin. Drug Saf., 2018, 17(2), 207-216.
[http://dx.doi.org/10.1080/14740338.2018.1397129] [PMID: 29065722]
[32]
Ram, C.V.S.; Ram, S. Olmesartan medoxomil, amlodipine besylate and hydrochlorothiazide triple combination for hypertension. Expert Rev. Cardiovasc. Ther., 2011, 9(1), 9-19.
[http://dx.doi.org/10.1586/erc.10.163] [PMID: 21166525]
[33]
Staessen, J.; Fagard, R.; Lijnen, P.; Amery, A. Captopril in the treatment of hypertension. Acta Clin. Belg., 1982, 37(3), 164-184.
[http://dx.doi.org/10.1080/22953337.1982.11718860] [PMID: 6214916]
[34]
Weng, H.C.; Lu, X.Y.; Xu, Y.P.; Wang, Y.H.; Wang, D.; Feng, Y.L.; Chi, Z.; Yan, X.Q.; Lu, C.S.; Wang, H.W. Fibroblast growth factor 21 attenuates salt-sensitive hypertension-induced nephropathy through anti-inflammation and anti-oxidation mechanism. Mol. Med., 2021, 27(1), 147.
[http://dx.doi.org/10.1186/s10020-021-00408-x] [PMID: 34773993]
[35]
Chang, A.S.; Hathaway, C.K.; Smithies, O.; Kakoki, M. Transforming growth factor-β1 and diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2016, 310(8), F689-F696.
[http://dx.doi.org/10.1152/ajprenal.00502.2015] [PMID: 26719364]
[36]
Vallée. Alexandre Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front. Immunol., 2018, 13, 745.
[http://dx.doi.org/10.3389/fimmu.2018.00745]
[37]
Gill, B.S.; Mehra, R. Navgeet; Kumar, S. Vitex negundo and its medicinal value. Mol. Biol. Rep., 2018, 45(6), 2925-2934.
[http://dx.doi.org/10.1007/s11033-018-4421-3] [PMID: 30311123]
[38]
Huang, J.; Tan, P.; Tan, B.; Bay, B. GST-pi expression correlates with oxidative stress and apoptosis in breast cancer. Oncol. Rep., 2004, 12(4), 921-925.
[http://dx.doi.org/10.3892/or.12.4.921] [PMID: 15375523]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy