Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Molecular Mechanisms of Sanguinarine in Cancer Prevention and Treatment

Author(s): Asmat Ullah*, Najeeb Ullah, Touseef Nawaz and Tariq Aziz*

Volume 23, Issue 7, 2023

Published on: 19 September, 2022

Page: [765 - 778] Pages: 14

DOI: 10.2174/1871520622666220831124321

Price: $65

Abstract

Historically, natural plant-derived drugs received a great impact of consideration in the treatment of several human-associated disorders. Cancer is a devastating disease and the second most cause of mortality. Sanguinarine (SANG), a naturally isolated plant alkaloidal agent, possesses chemo-preventive effects. Several studies have revealed that SANG impedes tumor metastasis and development by disrupting a wide range of cell signaling pathways and its molecular targets, such as BCL-2, MAPKs, Akt, NF-κB, ROS, and microRNAs (miRNAs). However, its low chemical stability and poor oral bioavailability remain key issues in its use as a medicinal molecule. A novel method (e.g., liposomes, nanoparticles, and micelles) and alternative analogs provide an exciting approach to alleviate these problems and broaden its pharmacokinetic profile. Cancer-specific miRNA expression is synchronized by SANG, which has also been uncertain. In this critical study, we review the utilization of SANG mimics and nano-technologies to improve its support in cancer. We focus on recently disclosed studies on SANG anti-cancer properties.

Keywords: Sanguinarine, cancer, natural agent, nanoparticle, molecular target, chemo-preventive effects.

Graphical Abstract
[1]
Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030.
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Lev-Ari, S.; Starr, A.; Katzburg, S.; Berkovich, L.; Rimmon, A.; Ben-Yosef, R.; Vexler, A.; Ron, I.; Earon, G. Curcumin induces apoptosis and inhibits growth of orthotopic human non-small cell lung cancer xenografts. J. Nutr. Biochem., 2014, 25(8), 843-850.
[http://dx.doi.org/10.1016/j.jnutbio.2014.03.014] [PMID: 24835302]
[4]
Tsai, J.R.; Liu, P.L.; Chen, Y.H.; Chou, S.H.; Cheng, Y.J.; Hwang, J.J.; Chong, I.W. Curcumin inhibits non-small cell lung cancer cells metastasis through the adiponectin/NF-κb/MMPs signaling pathway. PLoS One, 2015, 10(12), e0144462.
[http://dx.doi.org/10.1371/journal.pone.0144462] [PMID: 26656720]
[5]
Baharuddin, P.; Satar, N.; Fakiruddin, K.S.; Zakaria, N.; Lim, M.N.; Yusoff, N.M.; Zakaria, Z.; Yahaya, B.H. Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell lines. Oncol. Rep., 2016, 35(1), 13-25.
[http://dx.doi.org/10.3892/or.2015.4371] [PMID: 26531053]
[6]
Eren, D.; Betul, Y.M. Revealing the effect of 6-gingerol, 6-shogaol and curcumin on mPGES-1, GSK-3β and β-catenin pathway in A549 cell line. Chem. Biol. Interact., 2016, 258, 257-265.
[http://dx.doi.org/10.1016/j.cbi.2016.09.012] [PMID: 27645308]
[7]
Razali, R.A.; Lokanathan, Y.; Yazid, M.D.; Ansari, A.S.; Saim, A.B.; Hj Idrus, R.B. Modulation of epithelial to mesenchymal transition signaling pathways by Olea Europaea and its active compounds. Int. J. Mol. Sci., 2019, 20(14), 3492.
[http://dx.doi.org/10.3390/ijms20143492] [PMID: 31315241]
[8]
Duan, X.; Zhu, Y.; Cui, Y.; Yang, Z.; Zhou, S.; Han, Y.; Yu, D.; Xiao, N.; Cao, X.; Li, Y.; Liu, S.; Wang, Z.; Zhang, W.; Feng, L.; Zhang, K.; Shou, J.; Liu, Z.; Xu, S. Circulating tumor cells in the pulmonary vein increase significantly after lobectomy: A prospective observational study. Thorac. Cancer, 2019, 10(2), 163-169.
[http://dx.doi.org/10.1111/1759-7714.12925] [PMID: 30511800]
[9]
Ou, H.; Huang, Y.; Xiang, L.; Chen, Z.; Fang, Y.; Lin, Y.; Cui, Z.; Yu, S.; Li, X.; Yang, D. Circulating tumor cell phenotype indicates poor survival and recurrence after surgery for hepatocellular carcinoma. Dig. Dis. Sci., 2018, 63(9), 2373-2380.
[http://dx.doi.org/10.1007/s10620-018-5124-2] [PMID: 29926241]
[10]
Brown, D.C.; Purushotham, A.D.; Birnie, G.D.; George, W.D. Detection of intraoperative tumor cell dissemination in patients with breast cancer by use of reverse transcription and polymerase chain reaction. Surgery, 1995, 117(1), 96-101.
[http://dx.doi.org/10.1016/S0039-6060(05)80235-1] [PMID: 7809843]
[11]
Peach, G.; Kim, C.; Zacharakis, E.; Purkayastha, S.; Ziprin, P. Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: A systematic review. Br. J. Cancer, 2010, 102(9), 1327-1334.
[http://dx.doi.org/10.1038/sj.bjc.6605651] [PMID: 20389297]
[12]
Zhang, Q.; Shan, F.; Li, Z.; Gao, J.; Li, Y.; Shen, L.; Ji, J.; Lu, M. A prospective study on the changes and clinical significance of pre-operative and post-operative circulating tumor cells in resectable gastric cancer. J. Transl. Med., 2018, 16(1), 171.
[http://dx.doi.org/10.1186/s12967-018-1544-1] [PMID: 29925382]
[13]
Endo, H.; Inoue, M. Dormancy in cancer. Cancer Sci., 2019, 110(2), 474-480.
[http://dx.doi.org/10.1111/cas.13917] [PMID: 30575231]
[14]
Krall, J.A.; Reinhardt, F.; Mercury, O.A.; Pattabiraman, D.R.; Brooks, M.W.; Dougan, M.; Lambert, A.W.; Bierie, B.; Ploegh, H.L.; Dougan, S.K.; Weinberg, R.A. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl. Med., 2018, 10(436), eaan3464.
[http://dx.doi.org/10.1126/scitranslmed.aan3464] [PMID: 29643230]
[15]
Tunc, D.; Dere, E.; Karakas, D.; Cevatemre, B.; Yilmaz, V.T.; Ulukaya, E. Cytotoxic and apoptotic effects of the combination of palladium (II) 5,5-diethylbarbiturate complex with bis(2-pyridylmethyl)amine and curcumin on non small lung cancer cell lines. Bioorg. Med. Chem., 2017, 25(5), 1717-1723.
[http://dx.doi.org/10.1016/j.bmc.2017.01.043] [PMID: 28187956]
[16]
Tung, C.L.; Jian, Y.J.; Chen, J.C.; Wang, T.J.; Chen, W.C.; Zheng, H.Y.; Chang, P.Y.; Liao, K.S.; Lin, Y.W. Curcumin downregulates p38 MAPK-dependent X-ray repair cross-complement group 1 (XRCC1) expression to enhance cisplatin-induced cytotoxicity in human lung cancer cells. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(6), 657-666.
[http://dx.doi.org/10.1007/s00210-016-1235-5] [PMID: 27026405]
[17]
Gezici, S.; Şekeroğlu, N. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anticancer. Agents Med. Chem., 2019, 19(1), 101-111.
[http://dx.doi.org/10.2174/1871520619666181224121004] [PMID: 30582485]
[18]
Almeer, R.S.; Aref, A.M.; Hussein, R.A.; Othman, M.S.; Abdel Moneim, A.E. Antitumor potential of berberine and cinnamic acid against solid ehrlich carcinoma in mice. Anticancer. Agents Med. Chem., 2019, 19(3), 356-364.
[http://dx.doi.org/10.2174/1871520618666181116162441] [PMID: 30451117]
[19]
Luo, X.; Chen, B.; Yao, S. Rapid determination of protopine, allocryptopine, sanguinarine and chelerythrine in fruits of Macleaya cordata by Microwave-assisted solvent extraction and HPLC-ESI/MS. Phytochem. Anal., 2006, 17(6), 431-438.
[http://dx.doi.org/10.1002/pca.945] [PMID: 17144252]
[20]
Beuria, T.K.; Santra, M.K.; Panda, D. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry, 2005, 44(50), 16584-16593.
[http://dx.doi.org/10.1021/bi050767+] [PMID: 16342949]
[21]
Mukhopadhyay, I.; Gomes, P.; Aranake, S.; Shetty, M.; Karnik, P.; Damle, M.; Kuruganti, S.; Thorat, S.; Khairatkar-Joshi, N. Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J. Recept. Signal Transduct. Res., 2011, 31(5), 350-358.
[http://dx.doi.org/10.3109/10799893.2011.602413] [PMID: 21848366]
[22]
Balestrini, L.; Di Donfrancesco, A.; Rossi, L.; Marracci, S.; Isolani, M.E.; Bianucci, A.M.; Batistoni, R. The natural compound sanguinarine perturbs the regenerative capabilities of planarians. Int. J. Dev. Biol., 2017, 61(1-2), 43-52.
[http://dx.doi.org/10.1387/ijdb.160169rb] [PMID: 28287246]
[23]
Yao, J.Y.; Shen, J.Y.; Li, X.L.; Xu, Y.; Hao, G.J.; Pan, X.Y.; Wang, G.X.; Yin, W.L. Effect of sanguinarine from the leaves of Macleaya cordata against Ichthyophthirius multifiliis in grass carp (Ctenopharyngodon idella). Parasitol. Res., 2010, 107(5), 1035-1042.
[http://dx.doi.org/10.1007/s00436-010-1966-z] [PMID: 20625767]
[24]
Li, P.; Wang, Y.X.; Yang, G.; Zheng, Z.C.; Yu, C. Sanguinarine attenuates neuropathic pain in a rat model of chronic constriction injury. BioMed Res. Int., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/3689829] [PMID: 34409102]
[25]
Shu, D.; Zhu, Y.; Lu, M.; He, A.D.; Chen, J.B.; Ye, D.S.; Liu, Y.; Zeng, X.B.; Ma, R.; Ming, Z.Y. Sanguinarine attenuates collagen-induced platelet activation and thrombus formation. Biomedicines, 2021, 9(5), 444.
[http://dx.doi.org/10.3390/biomedicines9050444] [PMID: 33919019]
[26]
Hossain, M.; Khan, A.Y.; Suresh Kumar, G. Interaction of the anticancer plant alkaloid sanguinarine with bovine serum albumin. PLoS One, 2011, 6(4), e18333.
[http://dx.doi.org/10.1371/journal.pone.0018333] [PMID: 21494677]
[27]
Li, H.; Zhai, Z.; Liu, G.; Tang, T.; Lin, Z.; Zheng, M.; Qin, A.; Dai, K. Sanguinarine inhibits osteoclast formation and bone resorption via suppressing RANKL-induced activation of NF-κB and ERK signaling pathways. Biochem. Biophys. Res. Commun., 2013, 430(3), 951-956.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.051] [PMID: 23261473]
[28]
Zhang, Y.; Huang, W.R. Sanguinarine induces apoptosis of human lens epithelial cells by increasing reactive oxygen species via the MAPK signaling pathway. Mol. Med. Rep., 2019, 19(5), 4449-4456.
[http://dx.doi.org/10.3892/mmr.2019.10087] [PMID: 30942394]
[29]
Vrba, J. Dvořák, Z.; Ulrichová, J.; Modrianský, M. Conventional protein kinase C isoenzymes undergo dephosphorylation in neutrophil-like HL-60 cells treated by chelerythrine or sanguinarine. Cell Biol. Toxicol., 2008, 24(1), 39-53.
[http://dx.doi.org/10.1007/s10565-007-9014-1] [PMID: 17610032]
[30]
Zhang, S.; Leng, T.; Zhang, Q.; Zhao, Q.; Nie, X.; Yang, L. Sanguinarine inhibits epithelial ovarian cancer development via regulating long non-coding RNA CASC2-EIF4A3 axis and/or inhibiting NF-κB signaling or PI3K/AKT/mTOR pathway. Biomed. Pharmacother., 2018, 102, 302-308.
[http://dx.doi.org/10.1016/j.biopha.2018.03.071] [PMID: 29571014]
[31]
Guan, F.; Ding, Y.; Zhang, Y.; Zhou, Y.; Li, M.; Wang, C. Curcumin suppresses proliferation and migration of MDA-MB-231 breast cancer cells through autophagy-dependent Akt degradation. PLoS One, 2016, 11(1), e0146553.
[http://dx.doi.org/10.1371/journal.pone.0146553] [PMID: 26752181]
[32]
Tomeh, M.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1033.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[33]
Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300.
[http://dx.doi.org/10.21037/tlcr.2016.06.07] [PMID: 27413711]
[34]
Rachakonda, G.; Vu, T.; Jin, L.; Samanta, D.; Datta, P.K. Role of TGF-β-induced Claudin-4 expression through c-Jun signaling in non-small cell lung cancer. Cell. Signal., 2016, 28(10), 1537-1544.
[http://dx.doi.org/10.1016/j.cellsig.2016.07.006] [PMID: 27424491]
[35]
Park, S.Y.; Jin, M.L.; Kim, Y.H.; Lee, S.J.; Park, G. Sanguinarine inhibits invasiveness and the MMP-9 and COX-2 expression in TPA-induced breast cancer cells by inducing HO-1 expression. Oncol. Rep., 2014, 31(1), 497-504.
[http://dx.doi.org/10.3892/or.2013.2843] [PMID: 24220687]
[36]
Han, M.H.; Kim, G.Y.; Yoo, Y.H.; Choi, Y.H. Sanguinarine induces apoptosis in human colorectal cancer HCT-116 cells through ROS-mediated Egr-1 activation and mitochondrial dysfunction. Toxicol. Lett., 2013, 220(2), 157-166.
[http://dx.doi.org/10.1016/j.toxlet.2013.04.020] [PMID: 23660334]
[37]
Kuttikrishnan, S.; Siveen, K.S.; Prabhu, K.S.; Khan, A.Q.; Akhtar, S.; Mateo, J.M.; Merhi, M.; Taha, R.; Omri, H.E.; Mraiche, F.; Dermime, S.; Uddin, S. Sanguinarine suppresses growth and induces apoptosis in childhood acute lymphoblastic leukemia. Leuk. Lymphoma, 2019, 60(3), 782-794.
[http://dx.doi.org/10.1080/10428194.2018.1494270] [PMID: 30187808]
[38]
Khan, A.Q.; Mohamed, E.A.N.; Hakeem, I.; Nazeer, A.; Kuttikrishnan, S.; Prabhu, K.S.; Siveen, K.S.; Nawaz, Z.; Ahmad, A.; Zayed, H.; Uddin, S. Sanguinarine induces apoptosis in papillary thyroid cancer cells via generation of reactive oxygen species. Molecules, 2020, 25(5), 1229.
[http://dx.doi.org/10.3390/molecules25051229] [PMID: 32182833]
[39]
Tsukamoto, H.; Kondo, S.; Mukudai, Y.; Nagumo, T.; Yasuda, A.; Kurihara, Y.; Kamatani, T.; Shintani, S. Evaluation of anticancer activities of benzo[c]phenanthridine alkaloid sanguinarine in oral squamous cell carcinoma cell line. Anticancer Res., 2011, 31(9), 2841-2846.
[PMID: 21868527]
[40]
Saeed, M.E.M.; Mahmoud, N.; Sugimoto, Y.; Efferth, T.; Abdel-Aziz, H. Molecular determinants of sensitivity or resistance of cancer cells toward sanguinarine. Front. Pharmacol., 2018, 9, 136.
[http://dx.doi.org/10.3389/fphar.2018.00136] [PMID: 29535628]
[41]
Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Molecular targets and anticancer potential of sanguinarine-A benzophenanthridine alkaloid. Phytomedicine, 2017, 34, 143-153.
[http://dx.doi.org/10.1016/j.phymed.2017.08.006] [PMID: 28899497]
[42]
Jiang, L.; Wang, X.; Wang, Y.; Xu, F.; Zhang, Z.; Ding, K.; Lu, X. The synthesis and biological evaluation of sanguinarine derivatives as anti-non-small cell lung cancer agents. RSC Med. Chem., 2020, 11(2), 293-296.
[http://dx.doi.org/10.1039/C9MD00494G] [PMID: 33479636]
[43]
Ke, X.; Bei, J.H.; Zhang, Y.; Li, J. In vitro and in vivo evaluation of sanguinarine liposomes prepared by a remote loading method with three different ammonium salts. Pharmazie, 2011, 66(4), 258-263.
[PMID: 21612152]
[44]
Huy, T.Q.; Huyen, P.T.M.; Le, A.T.; Tonezzer, M. Recent advances of silver nanoparticles in cancer diagnosis and treatment. Anticancer. Agents Med. Chem., 2020, 20(11), 1276-1287.
[http://dx.doi.org/10.2174/1871520619666190710121727] [PMID: 31291881]
[45]
Chen, H.W.; Lee, J.Y.; Huang, J.Y.; Wang, C.C.; Chen, W.J.; Su, S.F.; Huang, C.W.; Ho, C.C.; Chen, J.J.W.; Tsai, M.F.; Yu, S.L.; Yang, P.C. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res., 2008, 68(18), 7428-7438.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6734] [PMID: 18794131]
[46]
Mirzaei, H.; Sahebkar, A.; Sichani, L.S.; Moridikia, A.; Nazari, S.; Sadri Nahand, J. salehi, H.; Stenvang, J.; Masoudifar, A.; Mirzaei, H.R.; Jaafari, M.R. Therapeutic application of multipotent stem cells. J. Cell. Physiol., 2018, 233(4), 2815-2823.
[http://dx.doi.org/10.1002/jcp.25990] [PMID: 28475219]
[47]
Achkar, I.W.; Mraiche, F.; Mohammad, R.M.; Uddin, S. Anticancer potential of sanguinarine for various human malignancies. Future Med. Chem., 2017, 9(9), 933-950.
[http://dx.doi.org/10.4155/fmc-2017-0041] [PMID: 28636454]
[48]
Croaker, A.; King, G.; Pyne, J.; Anoopkumar-Dukie, S.; Liu, L. Sanguinaria canadensis: Traditional medicine, phytochemical composition, biological activities and current uses. Int. J. Mol. Sci., 2016, 17(9), 1414.
[http://dx.doi.org/10.3390/ijms17091414] [PMID: 27618894]
[49]
Jeng, J.H.; Wu, H.L.; Lin, B.R.; Lan, W.H.; Chang, H.H.; Ho, Y.S.; Lee, P.H.; Wang, Y.J.; Wang, J.S.; Chen, Y.J.; Chang, M.C. Antiplatelet effect of sanguinarine is correlated to calcium mobilization, thromboxane and cAMP production. Atherosclerosis, 2007, 191(2), 250-258.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.05.023] [PMID: 16797553]
[50]
Su, Q.; Fan, M.; Wang, J.; Ullah, A.; Ghauri, M.A.; Dai, B.; Zhan, Y.; Zhang, D.; Zhang, Y. Sanguinarine inhibits epithelial-mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma. Cell Death Dis., 2019, 10(12), 939.
[http://dx.doi.org/10.1038/s41419-019-2173-1] [PMID: 31819036]
[51]
Su, Q.; Wang, J.; Wu, Q.; Ullah, A.; Ghauri, M.A.; Sarwar, A.; Chen, L.; Liu, F.; Zhang, Y. Sanguinarine combats hypoxia-induced activation of EphB4 and HIF-1α pathways in breast cancer. Phytomedicine, 2021, 84, 153503.
[http://dx.doi.org/10.1016/j.phymed.2021.153503] [PMID: 33636580]
[52]
Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin. Cancer Biol., 2019, 59, 147-160.
[http://dx.doi.org/10.1016/j.semcancer.2019.05.012] [PMID: 31128298]
[53]
Zhang, B.; Wang, X.; Deng, J.; Zheng, H.; Liu, W.; Chen, S.; Tian, J.; Wang, F. p53-dependent upregulation of miR-16-2 by sanguinarine induces cell cycle arrest and apoptosis in hepatocellular carcinoma. Cancer Lett., 2019, 459, 50-58.
[http://dx.doi.org/10.1016/j.canlet.2019.05.042] [PMID: 31163195]
[54]
Su, Q.; Wang, J.; Liu, F.; Zhang, Y. Blocking Parkin/PINK1-mediated mitophagy sensitizes hepatocellular carcinoma cells to sanguinarine-induced mitochondrial apoptosis. Toxicol. In Vitro, 2020, 66, 104840.
[http://dx.doi.org/10.1016/j.tiv.2020.104840] [PMID: 32234456]
[55]
Sun, M.; Liu, C.; Nadiminty, N.; Lou, W.; Zhu, Y.; Yang, J.; Evans, C.P.; Zhou, Q.; Gao, A.C. Inhibition of Stat3 activation by sanguinarine suppresses prostate cancer cell growth and invasion. Prostate, 2012, 72(1), 82-89.
[http://dx.doi.org/10.1002/pros.21409] [PMID: 21538419]
[56]
Zhang, H.; Zhang, J.; Venkat, P.S.; Gu, C.; Meng, Y. Sanguinarine exhibits potent efficacy against cervical cancer cells through inhibiting the STAT3 pathway in vitro and in vivo. Cancer Manag. Res., 2019, 11, 7557-7566.
[http://dx.doi.org/10.2147/CMAR.S212744] [PMID: 31616177]
[57]
Akhtar, S.; Achkar, I.W.; Siveen, K.S.; Kuttikrishnan, S.; Prabhu, K.S.; Khan, A.Q.; Ahmed, E.I.; Sahir, F.; Jerobin, J.; Raza, A.; Merhi, M.; Elsabah, H.M.; Taha, R.; Omri, H.E.; Zayed, H.; Dermime, S.; Steinhoff, M.; Uddin, S. Sanguinarine induces apoptosis pathway in multiple myeloma cell lines via inhibition of the JaK2/STAT3 signaling. Front. Oncol., 2019, 9, 285.
[http://dx.doi.org/10.3389/fonc.2019.00285] [PMID: 31058086]
[58]
Gu, S.; Yang, X.C.; Xiang, X.Y.; Wu, Y.; Zhang, Y.; Yan, X.Y.; Xue, Y.N.; Sun, L.K.; Shao, G.G. Sanguinarine-induced apoptosis in lung adenocarcinoma cells is dependent on reactive oxygen species production and endoplasmic reticulum stress. Oncol. Rep., 2015, 34(2), 913-919.
[http://dx.doi.org/10.3892/or.2015.4054] [PMID: 26081590]
[59]
Sun, M.; Lou, W.; Chun, J.Y.; Cho, D.S.; Nadiminty, N.; Evans, C.P.; Chen, J.; Yue, J.; Zhou, Q.; Gao, A.C. Sanguinarine suppresses prostate tumor growth and inhibits survivin expression. Genes Cancer, 2010, 1(3), 283-292.
[http://dx.doi.org/10.1177/1947601910368849] [PMID: 21318089]
[60]
Fu, C.; Guan, G.; Wang, H. The anticancer effect of sanguinarine: A review. Curr. Pharm. Des., 2018, 24(24), 2760-2764.
[http://dx.doi.org/10.2174/1381612824666180829100601] [PMID: 30156147]
[61]
Fan, F.; Zou, Y.; Wang, Y.; Zhang, P.; Wang, X.; Dart, A.M.; Zou, Y. Sanguinarine reverses pulmonary vascular remolding of hypoxia-induced PH via survivin/HIF1α-attenuating Kv channels. Front. Pharmacol., 2021, 12, 768513.
[http://dx.doi.org/10.3389/fphar.2021.768513]
[62]
Kalogris, C.; Garulli, C.; Pietrella, L.; Gambini, V.; Pucciarelli, S.; Lucci, C.; Tilio, M.; Zabaleta, M.E.; Bartolacci, C.; Andreani, C.; Giangrossi, M.; Iezzi, M.; Belletti, B.; Marchini, C.; Amici, A. Sanguinarine suppresses basal-like breast cancer growth through dihydrofolate reductase inhibition. Biochem. Pharmacol., 2014, 90(3), 226-234.
[http://dx.doi.org/10.1016/j.bcp.2014.05.014] [PMID: 24875448]
[63]
Lee, T.K.; Park, C.; Jeong, S.J.; Jeong, M.J.; Kim, G.Y.; Kim, W.J.; Choi, Y.H. Sanguinarine induces apoptosis of human oral squamous cell carcinoma KB cells via inactivation of the PI3K/Akt signaling pathway. Drug Dev. Res., 2016, 77(5), 227-240.
[http://dx.doi.org/10.1002/ddr.21315] [PMID: 27363951]
[64]
Jang, B.C.; Park, J.G.; Song, D.K.; Baek, W.K.; Yoo, S.K.; Jung, K.H.; Park, G.Y.; Lee, T.Y.; Suh, S.I. Sanguinarine induces apoptosis in A549 human lung cancer cells primarily via cellular glutathione depletion. Toxicol. In Vitro, 2009, 23(2), 281-287.
[http://dx.doi.org/10.1016/j.tiv.2008.12.013] [PMID: 19135517]
[65]
Xu, J.Y.; Meng, Q.H.; Chong, Y.; Jiao, Y.; Zhao, L.; Rosen, E.M.; Fan, S. Sanguinarine inhibits growth of human cervical cancer cells through the induction of apoptosis. Oncol. Rep., 2012, 28(6), 2264-2270.
[http://dx.doi.org/10.3892/or.2012.2024] [PMID: 22965493]
[66]
Wang, J.; Su, Q.; Wu, Q.; Chen, K.; Ullah, A.; Ghauri, M.A.; Zhang, Y. Sanguinarine impairs lysosomal function and induces ROS-dependent mitophagy and apoptosis in human hepatocellular carcinoma cells. Arch. Pharm. Res., 2021, 44(11), 1025-1036.
[http://dx.doi.org/10.1007/s12272-021-01356-0] [PMID: 34751932]
[67]
Su, Q.; Wang, J.; Fan, M.; Ghauri, M.A.; Ullah, A.; Wang, B.; Dai, B.; Zhan, Y.; Zhang, D.; Zhang, Y. Sanguinarine disrupts the colocalization and interaction of HIF‐1α with tyrosine and serine phosphorylated‐STAT3 in breast cancer. J. Cell. Mol. Med., 2020, 24(6), 3756-3761.
[http://dx.doi.org/10.1111/jcmm.15056] [PMID: 32065498]
[68]
Yun, B.D.; Son, S.W.; Choi, S.Y.; Kuh, H.J.; Oh, T.J.; Park, J.K. Anti-cancer activity of phytochemicals targeting hypoxia-inducible factor-1 alpha. Int. J. Mol. Sci., 2021, 22(18), 9819.
[http://dx.doi.org/10.3390/ijms22189819] [PMID: 34575983]
[69]
Von Hoff, D.D.; LoRusso, P.M.; Rudin, C.M.; Reddy, J.C.; Yauch, R.L.; Tibes, R.; Weiss, G.J.; Borad, M.J.; Hann, C.L.; Brahmer, J.R.; Mackey, H.M.; Lum, B.L.; Darbonne, W.C.; Marsters, J.C., Jr; de Sauvage, F.J.; Low, J.A. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med., 2009, 361(12), 1164-1172.
[http://dx.doi.org/10.1056/NEJMoa0905360] [PMID: 19726763]
[70]
Ma, Y.; Yu, W.; Shrivastava, A.; Alemi, F.; Lankachandra, K.; Srivastava, R.K.; Shankar, S. Sanguinarine inhibits pancreatic cancer stem cell characteristics by inducing oxidative stress and suppressing sonic Hedgehog-Gli-Nanog pathway. Carcinogenesis, 2017, 38(10), 1047-1056.
[http://dx.doi.org/10.1093/carcin/bgx070] [PMID: 28968696]
[71]
Ghauri, M.A.; Su, Q.; Ullah, A.; Wang, J.; Sarwar, A.; Wu, Q.; Zhang, D.; Zhang, Y. Sanguinarine impedes metastasis and causes inversion of epithelial to mesenchymal transition in breast cancer. Phytomedicine, 2021, 84, 153500.
[http://dx.doi.org/10.1016/j.phymed.2021.153500] [PMID: 33626427]
[72]
Zhu, M.; Gong, Z.; Wu, Q.; Shi, X.; Su, Q.; Zhang, Y. Sanguinarine suppresses migration and metastasis in colorectal carcinoma associated with the inversion of EMT through the Wnt/β‐catenin signaling. Clin. Transl. Med., 2020, 10(1), 1-12.
[http://dx.doi.org/10.1002/ctm2.1] [PMID: 32508048]
[73]
Hałas-Wiśniewska, M.; Zielińska, W.; Izdebska, M.; Grzanka, A. The synergistic effect of piperlongumine and sanguinarine on the non-small lung cancer. Molecules, 2020, 25(13), 3045.
[http://dx.doi.org/10.3390/molecules25133045] [PMID: 32635287]
[74]
Wei, G.; Xu, Y.; Peng, T.; Yan, J.; Wang, Z.; Sun, Z. Sanguinarine exhibits antitumor activity via up-regulation of Fas-associated factor 1 in non-small cell lung cancer. J. Biochem. Mol. Toxicol., 2017, 31(8), e21914.
[http://dx.doi.org/10.1002/jbt.21914] [PMID: 28296008]
[75]
Xu, J.Y.; Meng, Q.H.; Chong, Y.; Jiao, Y.; Zhao, L.; Rosen, E.M.; Fan, S. Sanguinarine is a novel VEGF inhibitor involved in the suppression of angiogenesis and cell migration. Mol. Clin. Oncol., 2013, 1(2), 331-336.
[http://dx.doi.org/10.3892/mco.2012.41] [PMID: 24649171]
[76]
Zhang, R.; Wang, G.; Zhang, P.F.; Zhang, J.; Huang, Y.X.; Lu, Y.M.; Da, W.; Sun, Q.; Zhu, J.S. Sanguinarine inhibits growth and invasion of gastric cancer cells via regulation of the DUSP4/ERK pathway. J. Cell. Mol. Med., 2017, 21(6), 1117-1127.
[http://dx.doi.org/10.1111/jcmm.13043] [PMID: 27957827]
[77]
Pica, F.; Balestrieri, E.; Serafino, A.; Sorrentino, R.; Gaziano, R.; Moroni, G.; Moroni, N.; Palmieri, G.; Mattei, M.; Garaci, E.; Sinibaldi-Vallebona, P. Antitumor effects of the benzophenanthridine alkaloid sanguinarine in a rat syngeneic model of colorectal cancer. Anticancer Drugs, 2012, 23(1), 32-42.
[http://dx.doi.org/10.1097/CAD.0b013e32834a0c8e] [PMID: 21849887]
[78]
Rosen, J.; Landriscina, A.; Adler, B.L.; Krauz, A.; Doerner, J.; Navati, M.; Musaev, T.; Gravekamp, C.; Nosanchuk, J.; Friedman, A.J. Characterization and assessment of nanoencapsulated sanguinarine chloride as a potential treatment for melanoma. J. Drugs Dermatol., 2015, 14(5), 453-458.
[PMID: 25942662]
[79]
Wu, S.; Xu, H.; Wu, X.; Liu, P.; Shi, Y.; Pang, P.; Deng, L.; Zhou, G.; Chen, X. Dihydrosanguinarine suppresses pancreatic cancer cells via regulation of mut-p53/WT-p53 and the Ras/Raf/Mek/Erk pathway. Phytomedicine, 2019, 59, 152895.
[http://dx.doi.org/10.1016/j.phymed.2019.152895] [PMID: 30913453]
[80]
Shi, X.; Zhu, M.; Gong, Z.; Yang, T.; Yu, R.; Wang, J.; Zhang, Y. Homoharringtonine suppresses LoVo cell growth by inhibiting EphB4 and the PI3K/AKT and MAPK/EKR1/2 signaling pathways. Food Chem. Toxicol., 2020, 136, 110960.
[http://dx.doi.org/10.1016/j.fct.2019.110960] [PMID: 31726078]
[81]
Ullah, A.; Leong, S.W.; Wang, J.; Wu, Q.; Ghauri, M.A.; Sarwar, A.; Su, Q.; Zhang, Y. Cephalomannine inhibits hypoxia-induced cellular function via the suppression of APEX1/HIF-1α interaction in lung cancer. Cell Death Dis., 2021, 12(5), 490.
[http://dx.doi.org/10.1038/s41419-021-03771-z] [PMID: 33990544]
[82]
Li, Q.L.; Deng, A.J.; Ji, M.; Li, Z.H.; Chen, X.G.; Qin, H.L. Re-engineering and synthesis of cytotoxic 2,3:7,8-di(alkylenedioxy)-extended analogs of quaternary sanguinarine chloride. J. Asian Nat. Prod. Res., 2018, 20(12), 1137-1153.
[http://dx.doi.org/10.1080/10286020.2018.1520705] [PMID: 30415574]
[83]
Cao, F.J.; Yang, R.; Lv, C.; Ma, Q.; Lei, M.; Geng, H.L.; Zhou, L. Pseudocyanides of sanguinarine and chelerythrine and their series of structurally simple analogues as new anticancer lead compounds: Cytotoxic activity, structure-activity relationship and apoptosis induction. Eur. J. Pharm. Sci., 2015, 67, 45-54.
[http://dx.doi.org/10.1016/j.ejps.2014.10.020] [PMID: 25444843]
[84]
Lu, Z.R.; Qiao, P. Drug delivery in cancer therapy, quo vadis? Mol. Pharm., 2018, 15(9), 3603-3616.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00037] [PMID: 29553749]
[85]
Mehra, C.; Gala, R.; Kakatkar, A.; Kumar, V.; Khurana, R.; Chatterjee, S.; Kumar, N.N.; Barooah, N.; Bhasikuttan, A.C.; Mohanty, J. Cooperative enhancement of antibacterial activity of sanguinarine drug through p -sulfonatocalix[6]arene functionalized silver nanoparticles. Chem. Commun. (Camb.), 2019, 55(95), 14275-14278.
[http://dx.doi.org/10.1039/C9CC07378G] [PMID: 31720595]
[86]
Li, W.; Li, H.; Yao, H.; Mu, Q.; Zhao, G.; Li, Y.; Hu, H.; Niu, X. Pharmacokinetic and anti-inflammatory effects of sanguinarine solid lipid nanoparticles. Inflammation, 2014, 37(2), 632-638.
[http://dx.doi.org/10.1007/s10753-013-9779-8] [PMID: 24272172]
[87]
Choi, J.; Raghavendran, H.R.B.; Sung, N.Y.; Kim, J.H.; Chun, B.S.; Ahn, D.H.; Choi, H.S.; Kang, K.W.; Lee, J.W. Effect of fucoidan on aspirin-induced stomach ulceration in rats. Chem. Biol. Interact., 2010, 183(1), 249-254.
[http://dx.doi.org/10.1016/j.cbi.2009.09.015] [PMID: 19788892]
[88]
Li, W.; Huang, H.; Niu, X.; Fan, T.; Mu, Q.; Li, H. Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice. Toxicol. Appl. Pharmacol., 2013, 272(1), 21-29.
[http://dx.doi.org/10.1016/j.taap.2013.05.035] [PMID: 23769714]
[89]
Choi, H.S.; Lim, J.Y.; Chun, H.J.; Lee, M.; Kim, E.S.; Keum, B.; Seo, Y.S.; Jeen, Y.T.; Um, S.H.; Lee, H.S.; Kim, C.D.; Ryu, H.S.; Sul, D. The effect of polaprezinc on gastric mucosal protection in rats with ethanol-induced gastric mucosal damage: Comparison study with rebamipide. Life Sci., 2013, 93(2-3), 69-77.
[http://dx.doi.org/10.1016/j.lfs.2013.05.019] [PMID: 23743168]
[90]
Sun, Q.; Li, W.; Li, H.; Wang, X.; Wang, Y.; Niu, X. Preparation, characterization and anti-ulcer efficacy of sanguinarine loaded solid lipid nanoparticles. Pharmacology, 2017, 100(1-2), 14-24.
[http://dx.doi.org/10.1159/000454882] [PMID: 28334726]
[91]
Li, Z.; Wang, B.; Zhang, Z.; Wang, B.; Xu, Q.; Mao, W.; Tian, J.; Yang, K.; Wang, F. Radionuclide imaging-guided chemo-radioisotope synergistic therapy using a 131I-labeled polydopamine multifunctional nanocarrier. Mol. Ther., 2018, 26(5), 1385-1393.
[http://dx.doi.org/10.1016/j.ymthe.2018.02.019] [PMID: 29567310]
[92]
Chanvorachote, P.; Pongrakhananon, V.; Wannachaiyasit, S.; Luanpitpong, S.; Rojanasakul, Y.; Nimmannit, U. Curcumin sensitizes lung cancer cells to cisplatin-induced apoptosis through superoxide anion-mediated Bcl-2 degradation. Cancer Invest., 2009, 27(6), 624-635.
[http://dx.doi.org/10.1080/07357900802653472] [PMID: 19283527]
[93]
Erfani-Moghadam, V.; Nomani, A.; Najafi, F.; Yazdani, Y.; Sadeghizadeh, M. Design and synthesis of a novel dendrosome and a pegylated PAMAM dendrimer nanocarrier to improve the anticancer effect of turmeric (Curcuma longa) curcumin. Mdrsjrns, 2014, 17, 63-77.
[94]
Ikeda, R.; Vermeulen, L.C.; Lau, E.; Jiang, Z.; Pomplun, M.; Kolesar, J.M. Establishment and characterization of irinotecan-resistant human non-small cell lung cancer A549 cells. Mol. Med. Rep., 2010, 3(6), 1031-1034.
[PMID: 21472350]
[95]
Lin, S.S.; Lai, K.C.; Hsu, S.C.; Yang, J.S.; Kuo, C.L.; Lin, J.P.; Ma, Y.S.; Wu, C.C.; Chung, J.G. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett., 2009, 285(2), 127-133.
[http://dx.doi.org/10.1016/j.canlet.2009.04.037] [PMID: 19477063]
[96]
Song, G.; Lu, H.; Chen, F.; Wang, Y.; Fan, W.; Shao, W.; Lu, H.; Lin, B. Tetrahydrocurcumin induced autophagy via suppression of PI3K/Akt/mTOR in non small cell lung carcinoma cells. Mol. Med. Rep., 2018, 17(4), 5964-5969.
[http://dx.doi.org/10.3892/mmr.2018.8600] [PMID: 29436654]
[97]
Pongrakhananon, V.; Nimmannit, U.; Luanpitpong, S.; Rojanasakul, Y.; Chanvorachote, P. Curcumin sensitizes non-small cell lung cancer cell anoikis through reactive oxygen species-mediated Bcl-2 downregulation. Apoptosis, 2010, 15(5), 574-585.
[http://dx.doi.org/10.1007/s10495-010-0461-4] [PMID: 20127174]
[98]
Chiang, T.; Wang, W.S.; Liu, H.C.; Yang, S.T.; Tang, N.Y.; Chung, J.G. Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro. Oncol. Rep., 2015, 34(4), 1853-1874.
[http://dx.doi.org/10.3892/or.2015.4159] [PMID: 26238775]
[99]
Huang, W.T.; Larsson, M.; Wang, Y.J.; Chiou, S.H.; Lin, H.Y.; Liu, D.M. Demethoxycurcumin-carrying chitosan-antibody core-shell nanoparticles with multitherapeutic efficacy toward malignant A549 lung tumor: From in vitro characterization to in vivo evaluation. Mol. Pharm., 2015, 12(4), 1242-1249.
[http://dx.doi.org/10.1021/mp500747w] [PMID: 25760774]
[100]
Ichiki, K.; Mitani, N.; Doki, Y.; Hara, H.; Misaki, T.; Saiki, I. Regulation of activator protein-1 activity in the mediastinal lymph node metastasis of lung cancer. Clin. Exp. Metastasis, 2000, 18(7), 539-545.
[http://dx.doi.org/10.1023/A:1011980313237] [PMID: 11688958]
[101]
Chang, A. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer, 2011, 71(1), 3-10.
[http://dx.doi.org/10.1016/j.lungcan.2010.08.022] [PMID: 20951465]
[102]
Lu, J.J.; Bao, J.L.; Chen, X.P.; Huang, M.; Wang, Y.T. Alkaloids isolated from natural herbs as the anticancer agents. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/485042] [PMID: 22988474]
[103]
Abratt, R.P.; Hart, G.J. 10-year update on chemotherapy for non-small cell lung cancer. Ann. Oncol., 2006, 17(Suppl. 5), v33-v36.
[http://dx.doi.org/10.1093/annonc/mdj947] [PMID: 16807460]
[104]
Berenbaum, M.C. What is synergy? Pharmacol. Rev., 1989, 41(2), 93-141.
[PMID: 2692037]
[105]
Greco, W.R.; Bravo, G.; Parsons, J.C. The search for synergy: A critical review from a response surface perspective. Pharmacol. Rev., 1995, 47(2), 331-385.
[PMID: 7568331]
[106]
Eid, S.Y.; El-Readi, M.Z.; Wink, M. Synergism of three-drug combinations of sanguinarine and other plant secondary metabolites with digitonin and doxorubicin in multi-drug resistant cancer cells. Phytomedicine, 2012, 19(14), 1288-1297.
[http://dx.doi.org/10.1016/j.phymed.2012.08.010] [PMID: 23146422]
[107]
Jash, C.; Payghan, P.V.; Ghoshal, N.; Suresh Kumar, G. Binding of the iminium and alkanolamine forms of sanguinarine to lysozyme: Spectroscopic analysis, thermodynamics, and molecular modeling studies. J. Phys. Chem. B, 2014, 118(46), 13077-13091.
[http://dx.doi.org/10.1021/jp5068704] [PMID: 25354369]
[108]
Gatti, L.; Cossa, G.; Tinelli, S.; Carenini, N.; Arrighetti, N.; Pennati, M.; Cominetti, D.; De Cesare, M.; Zunino, F.; Zaffaroni, N.; Perego, P. Improved apoptotic cell death in drug-resistant non-small-cell lung cancer cells by tumor necrosis factor-related apoptosis-inducing ligand-based treatment. J. Pharmacol. Exp. Ther., 2014, 348(3), 360-371.
[http://dx.doi.org/10.1124/jpet.113.210054] [PMID: 24345465]
[109]
Debiton, E.; Madelmont, J.C.; Legault, J.; Barthomeuf, C. Sanguinarine-induced apoptosis is associated with an early and severe cellular glutathione depletion. Cancer Chemother. Pharmacol., 2003, 51(6), 474-482.
[http://dx.doi.org/10.1007/s00280-003-0609-9] [PMID: 12700925]
[110]
Ulrichová, J. Dvořák, Z.; Vičar, J.; Lata, J.; Smržová, J.; Šedo, A.; Šimánek, V. Cytotoxicity of natural compounds in hepatocyte cell culture models. Toxicol. Lett., 2001, 125(1-3), 125-132.
[http://dx.doi.org/10.1016/S0378-4274(01)00430-1] [PMID: 11701231]
[111]
Sarkhosh-Inanlou, R.; Molaparast, M.; Mohammadzadeh, A.; Shafiei-Irannejad, V. Sanguinarine enhances cisplatin sensitivity via glutathione depletion in cisplatin‐resistant ovarian cancer (A2780) cells. Chem. Biol. Drug Des., 2020, 95(2), 215-223.
[http://dx.doi.org/10.1111/cbdd.13621] [PMID: 31512406]
[112]
Eid, S.Y.; El-Readi, M.Z.; Wink, M. Digitonin synergistically enhances the cytotoxicity of plant secondary metabolites in cancer cells. Phytomedicine, 2012, 19(14), 1307-1314.
[http://dx.doi.org/10.1016/j.phymed.2012.09.002] [PMID: 23062361]
[113]
Larsson, D.E.; Hassan, S.; Larsson, R.; Öberg, K.; Granberg, D. Combination analyses of anti-cancer drugs on human neuroendocrine tumor cell lines. Cancer Chemother. Pharmacol., 2009, 65(1), 5-12.
[http://dx.doi.org/10.1007/s00280-009-0997-6] [PMID: 19381631]
[114]
Selvi, B.R.; Pradhan, S.K.; Shandilya, J.; Das, C.; Sailaja, B.S.; Shankar, G.N.; Gadad, S.S.; Reddy, A.; Dasgupta, D.; Kundu, T.K. Sanguinarine interacts with chromatin, modulates epigenetic modifications, and transcription in the context of chromatin. Chem. Biol., 2009, 16(2), 203-216.
[http://dx.doi.org/10.1016/j.chembiol.2008.12.006] [PMID: 19246011]
[115]
Walterová, D.; Ulrichová, J.; Válka, I.; Vicar, J.; Vavrecková, C.; Táborská, E.; Harjrader, R.J.; Meyer, D.L.; Cerná, H.; Simánek, V. Benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine: Biological activities and dental care applications. Acta Univ. Palacki. Olomuc. Fac. Med., 1995, 139, 7-16.
[PMID: 8686560]
[116]
Chaturvedi, M.M.; Kumar, A.; Darnay, B.G.; Chainy, G.B.N.; Agarwal, S.; Aggarwal, B.B. Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-kappaB activation, IkappaBalpha phosphorylation, and degradation. J. Biol. Chem., 1997, 272(48), 30129-30134.
[http://dx.doi.org/10.1074/jbc.272.48.30129] [PMID: 9374492]
[117]
Vrba, J.; Doležel, P. Vičar, J.; Ulrichová, J. Cytotoxic activity of sanguinarine and dihydrosanguinarine in human promyelocytic leukemia HL-60 cells. Toxicol. In Vitro, 2009, 23(4), 580-588.
[http://dx.doi.org/10.1016/j.tiv.2009.01.016] [PMID: 19346183]
[118]
Gopalakrishna, R.; Chen, Z.H.; Gundimeda, U. Modifications of cysteine-rich regions in protein kinase C induced by oxidant tumor promoters and enzyme-specific inhibitors. Methods Enzymol., 1995, 252, 132-146.
[http://dx.doi.org/10.1016/0076-6879(95)52016-3] [PMID: 7476346]
[119]
Vogt, A.; Tamewitz, A.; Skoko, J.; Sikorski, R.P.; Giuliano, K.A.; Lazo, J.S. The benzo[c]phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogen-activated protein kinase phosphatase-1. J. Biol. Chem., 2005, 280(19), 19078-19086.
[http://dx.doi.org/10.1074/jbc.M501467200] [PMID: 15753082]
[120]
Boldescu, V.; Kacso, I.; Borodi, G.; Bratu, I.; Duca, G. Physicochemical characterization of sanguinarine-hydroxypropyl-β-cyclodextrin binary and ternary systems. J. Incl. Phenom. Macrocycl. Chem., 2008, 62(1-2), 143-148.
[http://dx.doi.org/10.1007/s10847-008-9449-x]
[121]
Hossain, M.; Kumar, G.S. DNA binding of benzophenanthridine compounds sanguinarine versus ethidium: Comparative binding and thermodynamic profile of intercalation. J. Chem. Thermodyn., 2009, 41(6), 764-774.
[http://dx.doi.org/10.1016/j.jct.2008.12.008]
[122]
Chowdhury, S.R.; Maidul Islam, M.; Kumar, G.S. Binding of the anticancer alkaloid sanguinarine to double stranded RNAs: Insights into the structural and energetics aspects. Mol. Biosyst., 2010, 6(7), 1265-1276.
[http://dx.doi.org/10.1039/b927001a] [PMID: 20442937]
[123]
Hossain, M.; Kabir, A.; Suresh Kumar, G. Binding of the anticancer alkaloid sanguinarine with tRNA phe: Spectroscopic and calorimetric studies. J. Biomol. Struct. Dyn., 2012, 30(2), 223-234.
[http://dx.doi.org/10.1080/07391102.2012.677774] [PMID: 22702734]
[124]
Hossain, M.; Khan, A.Y.; Suresh Kumar, G. Study on the thermodynamics of the binding of iminium and alkanolamine forms of the anticancer agent sanguinarine to human serum albumin. J. Chem. Thermodyn., 2012, 47, 90-99.
[http://dx.doi.org/10.1016/j.jct.2011.09.026]
[125]
Kumar, G.S.; Hazra, S. Sanguinarine, a promising anticancer therapeutic: Photochemical and nucleic acid binding properties. RSC Advances, 2014, 4(99), 56518-56531.
[http://dx.doi.org/10.1039/C4RA06456A]
[126]
Faddeeva, M.D.; Beliaeva, T.N. Sanguinarine and ellipticine cytotoxic alkaloids isolated from well-known antitumor plants. Intracellular targets of their action. Tsitologiia, 1997, 39(2-3), 181-208.
[PMID: 9312909]
[127]
Wolff, J.; Knipling, L. Antimicrotubule properties of benzophenanthridine alkaloids. Biochemistry, 1993, 32(48), 13334-13339.
[http://dx.doi.org/10.1021/bi00211a047] [PMID: 7902132]
[128]
Sharma, B.D.; Malhotra, S.; Bhatia, V.; Rathee, M. Classic diseases revisited: Epidemic dropsy in India. Postgrad. Med. J., 1999, 75(889), 657-661.
[http://dx.doi.org/10.1136/pgmj.75.889.657] [PMID: 10621875]
[129]
Singh, N.; Sharma, B. Toxicological effects of berberine and sanguinarine. Front. Mol. Biosci., 2018, 5, 21-21.
[http://dx.doi.org/10.3389/fmolb.2018.00021] [PMID: 29616225]
[130]
Funck, V.R.; Ribeiro, L.R.; Pereira, L.M.; de Oliveira, C.V.; Grigoletto, J.; Della-Pace, I.D.; Fighera, M.R.; Royes, L.F.F.; Furian, A.F.; Larrick, J.W.; Oliveira, M.S. Contrasting effects of Na+, K+-ATPase activation on seizure activity in acute versus chronic models. Neuroscience, 2015, 298, 171-179.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.031] [PMID: 25907445]
[131]
Yang, X.; Wang, X.; Gao, D.; Zhang, Y.; Chen, X.; Xia, Q.; Jin, M.; Sun, C.; He, Q.; Wang, R.; Liu, K. Developmental toxicity caused by sanguinarine in zebrafish embryos via regulating oxidative stress, apoptosis and wnt pathways. Toxicol. Lett., 2021, 350, 71-80.
[http://dx.doi.org/10.1016/j.toxlet.2021.07.001] [PMID: 34252508]
[132]
Chan, W.H. Hazardous effects of sanguinarine on maturation of mouse oocytes, fertilization, and fetal development through apoptotic processes. Environ. Toxicol., 2015, 30(8), 946-955.
[http://dx.doi.org/10.1002/tox.21969] [PMID: 24677673]
[133]
De Stefano, I.; Raspaglio, G.; Zannoni, G.F.; Travaglia, D.; Prisco, M.G.; Mosca, M.; Ferlini, C.; Scambia, G.; Gallo, D. Antiproliferative and antiangiogenic effects of the benzophenanthridine alkaloid sanguinarine in melanoma. Biochem. Pharmacol., 2009, 78(11), 1374-1381.
[http://dx.doi.org/10.1016/j.bcp.2009.07.011] [PMID: 19643088]
[134]
Choy, C.S.; Cheah, K.P.; Chiou, H.Y.; Li, J.S.; Liu, Y.H.; Yong, S.F.; Chiu, W.T.; Liao, J.W.; Hu, C.M. Induction of hepatotoxicity by sanguinarine is associated with oxidation of protein thiols and disturbance of mitochondrial respiration. J. Appl. Toxicol., 2008, 28(8), 945-956.
[http://dx.doi.org/10.1002/jat.1360] [PMID: 18548746]
[135]
Hu, C.M.; Cheng, H.W.; Cheng, Y.W.; Kang, J.J. Induction of skeletal muscle contracture and calcium release from isolated sarcoplasmic reticulum vesicles by sanguinarine. Br. J. Pharmacol., 2000, 130(2), 299-306.
[http://dx.doi.org/10.1038/sj.bjp.0703279] [PMID: 10807666]
[136]
Ming, Hu C.; Wen Cheng, H.; Cheng, Y.W.; Kang, J.J. Mechanisms underlying the induction of vasorelaxation in rat thoracic aorta by sanguinarine. Jpn. J. Pharmacol., 2001, 85(1), 47-53.
[http://dx.doi.org/10.1254/jjp.85.47] [PMID: 11243574]
[137]
Hu, C.M.; Cheng, Y.W.; Liao, J.W.; Cheng, H.W.; Kang, J.J. Induction of contracture and extracellular Ca2+ influx in cardiac muscle by sanguinarine: A study on cardiotoxicity of sanguinarine. J. Biomed. Sci., 2005, 12(2), 399-407.
[http://dx.doi.org/10.1007/s11373-005-3007-y] [PMID: 15920678]
[138]
Chan, W.H. Embryonic toxicity of sanguinarine through apoptotic processes in mouse blastocysts. Toxicol. Lett., 2011, 205(3), 285-292.
[http://dx.doi.org/10.1016/j.toxlet.2011.06.018] [PMID: 21722720]
[139]
Ahmad, N.; Gupta, S.; Husain, M.M.; Heiskanen, K.M.; Mukhtar, H. Differential antiproliferative and apoptotic response of sanguinarine for cancer cells versus normal cells. Clin. Cancer Res., 2000, 6(4), 1524-1528.
[PMID: 10778985]
[140]
Kaminskyy, V.; Lin, K.; Filyak, Y.; Stoika, R. Differential effect of sanguinarine, chelerythrine and chelidonine on DNA damage and cell viability in primary mouse spleen cells and mouse leukemic cells. Cell Biol. Int., 2008, 32(2), 271-277.
[http://dx.doi.org/10.1016/j.cellbi.2007.09.004] [PMID: 18029203]
[141]
Das, M.; Khanna, S.K. Clinicoepidemiological, toxicological, and safety evaluation studies on argemone oil. Crit. Rev. Toxicol., 1997, 27(3), 273-297.
[http://dx.doi.org/10.3109/10408449709089896] [PMID: 9189656]
[142]
Hakim, S.A. Argemone oil, sanguinarine, dropsy, glaucoma and cancer. Indian Pract., 1967, 20(1), 129-141.
[PMID: 6037511]
[143]
Das, M.; Ansari, K.M.; Dhawan, A.; Shukla, Y.; Khanna, S.K. Correlation of DNA damage in epidemic dropsy patients to carcinogenic potential of argemone oil and isolated sanguinarine alkaloid in mice. Int. J. Cancer, 2005, 117(5), 709-717.
[http://dx.doi.org/10.1002/ijc.21234] [PMID: 15981203]
[144]
Hakim, S.A.E. Argemone oil, sanguinarine, and epidemic-dropsy glaucoma. Br. J. Ophthalmol., 1954, 38(4), 193-216.
[http://dx.doi.org/10.1136/bjo.38.4.193] [PMID: 13149763]
[145]
Ansari, K.M.; Dhawan, A.; Khanna, S.K.; Das, M. In vivo DNA damaging potential of sanguinarine alkaloid, isolated from argemone oil, using alkaline Comet assay in mice. Food Chem. Toxicol., 2005, 43(1), 147-153.
[http://dx.doi.org/10.1016/j.fct.2004.09.005] [PMID: 15582207]
[146]
Anderson, K.M.; Stoner, G.D.; Fields, H.W.; Chacon, G.E.; Dohar, A.L.; Gregg, B.R.; Mallery, S.R. Immunohistochemical assessment of Viadent®-associated leukoplakia. Oral Oncol., 2005, 41(2), 200-207.
[http://dx.doi.org/10.1016/j.oraloncology.2004.08.008] [PMID: 15695122]
[147]
Damm, D.D.; Curran, A.; White, D.K.; Drummond, J.F. Leukoplakia of the maxillary vestibule—an association with Viadent? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 1999, 87(1), 61-66.
[http://dx.doi.org/10.1016/S1079-2104(99)70296-9] [PMID: 9927082]
[148]
Karp, J.M.; Rodrigo, K.A.; Pei, P.; Pavlick, M.D.; Andersen, J.D.; McTigue, D.J.; Fields, H.W.; Mallery, S.R. Sanguinarine activates polycyclic aromatic hydrocarbon associated metabolic pathways in human oral keratinocytes and tissues. Toxicol. Lett., 2005, 158(1), 50-60.
[http://dx.doi.org/10.1016/j.toxlet.2005.02.007] [PMID: 15993743]
[149]
Chapter 24 - Materia Medica. In: Veterinary Herbal Medicine; Wynn, S.G.; Fougère, B.J; Mosby: Saint Louis, 2007; pp. 459-672.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy