Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Current Insights into the Role of BRAF Inhibitors in Treatment of Melanoma

Author(s): Ankit Kumar Singh, Adarsh Kumar, Suresh Thareja and Pradeep Kumar*

Volume 23, Issue 3, 2023

Published on: 20 August, 2022

Page: [278 - 297] Pages: 20

DOI: 10.2174/1871520622666220624164152

Price: $65

Abstract

Melanomas represent only 4% of all skin cancers, but their mortality rate is more than 50 % of any other skin cancer. Alteration in genetic and environmental factors are the risk factors for melanoma development. The RAS/RAF/MEK/ERK or Mitogen-activated protein kinase (MAPK) pathway is activated in melanoma. BRAF activation is necessary to govern differentiation, proliferation, and survival. Mutations in BRAF were found in 80–90% of all melanomas. Over 90% of BRAF mutations occur at codon 600, and over 90% of them are BRAFV600E other common mutations are BRAFV600K, BRAFV600R, BRAF V600′E2′, and BRAF V600D. Based on αC-helix and DFG motif (αC-helix-IN/DFG-IN), (αC-helix-IN/DFG-OUT), (αC-helix-OUT/DFG-IN) and (αC-helix-OUT/ DFG-OUT) are four structural types of inhibitors for targeting BRAF. Sorafenib, Vemurafenib, Dabrafenib, and Encorafenib are FDAapproved for the treatment of BRAF. Understanding melanoma pathogenesis, RAS/RAF/MEK/ERK or MAPK pathway, and BRAF conformations, mutations, the problems with FDA approved BRAF inhibitors will be important for new drug discovery, modification of existing BRAF barriers to improve target specific action, and prevent increasing response levels while minimizing toxicity.

Keywords: Melanoma, RAS, RAF, MAPK, BRAF, αC-helix, DFG motif.

Graphical Abstract
[1]
Gloster, H.M., Jr; Neal, K. Skin cancer in skin of color. J. Am. Acad. Dermatol., 2006, 55(5), 741-760.
[http://dx.doi.org/10.1016/j.jaad.2005.08.063] [PMID: 17052479]
[2]
Arrangoiz, R.; Dorantes, J.; Cordera, F.; Juarez, M.M.; Paquentin, E.M. Melanoma review: Epidemiology, risk factors, diagnosis, and staging. J. Cancer Res. Pract., 2016, 4(1), 1-15.
[3]
Lacour, J.P. Carcinogenesis of basal cell carcinomas: Genetics and molecular mechanisms. Br. J. Dermatol., 2002, 146(s61)(Suppl. 61), 17-19.
[http://dx.doi.org/10.1046/j.1365-2133.146.s61.5.x] [PMID: 11966727]
[4]
Qadir, M.I. Skin cancer: Etiology and management. Pak. J. Pharm. Sci., 2016, 29(3), 999-1003.
[PMID: 27166545]
[5]
Stubblefield, J.; Kelly, B. Melanoma in non-caucasian populations. Surg. Clin. North Am., 2014, 94(5), 1115-1126. [ix].
[http://dx.doi.org/10.1016/j.suc.2014.07.008] [PMID: 25245971]
[6]
Carr, S.; Smith, C.; Wernberg, J. Epidemiology and risk factors of melanoma. Surg. Clin. North Am., 2020, 100(1), 1-12.
[http://dx.doi.org/10.1016/j.suc.2019.09.005] [PMID: 31753105]
[7]
Linares, M.A.; Zakaria, A.; Nizran, P. Skin cancer. Prim. Care - Clin. Off. Pract., 2015, 42(4), 645-659.
[8]
Domingues, B.; Lopes, J.M.; Soares, P.; Pópulo, H. Melanoma treatment in review. ImmunoTargets Ther., 2018, 7, 35-49.
[http://dx.doi.org/10.2147/ITT.S134842] [PMID: 29922629]
[9]
Schadendorf, D.; van Akkooi, A.C.J.; Berking, C.; Griewank, K.G.; Gutzmer, R.; Hauschild, A.; Stang, A.; Roesch, A.; Ugurel, S. Melano-ma. Lancet, 2018, 392(10151), 971-984.
[http://dx.doi.org/10.1016/S0140-6736(18)31559-9] [PMID: 30238891]
[10]
Tolleson, W.H. Human melanocyte biology, toxicology, and pathology. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev., 2005, 23(2), 105-161.
[http://dx.doi.org/10.1080/10590500500234970] [PMID: 16291526]
[11]
Schadendorf, D.; Fisher, D.E.; Garbe, C.; Gershenwald, J.E.; Grob, J.J.; Halpern, A.; Herlyn, M.; Marchetti, M.A.; McArthur, G.; Ribas, A.; Roesch, A.; Hauschild, A. Melanoma. Nat. Rev. Dis. Primers, 2015, 1(1), 15003.
[http://dx.doi.org/10.1038/nrdp.2015.3] [PMID: 27188223]
[12]
Carlson, J.A.; Linette, G.P.; Aplin, A.; Ng, B.; Slominski, A. Melanocyte receptors: Clinical implications and therapeutic relevance. Dermatol. Clin., 2007, 25(4), 541-557.
[http://dx.doi.org/10.1016/j.det.2007.06.005] [PMID: 17903613]
[13]
Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol., 2008, 84(3), 539-549.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00226.x] [PMID: 18435612]
[14]
Lin, J.Y.; Fisher, D.E. Melanocyte biology and skin pigmentation. Nature, 2007, 445(7130), 843-850.
[http://dx.doi.org/10.1038/nature05660] [PMID: 17314970]
[15]
Lugović-Mihić, L.; Ćesić, D.; Vuković, P.; Novak Bilić, G.; Šitum, M.; Špoljar, S. Melanoma development: Current knowledge on mela-noma pathogenesis. Acta Dermatovenerol. Croat., 2019, 27(3), 163-168.
[PMID: 31542060]
[16]
Herlyn, M. Human melanoma: Development and progression. Cancer Metastasis Rev., 1990, 9(2), 101-112.
[http://dx.doi.org/10.1007/BF00046337] [PMID: 2253310]
[17]
Meyle, K.D.; Guldberg, P. Genetic risk factors for melanoma. Hum. Genet., 2009, 126(4), 499-510.
[http://dx.doi.org/10.1007/s00439-009-0715-9] [PMID: 19585149]
[18]
Palmieri, G.; Rozzo, C.; Gentilcore, G.; Ascierto, P.A. Melanoma pathophysiology and drug targets. In: Future Medicine; , 2012; pp. 6-17.
[19]
Tsao, H.; Bevona, C.; Goggins, W.; Quinn, T. The transformation rate of moles (melanocytic nevi) into cutaneous melanoma: A population-based estimate. Arch. Dermatol., 2003, 139(3), 282-288.
[http://dx.doi.org/10.1001/archderm.139.3.282] [PMID: 12622618]
[20]
Kiełbik, A.; Wawryka, P.; Chwiłkowska, A.; Saczko, J.; Kulbacka, J. Signaling pathways in melanoma biology and new targeted therapeutic approaches. Med. Res. J., 2019, 4(3), 184-188.
[http://dx.doi.org/10.5603/MRJ.a2019.0033]
[21]
Miller, A.J.; Mihm, M.C.; Jr, Melanoma N. Engl. J. Med., 2006, 355(1), 51-65.
[http://dx.doi.org/10.1056/NEJMra052166] [PMID: 16822996]
[22]
Dahl, C.; Guldberg, P. The genome and epigenome of malignant melanoma. Acta Pathol. Microbiol. Scand. Suppl., 2007, 115(10), 1161-1176.
[http://dx.doi.org/10.1111/j.1600-0463.2007.apm_855.xml.x] [PMID: 18042149]
[23]
Zito, P.M.; Scharf, R. Melanoma of the head and neck; StatPearls: Treasure Island, 2021.
[24]
Schatton, T.; Frank, M.H. Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res., 2008, 21(1), 39-55.
[http://dx.doi.org/10.1111/j.1755-148X.2007.00427.x] [PMID: 18353142]
[25]
Rodríguez, S.; Arenas, M.; Gutierrez, C.; Richart, J.; Perez-Calatayud, J.; Celada, F.; Santos, M.; Rovirosa, A. Recommendations of the Spanish brachytherapy group (GEB) of Spanish Society of Radiation Oncology (SEOR) and the Spanish Society of Medical Physics (SEFM) for high-dose rate (HDR) non melanoma skin cancer brachytherapy. Medicine (Baltimore), 2018, 20(4), 431-442.
[http://dx.doi.org/10.1007/s12094-017-1733-z] [PMID: 28808925]
[26]
Arnold, M.; de Vries, E.; Whiteman, D.C.; Jemal, A.; Bray, F.; Parkin, D.M.; Soerjomataram, I. Global burden of cutaneous melanoma attributable to ultraviolet radiation in 2012. Int. J. Cancer, 2018, 143(6), 1305-1314.
[http://dx.doi.org/10.1002/ijc.31527] [PMID: 29659012]
[27]
Grimes, D.R. Ultraviolet radiation therapy and UVR dose models. Med. Phys., 2015, 42(1), 440-455.
[http://dx.doi.org/10.1118/1.4903963] [PMID: 25563284]
[28]
Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Ultraviolet radiation and skin cancer. Int. J. Dermatol., 2010, 49(9), 978-986.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04474.x] [PMID: 20883261]
[29]
Berwick, M.; Buller, D.B.; Cust, A.; Gallagher, R.; Lee, T.K.; Meyskens, F.; Pandey, S.; Thomas, N.E.; Veierød, M.B.; Ward, S. Melanoma epidemiology and prevention. Cancer Treat. Res., 2016, 167, 17-49.
[http://dx.doi.org/10.1007/978-3-319-22539-5_2] [PMID: 26601858]
[30]
Rigel, D.S.; Carucci, J.A. Malignant melanoma: Prevention, early detection, and treatment in the 21st century. CA Cancer J. Clin., 2000, 50(4), 215-236.
[http://dx.doi.org/10.3322/canjclin.50.4.215] [PMID: 10986965]
[31]
Karimi, K.; Lindgren, T.H.; Koch, C.A.; Brodell, R.T. Obesity as a risk factor for malignant melanoma and non-melanoma skin cancer. Rev. Endocr. Metab. Disord., 2016, 17(3), 389-403.
[http://dx.doi.org/10.1007/s11154-016-9393-9] [PMID: 27832418]
[32]
Cummins, D.L.; Cummins, J.M.; Pantle, H.; Silverman, M.A.; Leonard, A.L.; Chanmugam, A. Cutaneous malignant melanoma. Mayo Clin. Proc., 2006, 81(4), 500-507.
[http://dx.doi.org/10.4065/81.4.500] [PMID: 16610570]
[33]
Perera, E.; Gnaneswaran, N.; Jennens, R.; Sinclair, R. Malignant Melanoma. Healthcare (Basel), 2013, 2(1), 1-19.
[http://dx.doi.org/10.3390/healthcare2010001] [PMID: 27429256]
[34]
Goldstein, A.M.; Tucker, M.A. Dysplastic nevi and melanoma. Cancer Epidemiol. Biomarkers Prev., 2013, 22(4), 528-532.
[http://dx.doi.org/10.1158/1055-9965.EPI-12-1346] [PMID: 23549396]
[35]
Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Epidemiological trends in skin cancer. Dermatol. Pract. Concept., 2017, 7(2), 1-6.
[http://dx.doi.org/10.5826/dpc.0702a01] [PMID: 28515985]
[36]
Leiter, U.; Eigentler, T.; Garbe, C. Epidemiology of skin cancer. In: Sunlight, vitamin D and skin cancer; Springer: NY, 2014; pp. 120-140.
[http://dx.doi.org/10.1007/978-1-4939-0437-2_7]
[37]
Matthews, N.H.; Li, W-Q.; Qureshi, A.A.; Weinstock, M.A.; Cho, E. Epidemiology of melanoma In: Cutaneous Melanoma Codon Publ., Singapore; , 2017; pp. 3-22.
[38]
Kyrgidis, A. Melanoma epidemiology. In: Cutaneous Melanoma; Elsevier: Amsterdam, 2017; pp. 1-9.
[39]
Sample, A.; He, Y.Y. Mechanisms and prevention of UV-induced melanoma. Photodermatol. Photoimmunol. Photomed., 2018, 34(1), 13-24.
[http://dx.doi.org/10.1111/phpp.12329] [PMID: 28703311]
[40]
Chen, S.T.; Geller, A.C.; Tsao, H. Update on the epidemiology of melanoma. Curr. Dermatol. Rep., 2013, 2(1), 24-34.
[http://dx.doi.org/10.1007/s13671-012-0035-5] [PMID: 23580930]
[41]
Rundle, C.W.; Militello, M.; Barber, C.; Presley, C.L.; Rietcheck, H.R.; Dellavalle, R.P. Epidemiologic burden of skin cancer in the US and worldwide. Curr. Dermatol. Rep., 2020, 9(4), 309-322.
[http://dx.doi.org/10.1007/s13671-020-00311-4]
[42]
Labani, S.; Asthana, S.; Rathore, K.; Sardana, K. Incidence of melanoma and nonmelanoma skin cancers in Indian and the global regions. J. Cancer Res. Ther., 2021, 17(4), 906-911.
[http://dx.doi.org/10.4103/jcrt.JCRT_785_19] [PMID: 34528540]
[43]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[44]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[45]
Palmieri, G.; Capone, M.; Ascierto, M.L.; Gentilcore, G.; Stroncek, D.F.; Casula, M.; Sini, M.C.; Palla, M.; Mozzillo, N.; Ascierto, P.A. Main roads to melanoma. J. Transl. Med., 2009, 7(1), 86.
[http://dx.doi.org/10.1186/1479-5876-7-86] [PMID: 19828018]
[46]
Wang, X.; Wu, X.; Xin, J.; Li, S.; Zheng, R.; Guan, D.; Gong, W.; Zhao, Q.; Wang, M.; Chu, H.; Du, M.; Tao, G.; Zhang, H.; Zhang, Z. Genetic variants in Ras/Raf/MEK/ERK pathway are associated with gastric cancer risk in Chinese Han population. Arch. Toxicol., 2020, 94(8), 2683-2690.
[http://dx.doi.org/10.1007/s00204-020-02771-w] [PMID: 32524153]
[47]
Akula, S.M.; Abrams, S.L.; Steelman, L.S.; Emma, M.R.; Augello, G.; Cusimano, A.; Azzolina, A.; Montalto, G.; Cervello, M.; McCubrey, J.A. RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin. Ther. Targets, 2019, 23(11), 915-929.
[http://dx.doi.org/10.1080/14728222.2019.1685501] [PMID: 31657972]
[48]
Murtuza, A.; Bulbul, A.; Shen, J.P.; Keshavarzian, P.; Woodward, B.D.; Lopez-Diaz, F.J.; Lippman, S.M.; Husain, H. Novel third-generation EGFR tyrosine kinase inhibitors and strategies to overcome therapeutic resistance in lung cancer. Cancer Res., 2019, 79(4), 689-698.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1281] [PMID: 30718357]
[49]
Zeng, H.; Jorapur, A.; Shain, A.H.; Lang, U.E.; Torres, R.; Zhang, Y.; McNeal, A.S.; Botton, T.; Lin, J.; Donne, M.; Bastian, I.N.; Yu, R.; North, J.P.; Pincus, L.; Ruben, B.S.; Joseph, N.M.; Yeh, I.; Bastian, B.C.; Judson, R.L. Bi-allelic loss of CDKN2A initiates melanoma inva-sion via BRN2 activation. Cancer Cell, 2018, 34(1), 56-68.e9.
[http://dx.doi.org/10.1016/j.ccell.2018.05.014] [PMID: 29990501]
[50]
Figel, S.; Fenstermaker, R.A. Cell-cycle regulation. In: Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immuno-therapy; Elsevier: Amsterdam, 2018; pp. 257-269.
[51]
Lowe, S.W.; Sherr, C.J. Tumor suppression by Ink4a-Arf: Progress and puzzles. Curr. Opin. Genet. Dev., 2003, 13(1), 77-83.
[http://dx.doi.org/10.1016/S0959-437X(02)00013-8] [PMID: 12573439]
[52]
Carrasco-Garcia, E.; Moreno, M.; Moreno-Cugnon, L.; Matheu, A. Increased Arf/p53 activity in stem cells, aging and cancer. Aging Cell, 2017, 16(2), 219-225.
[http://dx.doi.org/10.1111/acel.12574] [PMID: 28101907]
[53]
Javelaud, D.; Besançon, F. Inactivation of p21WAF1 sensitizes cells to apoptosis via an increase of both p14ARF and p53 levels and an alteration of the Bax/Bcl-2 ratio. J. Biol. Chem., 2002, 277(40), 37949-37954.
[http://dx.doi.org/10.1074/jbc.M204497200] [PMID: 12151395]
[54]
Sensi, M.; Catani, M.; Castellano, G.; Nicolini, G.; Alciato, F.; Tragni, G.; De Santis, G.; Bersani, I.; Avanzi, G.; Tomassetti, A.; Canevari, S.; Anichini, A. Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase. J. Invest. Dermatol., 2011, 131(12), 2448-2457.
[http://dx.doi.org/10.1038/jid.2011.218] [PMID: 21796150]
[55]
Brembeck, F.H.; Rosário, M.; Birchmeier, W. Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Curr. Opin. Genet. Dev., 2006, 16(1), 51-59.
[http://dx.doi.org/10.1016/j.gde.2005.12.007] [PMID: 16377174]
[56]
Incassati, A.; Chandramouli, A.; Eelkema, R.; Cowin, P. Key signaling nodes in mammary gland development and cancer: β-catenin. Breast Cancer Res., 2010, 12(6), 213.
[http://dx.doi.org/10.1186/bcr2723] [PMID: 21067528]
[57]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 1773(8), 1263-1284.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.001] [PMID: 17126425]
[58]
Xu, J.; Pfarr, N.; Endris, V.; Mai, E.K.; Md Hanafiah, N.H.; Lehners, N.; Penzel, R.; Weichert, W.; Ho, A.D.; Schirmacher, P.; Goldschmidt, H.; Andrulis, M.; Raab, M.S. Molecular signaling in multiple myeloma: Association of RAS/RAF mutations and MEK/ERK pathway activation. Oncogenesis, 2017, 6(5), e337-e337.
[http://dx.doi.org/10.1038/oncsis.2017.36] [PMID: 28504689]
[59]
Lopez-Bergami, P.; Fitchman, B.; Ronai, Z. Understanding signaling cascades in melanoma. Photochem. Photobiol., 2008, 84(2), 289-306.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00254.x] [PMID: 18086245]
[60]
Dibb, N.J.; Dilworth, S.M.; Mol, C.D. Switching on kinases: Oncogenic activation of BRAF and the PDGFR family. Nat. Rev. Cancer, 2004, 4(9), 718-727.
[http://dx.doi.org/10.1038/nrc1434] [PMID: 15343278]
[61]
Peyssonnaux, C.; Eychène, A. The Raf/MEK/ERK pathway: New concepts of activation. Biol. Cell, 2001, 93(1-2), 53-62.
[http://dx.doi.org/10.1016/S0248-4900(01)01125-X] [PMID: 11730323]
[62]
Kakadia, S.; Yarlagadda, N.; Awad, R.; Kundranda, M.; Niu, J.; Naraev, B.; Mina, L.; Dragovich, T.; Gimbel, M.; Mahmoud, F. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. OncoTargets Ther., 2018, 11, 7095-7107.
[http://dx.doi.org/10.2147/OTT.S182721] [PMID: 30410366]
[63]
Amaral, T.; Sinnberg, T.; Meier, F.; Krepler, C.; Levesque, M.; Niessner, H.; Garbe, C. The mitogen-activated protein kinase pathway in melanoma part I - Activation and primary resistance mechanisms to BRAF inhibition. Eur. J. Cancer, 2017, 73, 85-92.
[http://dx.doi.org/10.1016/j.ejca.2016.12.010] [PMID: 28169047]
[64]
Hilger, R.A.; Scheulen, M.E.; Strumberg, D. The Ras-Raf-MEK-ERK pathway in the treatment of cancer. Onkologie, 2002, 25(6), 511-518.
[PMID: 12566895]
[65]
Cotto-Rios, X.M.; Agianian, B.; Gitego, N.; Zacharioudakis, E.; Giricz, O.; Wu, Y.; Zou, Y.; Verma, A.; Poulikakos, P.I.; Gavathiotis, E. Inhibitors of BRAF dimers using an allosteric site. Nat. Commun., 2020, 11(1), 4370.
[http://dx.doi.org/10.1038/s41467-020-18123-2] [PMID: 32873792]
[66]
Han, X.R.; Chen, L.; Wei, Y.; Yu, W.; Chen, Y.; Zhang, C.; Jiao, B.; Shi, T.; Sun, L.; Zhang, C.; Xu, Y.; Lee, M.R.; Luo, Y.; Plewe, M.B.; Wang, J. Discovery of selective small molecule degraders of BRAF-V600E. J. Med. Chem., 2020, 63(8), 4069-4080.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02083] [PMID: 32223235]
[67]
El-Nassan, H.B. Recent progress in the identification of BRAF inhibitors as anti-cancer agents. Eur. J. Med. Chem., 2014, 72, 170-205.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.018] [PMID: 24424304]
[68]
Sullivan, R.J.; Flaherty, K.T. BRAF in melanoma: Pathogenesis, diagnosis, inhibition, and resistance. J. Skin Cancer, 2011, 2011, 423239.
[http://dx.doi.org/10.1155/2011/423239] [PMID: 22175026]
[69]
Wong, K.K. Recent developments in anti-cancer agents targeting the Ras/Raf/MEK/ERK pathway. Recent Pat. Anticancer Drug Discov., 2009, 4(1), 28-35.
[http://dx.doi.org/10.2174/157489209787002461] [PMID: 19149686]
[70]
Wellbrock, C.; Hurlstone, A. BRAF as therapeutic target in melanoma. Biochem. Pharmacol., 2010, 80(5), 561-567.
[http://dx.doi.org/10.1016/j.bcp.2010.03.019] [PMID: 20350535]
[71]
Subbiah, V.; Baik, C.; Kirkwood, J.M. Clinical development of BRAF plus MEK inhibitor combinations. Trends Cancer, 2020, 6(9), 797-810.
[http://dx.doi.org/10.1016/j.trecan.2020.05.009] [PMID: 32540454]
[72]
Palmieri, G.; Colombino, M.; Sini, M.C.; Ascierto, P.A.; Lissia, A.; Cossu, A. Targeted therapies in melanoma: Successes and pitfalls. In: Melanoma-From Early Detection to Treatment; , 2013; pp. 29-58.
[73]
Wan, P.T.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; Barford, D.; Marais, R. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 2004, 116(6), 855-867.
[http://dx.doi.org/10.1016/S0092-8674(04)00215-6] [PMID: 15035987]
[74]
Rahman, M.A.; Salajegheh, A.; Smith, R.A.; Lam, A.K. BRAF inhibitors: From the laboratory to clinical trials. Crit. Rev. Oncol. Hematol., 2014, 90(3), 220-232.
[http://dx.doi.org/10.1016/j.critrevonc.2013.12.008] [PMID: 24388103]
[75]
Degirmenci, U.; Wang, M.; Hu, J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells, 2020, 9(1), 198-231.
[http://dx.doi.org/10.3390/cells9010198] [PMID: 31941155]
[76]
Roskoski R., Jr. RAF protein-serine/threonine kinases: Structure and regulation. Biochem. Biophys. Res. Commun., 2010, 399(3), 313-317.
[http://dx.doi.org/10.1016/j.bbrc.2010.07.092] [PMID: 20674547]
[77]
Liu, H.; Nazmun, N.; Hassan, S.; Liu, X.; Yang, J. BRAF mutation and its inhibitors in sarcoma treatment. Cancer Med., 2020, 9(14), 4881-4896.
[http://dx.doi.org/10.1002/cam4.3103] [PMID: 32476297]
[78]
Garnett, M.J.; Marais, R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell, 2004, 6(4), 313-319.
[http://dx.doi.org/10.1016/j.ccr.2004.09.022] [PMID: 15488754]
[79]
Chhikara, B.S.; Ashraf, S.; Mozaffari, S.; St Jeans, N.; Mandal, D.; Tiwari, R.K.; Ul-Haq, Z.; Parang, K. Phenylpyrazalopyrimidines as tyrosine kinase inhibitors: Synthesis, antiproliferative activity, and molecular simulations. Molecules, 2020, 25(9), 2135-2159.
[http://dx.doi.org/10.3390/molecules25092135] [PMID: 32370213]
[80]
Pan, J.H.; Zhou, H.; Zhu, S.B.; Huang, J.L.; Zhao, X.X.; Ding, H.; Pan, Y.L. Development of small-molecule therapeutics and strategies for targeting RAF kinase in BRAF-mutant colorectal cancer. Cancer Manag. Res., 2018, 10, 2289-2301.
[http://dx.doi.org/10.2147/CMAR.S170105] [PMID: 30122982]
[81]
Karoulia, Z.; Gavathiotis, E.; Poulikakos, P.I. New perspectives for targeting RAF kinase in human cancer. Nat. Rev. Cancer, 2017, 17(11), 676-691.
[http://dx.doi.org/10.1038/nrc.2017.79] [PMID: 28984291]
[82]
Agianian, B.; Gavathiotis, E. Current insights of BRAF inhibitors in cancer: Mini perspective. J. Med. Chem., 2018, 61(14), 5775-5793.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01306] [PMID: 29461827]
[83]
Kornev, A.P.; Haste, N.M.; Taylor, S.S.; Eyck, L.F. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. USA, 2006, 103(47), 17783-17788.
[http://dx.doi.org/10.1073/pnas.0607656103] [PMID: 17095602]
[84]
Taylor, S.S.; Kornev, A.P. Protein kinases: Evolution of dynamic regulatory proteins. Trends Biochem. Sci., 2011, 36(2), 65-77.
[http://dx.doi.org/10.1016/j.tibs.2010.09.006] [PMID: 20971646]
[85]
Lakkaniga, N.R.; Balasubramaniam, M.; Zhang, S.; Frett, B.; Li, H.Y. Structural characterization of the aurora kinase B “DFG-flip” using metadynamics. AAPS J., 2019, 22(1), 14.
[http://dx.doi.org/10.1208/s12248-019-0399-6] [PMID: 31853739]
[86]
Grädler, U.; Busch, M.; Leuthner, B.; Raba, M.; Burgdorf, L.; Lehmann, M.; Linde, N.; Esdar, C. Biochemical, cellular and structural characterization of novel and selective ERK3 inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(22), 127551-127560.
[http://dx.doi.org/10.1016/j.bmcl.2020.127551] [PMID: 32927028]
[87]
Liu, L.; Lee, M.R.; Kim, J.L.; Whittington, D.A.; Bregman, H.; Hua, Z.; Lewis, R.T.; Martin, M.W.; Nishimura, N.; Potashman, M.; Yang, K.; Yi, S.; Vaida, K.R.; Epstein, L.F.; Babij, C.; Fernando, M.; Carnahan, J.; Norman, M.H. Purinylpyridinylamino-based DFG-in/αC-helix-out B-Raf inhibitors: Applying mutant versus wild-type B-Raf selectivity indices for compound profiling. Bioorg. Med. Chem., 2016, 24(10), 2215-2234.
[http://dx.doi.org/10.1016/j.bmc.2016.03.055] [PMID: 27085672]
[88]
Angiolini, M. The role of structural biology in kinase inhibitor drug discovery success. In: Struct Biol Drug Discovery; Jean Paul Renaud (Ed.), 2020; pp. 363-393.
[http://dx.doi.org/10.1002/9781118681121.ch16]
[89]
Beneker, C.M.; Rovoli, M.; Kontopidis, G.; Röring, M.; Galda, S.; Braun, S.; Brummer, T.; McInnes, C. Design and synthesis of type-IV inhibitors of BRAF kinase that block dimerization and overcome paradoxical MEK/ERK activation. J. Med. Chem., 2019, 62(8), 3886-3897.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01288] [PMID: 30977659]
[90]
Bollag, G.; Hirth, P.; Tsai, J.; Zhang, J.; Ibrahim, P.N.; Cho, H.; Spevak, W.; Zhang, C.; Zhang, Y.; Habets, G.; Burton, E.A.; Wong, B.; Tsang, G.; West, B.L.; Powell, B.; Shellooe, R.; Marimuthu, A.; Nguyen, H.; Zhang, K.Y.; Artis, D.R.; Schlessinger, J.; Su, F.; Higgins, B.; Iyer, R.; D’Andrea, K.; Koehler, A.; Stumm, M.; Lin, P.S.; Lee, R.J.; Grippo, J.; Puzanov, I.; Kim, K.B.; Ribas, A.; McArthur, G.A.; Sosman, J.A.; Chapman, P.B.; Flaherty, K.T.; Xu, X.; Nathanson, K.L.; Nolop, K. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010, 467(7315), 596-599.
[http://dx.doi.org/10.1038/nature09454] [PMID: 20823850]
[91]
Chen, S.H.; Zhang, Y.; Van Horn, R.D.; Yin, T.; Buchanan, S.; Yadav, V.; Mochalkin, I.; Wong, S.S.; Yue, Y.G.; Huber, L.; Conti, I.; Henry, J.R.; Starling, J.J.; Plowman, G.D.; Peng, S.B. Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by RAF dimer inhibitor LY3009120. Cancer Discov., 2016, 6(3), 300-315.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0896] [PMID: 26732095]
[92]
Saldanha, G.; Potter, L.; Daforno, P.; Pringle, J.H. Cutaneous melanoma subtypes show different BRAF and NRAS mutation frequencies. Clin. Cancer Res., 2006, 12(15), 4499-4505.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2447] [PMID: 16899595]
[93]
Umar, A.B.; Uzairu, A.; Shallangwa, G.A.; Uba, S. In silico evaluation of some 4-(quinolin-2-yl) pyrimidin-2-amine derivatives as potent V600E-BRAF inhibitors with pharmacokinetics ADMET and drug-likeness predictions. Future J. Pharm. Sci., 2020, 6(1), 1-10.
[http://dx.doi.org/10.1186/s43094-020-00084-4]
[94]
Shtivelman, E.; Davies, M.Q.; Hwu, P.; Yang, J.; Lotem, M.; Oren, M.; Flaherty, K.T.; Fisher, D.E. Pathways and therapeutic targets in melanoma. Oncotarget, 2014, 5(7), 1701-1752.
[http://dx.doi.org/10.18632/oncotarget.1892] [PMID: 24743024]
[95]
Ascierto, P.A.; Kirkwood, J.M.; Grob, J.J.; Simeone, E.; Grimaldi, A.M.; Maio, M.; Palmieri, G.; Testori, A.; Marincola, F.M.; Mozzillo, N. The role of BRAF V600 mutation in melanoma. J. Transl. Med., 2012, 10(1), 85.
[http://dx.doi.org/10.1186/1479-5876-10-85] [PMID: 22554099]
[96]
Cheng, L.; Lopez-Beltran, A.; Massari, F.; MacLennan, G.T.; Montironi, R. Molecular testing for BRAF mutations to inform melanoma treatment decisions: A move toward precision medicine. Mod. Pathol., 2018, 31(1), 24-38.
[http://dx.doi.org/10.1038/modpathol.2017.104] [PMID: 29148538]
[97]
Arkenau, H.T.; Kefford, R.; Long, G.V. Targeting BRAF for patients with melanoma. Br. J. Cancer, 2011, 104(3), 392-398.
[http://dx.doi.org/10.1038/sj.bjc.6606030] [PMID: 21139585]
[98]
Luo, C.; Xie, P.; Marmorstein, R. Identification of BRAF inhibitors through in silico screening. J. Med. Chem., 2008, 51(19), 6121-6127.
[http://dx.doi.org/10.1021/jm800539g] [PMID: 18783202]
[99]
de Snoo, F.A.; Hayward, N.K. Cutaneous melanoma susceptibility and progression genes. Cancer Lett., 2005, 230(2), 153-186.
[http://dx.doi.org/10.1016/j.canlet.2004.12.033] [PMID: 16297704]
[100]
Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M. Through the “gatekeeper door”: exploiting the active kinase conformation. J. Med. Chem., 2010, 53(7), 2681-2694.
[http://dx.doi.org/10.1021/jm901443h] [PMID: 20000735]
[101]
Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 835-844.
[http://dx.doi.org/10.1038/nrd2130] [PMID: 17016424]
[102]
White, P.T.; Cohen, M.S. The discovery and development of sorafenib for the treatment of thyroid cancer. Expert Opin. Drug Discov., 2015, 10(4), 427-439.
[http://dx.doi.org/10.1517/17460441.2015.1006194] [PMID: 25662396]
[103]
Uhlenhake, E.E.; Watson, A.C.; Aronson, P. Sorafenib induced eruptive melanocytic lesions. Dermatol. Online J., 2013, 19(5), 18184.
[http://dx.doi.org/10.5070/D3195018184] [PMID: 24011281]
[104]
Holderfield, M.; Nagel, T.E.; Stuart, D.D. Mechanism and consequences of RAF kinase activation by small-molecule inhibitors. Br. J. Cancer, 2014, 111(4), 640-645.
[http://dx.doi.org/10.1038/bjc.2014.139] [PMID: 24642617]
[105]
Lyons, J.F.; Wilhelm, S.; Hibner, B.; Bollag, G. Discovery of a novel Raf kinase inhibitor. Endocr. Relat. Cancer, 2001, 8(3), 219-225.
[http://dx.doi.org/10.1677/erc.0.0080219] [PMID: 11566613]
[106]
Van Gompel, J.J.; Kunnimalaiyaan, M.; Holen, K.; Chen, H. ZM336372, a Raf-1 activator, suppresses growth and neuroendocrine hormone levels in carcinoid tumor cells. Mol. Cancer Ther., 2005, 4(6), 910-917.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0334] [PMID: 15956248]
[107]
Maharjan, C.K.; Ear, P.H.; Tran, C.G.; Howe, J.R.; Chandrasekharan, C.; Quelle, D.E. Pancreatic neuroendocrine tumors: Molecular mechanisms and therapeutic targets. Cancers (Basel), 2021, 13(20), 5117-5168.
[http://dx.doi.org/10.3390/cancers13205117] [PMID: 34680266]
[108]
Kappes, A.; Vaccaro, A.; Kunnimalaiyaan, M.; Chen, H. ZM336372, a Raf-1 activator, inhibits growth of pheochromocytoma cells. J. Surg. Res., 2006, 133(1), 42-45.
[http://dx.doi.org/10.1016/j.jss.2006.02.002] [PMID: 16603190]
[109]
Ibrahim, P.N.; Zhang, J.; Zhang, C.; Bollag, G. Case history: Vemurafenib, a potent, selective, and first-in-class inhibitor of mutant BRAF for the treatment of metastatic melanoma. Annu. Rep. Med. Chem., 2013, 48, 435-449.
[http://dx.doi.org/10.1016/B978-0-12-417150-3.00026-0]
[110]
Urosevic, J.; Sum, E.Y.; Moneo, V.; Drosten, M.; Dhawahir, A.; Becerra, M.; Carnero, A.; Barbacid, M. Using cells devoid of RAS pro-teins as tools for drug discovery. Mol. Carcinog., 2009, 48(11), 1038-1047.
[http://dx.doi.org/10.1002/mc.20555] [PMID: 19526460]
[111]
Kim, M.; Lee, J.; Jung, K.; Kim, H.; Aman, W.; Ryu, J.S.; Hah, J.M. Design, synthesis and biological evaluation of benzyl 2-(1H-imidazole-1-yl) pyrimidine analogues as selective and potent Raf inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(15), 3600-3604.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.030] [PMID: 24878193]
[112]
Wang, J.Y.; Wilcoxen, K.M.; Nomoto, K.; Wu, S. Recent advances of MEK inhibitors and their clinical progress. Curr. Top. Med. Chem., 2007, 7(14), 1364-1378.
[http://dx.doi.org/10.2174/156802607781696837] [PMID: 17692026]
[113]
Tang, H-C.; Chen, Y-C. Insight into molecular dynamics simulation of BRAF(V600E) and potent novel inhibitors for malignant melanoma. Int. J. Nanomedicine, 2015, 10, 3131-3146.
[PMID: 25960652]
[114]
Choo, E.F.; Driscoll, J.P.; Feng, J.; Liederer, B.; Plise, E.; Randolph, N.; Shin, Y.; Wong, S.; Ran, Y. Disposition of GDC-0879, a B-RAF kinase inhibitor in preclinical species. Xenobiotica, 2009, 39(9), 700-709.
[http://dx.doi.org/10.1080/00498250902991827] [PMID: 19552528]
[115]
Wong, H.; Belvin, M.; Herter, S.; Hoeflich, K.P.; Murray, L.J.; Wong, L.; Choo, E.F. Pharmacodynamics of 2-{4-[(1E)-1-(hydroxyimino)-2, 3-dihydro-1H-inden-5-yl]-3-(pyridine-4-yl)-1H-pyrazol-1-yl} ethan-1-ol (GDC-0879), a potent and selective B-Raf kinase inhibitor: Understanding Relationships between systemic concentrations, phosphorylated mitogen-activated protein kinase kinase 1 inhibition, and efficacy. J. Pharmacol. Exp. Ther., 2009, 329(1), 360-367.
[http://dx.doi.org/10.1124/jpet.108.148189] [PMID: 19147858]
[116]
Riechardt, A.I.; Maier, A.K.; Nonnenmacher, A.; Reichhart, N.; Keilholz, U.; Kociok, N.; Strauss, O.; Joussen, A.M.; Gundlach, E. B-Raf inhibition in conjunctival melanoma cell lines with PLX 4720. Br. J. Ophthalmol., 2015, 99(12), 1739-1745.
[http://dx.doi.org/10.1136/bjophthalmol-2015-306689] [PMID: 26347528]
[117]
Aris, M.; Barrio, M.M. Combining immunotherapy with oncogene-targeted therapy: A new road for melanoma treatment. Front. Immunol., 2015, 6, 46-64.
[http://dx.doi.org/10.3389/fimmu.2015.00046] [PMID: 25709607]
[118]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Franklin, R.A.; Montalto, G.; Cervello, M.; Libra, M.; Candido, S.; Malaponte, G.; Mazzarino, M.C.; Fagone, P.; Nicoletti, F.; Bäsecke, J.; Mijatovic, S.; Maksimovic-Ivanic, D.; Milella, M.; Tafuri, A.; Chiarini, F.; Evangelisti, C.; Cocco, L.; Martelli, A.M. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget, 2012, 3(10), 1068-1111.
[http://dx.doi.org/10.18632/oncotarget.659] [PMID: 23085539]
[119]
Yao, J.; Chen, J.; He, Z.; Sun, W.; Fang, H.; Xu, W. Thiourea and thioether derivatives of sorafenib: Synthesis, crystal structure, and anti-proliferative activity. Med. Chem. Res., 2013, 22(8), 3959-3968.
[http://dx.doi.org/10.1007/s00044-012-0400-8]
[120]
Plaza-Menacho, I.; Mologni, L.; Sala, E.; Gambacorti-Passerini, C.; Magee, A.I.; Links, T.P.; Hofstra, R.M.; Barford, D.; Isacke, C.M. Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting. J. Biol. Chem., 2007, 282(40), 29230-29240.
[http://dx.doi.org/10.1074/jbc.M703461200] [PMID: 17664273]
[121]
Saei, A.; Eichhorn, P.J.A. Adaptive responses as mechanisms of resistance to BRAF inhibitors in melanoma. Cancers (Basel), 2019, 11(8), 1176-1194.
[http://dx.doi.org/10.3390/cancers11081176] [PMID: 31416288]
[122]
Smith, R.A.; Dumas, J.; Adnane, L.; Wilhelm, S.M. Recent advances in the research and development of RAF kinase inhibitors. Curr. Top. Med. Chem., 2006, 6(11), 1071-1089.
[http://dx.doi.org/10.2174/156802606777812077] [PMID: 16842147]
[123]
Miura, K.; Satoh, M.; Kinouchi, M.; Yamamoto, K.; Hasegawa, Y.; Philchenkov, A.; Kakugawa, Y.; Fujiya, T. The preclinical development of regorafenib for the treatment of colorectal cancer. Expert Opin. Drug Discov., 2014, 9(9), 1087-1101.
[http://dx.doi.org/10.1517/17460441.2014.924923] [PMID: 24896071]
[124]
Dobrovolskaite, A.; Madan, M.; Pandey, V.; Altomare, D.A.; Phanstiel, O.IV. The discovery of indolone GW5074 during a comprehensive search for non-polyamine-based polyamine transport inhibitors. Int. J. Biochem. Cell Biol., 2021, 138, 106038-106051.
[http://dx.doi.org/10.1016/j.biocel.2021.106038] [PMID: 34252566]
[125]
Zambon, A.; Niculescu-Duvaz, I.; Niculescu-Duvaz, D.; Marais, R.; Springer, C.J. Small molecule inhibitors of BRAF in clinical trials. Bioorg. Med. Chem. Lett., 2012, 22(2), 789-792.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.060] [PMID: 22222036]
[126]
Aldaghi, S.A.; Jalal, R. Concentration-dependent dual effects of ciprofloxacin on SB-590885-resistant BRAFV600E A375 melanoma cells. Chem. Res. Toxicol., 2019, 32(4), 645-658.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00335] [PMID: 30829029]
[127]
Vido, M.J.; Le, K.; Hartsough, E.J.; Aplin, A.E. BRAF splice variant resistance to RAF inhibitor requires enhanced MEK association. Cell Rep., 2018, 25(6), 1501-1510.e3.
[http://dx.doi.org/10.1016/j.celrep.2018.10.049] [PMID: 30404005]
[128]
El-Deeb, I.M.; Lee, S.H. Design and synthesis of new potent anticancer pyrazoles with high FLT3 kinase inhibitory selectivity. Bioorg. Med. Chem., 2010, 18(11), 3961-3973.
[http://dx.doi.org/10.1016/j.bmc.2010.04.029] [PMID: 20472440]
[129]
Cope, N.J.; Novak, B.; Liu, Z.; Cavallo, M.; Gunderwala, A.Y.; Connolly, M.; Wang, Z. Analyses of the oncogenic BRAFD594G variant reveal a kinase-independent function of BRAF in activating MAPK signaling. J. Biol. Chem., 2020, 295(8), 2407-2420.
[http://dx.doi.org/10.1074/jbc.RA119.011536] [PMID: 31929109]
[130]
Uddin, M.I.; Buck, J.R.; Schulte, M.L.; Tang, D.; Saleh, S.A.; Cheung, Y.Y.; Harp, J.; Manning, H.C. Microwave-assisted, one-pot reaction of 7-azaindoles and aldehydes: A facile route to novel di-7-azaindolylmethanes. Tetrahedron Lett., 2014, 55(1), 169-173.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.143] [PMID: 24396154]
[131]
Ballantyne, A.D.; Garnock-Jones, K.P. Dabrafenib: First global approval. Drugs, 2013, 73(12), 1367-1376.
[http://dx.doi.org/10.1007/s40265-013-0095-2] [PMID: 23881668]
[132]
Gibney, G.T.; Zager, J.S. Clinical development of dabrafenib in BRAF mutant melanoma and other malignancies. Expert Opin. Drug Metab. Toxicol., 2013, 9(7), 893-899.
[http://dx.doi.org/10.1517/17425255.2013.794220] [PMID: 23621583]
[133]
Rai, S.K.; Gunnam, A.; Mannava, M.C.; Nangia, A.K. Improving the dissolution rate of the anticancer drug dabrafenib. Cryst. Growth Des., 2020, 20(2), 1035-1046.
[http://dx.doi.org/10.1021/acs.cgd.9b01365]
[134]
Bollag, G.; Tsai, J.; Zhang, J.; Zhang, C.; Ibrahim, P.; Nolop, K.; Hirth, P. Vemurafenib: The first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov., 2012, 11(11), 873-886.
[http://dx.doi.org/10.1038/nrd3847] [PMID: 23060265]
[135]
Jang, S.; Atkins, M.B. Treatment of BRAF-mutant melanoma: The role of vemurafenib and other therapies. Clin. Pharmacol. Ther., 2014, 95(1), 24-31.
[http://dx.doi.org/10.1038/clpt.2013.197] [PMID: 24080641]
[136]
Kim, G.; McKee, A.E.; Ning, Y.M.; Hazarika, M.; Theoret, M.; Johnson, J.R.; Xu, Q.C.; Tang, S.; Sridhara, R.; Jiang, X.; He, K.; Roscoe, D.; McGuinn, W.D.; Helms, W.S.; Russell, A.M.; Miksinski, S.P.; Zirkelbach, J.F.; Earp, J.; Liu, Q.; Ibrahim, A.; Justice, R.; Pazdur, R. FDA approval summary: Vemurafenib for treatment of unresectable or metastatic melanoma with the BRAFV600E mutation. Clin. Cancer Res., 2014, 20(19), 4994-5000.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0776] [PMID: 25096067]
[137]
McCain, J. The MAPK (ERK) pathway: Investigational combinations for the treatment of BRAF-mutated metastatic melanoma. P&T, 2013, 38(2), 96-108.
[PMID: 23599677]
[138]
Rose, A.A.N. Encorafenib and binimetinib for the treatment of BRAF V600E/K-mutated melanoma. Drugs Today (Barc), 2019, 55(4), 247-264.
[http://dx.doi.org/10.1358/dot.2019.55.4.2958476] [PMID: 31050693]
[139]
Sun, J.; Zager, J.S.; Eroglu, Z. Encorafenib/binimetinib for the treatment of BRAF-mutant advanced, unresectable, or metastatic melanoma: Design, development, and potential place in therapy. OncoTargets Ther., 2018, 11, 9081-9089.
[http://dx.doi.org/10.2147/OTT.S171693] [PMID: 30588020]
[140]
Cerchia, C.; Lavecchia, A. Small molecule drugs and targeted therapy for melanoma: Current strategies and future directions. Curr. Med. Chem., 2017, 24(21), 2312-2344.
[http://dx.doi.org/10.2174/0929867324666170414163937] [PMID: 28413965]
[141]
Man, R.J.; Zhang, Y.L.; Jiang, A.Q.; Zhu, H.L. A patent review of RAF kinase inhibitors (2010-2018). Expert Opin. Ther. Pat., 2019, 29(9), 675-688.
[http://dx.doi.org/10.1080/13543776.2019.1651842] [PMID: 31370713]
[142]
Yap, J.L.; Worlikar, S.; MacKerell, A.D., Jr; Shapiro, P.; Fletcher, S. Small-molecule inhibitors of the ERK signaling pathway: Towards novel anticancer therapeutics. ChemMedChem, 2011, 6(1), 38-48.
[http://dx.doi.org/10.1002/cmdc.201000354] [PMID: 21110380]
[143]
Peng, S.B.; Henry, J.R.; Kaufman, M.D.; Lu, W.P.; Smith, B.D.; Vogeti, S.; Rutkoski, T.J.; Wise, S.; Chun, L.; Zhang, Y.; Van Horn, R.D.; Yin, T.; Zhang, X.; Yadav, V.; Chen, S.H.; Gong, X.; Ma, X.; Webster, Y.; Buchanan, S.; Mochalkin, I.; Huber, L.; Kays, L.; Donoho, G.P.; Walgren, J.; McCann, D.; Patel, P.; Conti, I.; Plowman, G.D.; Starling, J.J.; Flynn, D.L. Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell, 2015, 28(3), 384-398.
[http://dx.doi.org/10.1016/j.ccell.2015.08.002] [PMID: 26343583]
[144]
King, A.J.; Arnone, M.R.; Bleam, M.R.; Moss, K.G.; Yang, J.; Fedorowicz, K.E.; Smitheman, K.N.; Erhardt, J.A.; Hughes-Earle, A.; Kane-Carson, L.S.; Sinnamon, R.H.; Qi, H.; Rheault, T.R.; Uehling, D.E.; Laquerre, S.G. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS One, 2013, 8(7), e67583-e67593.
[http://dx.doi.org/10.1371/journal.pone.0067583] [PMID: 23844038]
[145]
Yao, H.; Sun, Q.; Zhu, J. Identification and characterization of small‐molecule inhibitors to selectively target the DFG‐in over the DFG‐out conformation of the B‐Raf kinase V600E mutant in colorectal cancer. Arch. Pharm. (Weinheim), 2016, 349(10), 808-815.
[http://dx.doi.org/10.1002/ardp.201600184] [PMID: 27624806]
[146]
Zhang, W.; Heinzmann, D.; Grippo, J.F. Clinical pharmacokinetics of vemurafenib. Clin. Pharmacokinet., 2017, 56(9), 1033-1043.
[http://dx.doi.org/10.1007/s40262-017-0523-7] [PMID: 28255850]
[147]
Adamopoulos, C.; Ahmed, T.A.; Tucker, M.R.; Ung, P.M.U.; Xiao, M.; Karoulia, Z.; Amabile, A.; Wu, X.; Aaronson, S.A.; Ang, C.; Rebecca, V.W.; Brown, B.D.; Schlessinger, A.; Herlyn, M.; Wang, Q.; Shaw, D.E.; Poulikakos, P.I. Exploiting allosteric properties of RAF and MEK inhibitors to target therapy-resistant tumors driven by oncogenic BRAF signaling. Cancer Discov., 2021, 11(7), 1716-1735.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1351] [PMID: 33568355]
[148]
Roskoski R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res., 2019, 144, 19-50.
[http://dx.doi.org/10.1016/j.phrs.2019.03.006] [PMID: 30877063]
[149]
Waizenegger, I.C.; Baum, A.; Steurer, S.; Stadtmüller, H.; Bader, G.; Schaaf, O.; Garin-Chesa, P.; Schlattl, A.; Schweifer, N.; Haslinger, C.; Colbatzky, F.; Mousa, S.; Kalkuhl, A.; Kraut, N.; Adolf, G.R. A novel RAF kinase inhibitor with DFG-out-binding mode: High efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue hyperproliferation. Mol. Cancer Ther., 2016, 15(3), 354-365.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0617] [PMID: 26916115]
[150]
He, M.; Lv, W.; Rao, Y. Opportunities and challenges of small molecule induced targeted protein degradation. Front. Cell Dev. Biol., 2021, 9, 685106-685131.
[http://dx.doi.org/10.3389/fcell.2021.685106] [PMID: 34249939]
[151]
Ribas, A.; Flaherty, K.T. BRAF targeted therapy changes the treatment paradigm in melanoma. Nat. Rev. Clin. Oncol., 2011, 8(7), 426-433.
[http://dx.doi.org/10.1038/nrclinonc.2011.69] [PMID: 21606968]
[152]
Callahan, M.K.; Masters, G.; Pratilas, C.A.; Ariyan, C.; Katz, J.; Kitano, S.; Russell, V.; Gordon, R.A.; Vyas, S.; Yuan, J.; Gupta, A.; Wigginton, J.M.; Rosen, N.; Merghoub, T.; Jure-Kunkel, M.; Wolchok, J.D. Paradoxical activation of T cells via augmented ERK signaling mediated by a RAF inhibitor. Cancer Immunol. Res., 2014, 2(1), 70-79.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0160] [PMID: 24416731]
[153]
Wang, J.Q.; Teng, Q.X.; Lei, Z.N.; Ji, N.; Cui, Q.; Fu, H.; Lin, L.; Yang, D.H.; Fan, Y.F.; Chen, Z.S. Reversal of cancer multidrug resistance (MDR) mediated by ATP-binding cassette transporter G2 (ABCG2) by AZ-628, a RAF kinase inhibitor. Front. Cell Dev. Biol., 2020, 8, 601400-601415.
[http://dx.doi.org/10.3389/fcell.2020.601400] [PMID: 33364237]
[154]
Vargas-Ibarra, D.; Velez-Vasquez, M.; Bermudez-Munoz, M. Regulation of MAPK ERK1/2 signaling by phosphorylation: Implications in physiological and pathological contexts. In: Post-Translational Modifications in Cellular Functions and Diseases; IntechOpen, 2021.
[155]
Girotti, M.R.; Lopes, F.; Preece, N.; Niculescu-Duvaz, D.; Zambon, A.; Davies, L.; Whittaker, S.; Saturno, G.; Viros, A.; Pedersen, M.; Suijkerbuijk, B.M.; Menard, D.; McLeary, R.; Johnson, L.; Fish, L.; Ejiama, S.; Sanchez-Laorden, B.; Hohloch, J.; Carragher, N.; Macleod, K.; Ashton, G.; Marusiak, A.A.; Fusi, A.; Brognard, J.; Frame, M.; Lorigan, P.; Marais, R.; Springer, C. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell, 2015, 27(1), 85-96.
[http://dx.doi.org/10.1016/j.ccell.2014.11.006] [PMID: 25500121]
[156]
Lai, E.; Pretta, A.; Impera, V.; Mariani, S.; Giampieri, R.; Casula, L.; Pusceddu, V.; Coni, P.; Fanni, D.; Puzzoni, M.; Demurtas, L.; Ziranu, P.; Faa, G.; Scartozzi, M. BRAF-mutant colorectal cancer, a different breed evolving. Expert Rev. Mol. Diagn., 2018, 18(6), 499-512.
[http://dx.doi.org/10.1080/14737159.2018.1470928] [PMID: 29708446]
[157]
Zhang, H.; Xu, L.; Qin, X.; Chen, X.; Cong, H.; Hu, L.; Chen, L.; Miao, Z.; Zhang, W.; Cai, Z.; Zhuang, C.N. -(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[d]thiazol-2-yl)cyclopropanecarboxamide (TAK-632) analogues as novel necroptosis inhibitors by targeting receptor-interacting protein kinase 3 (RIPK3): Synthesis, structure-activity relationships, and in vivo efficacy. J. Med. Chem., 2019, 62(14), 6665-6681.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00611] [PMID: 31095385]
[158]
Grasso, M.; Estrada, M.A.; Berrios, K.N.; Winkler, J.D.; Marmorstein, RN -(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl) acetamido)phenoxy)benzo[d]thiazol-2-yl)cyclopropanecarboxamide (TAK632) promotes inhibition of BRAF through the induction of inhibited dimers. J. Med. Chem., 2018, 61(11), 5034-5046.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00499] [PMID: 29727562]
[159]
Sullivan, R.J.; Hollebecque, A.; Flaherty, K.T.; Shapiro, G.I.; Rodon Ahnert, J.; Millward, M.J.; Zhang, W.; Gao, L.; Sykes, A.; Willard, M.D.; Yu, D.; Schade, A.E.; Crowe, K.; Flynn, D.L.; Kaufman, M.D.; Henry, J.R.; Peng, S.B.; Benhadji, K.A.; Conti, I.; Gordon, M.S.; Tiu, R.V.; Hong, D.S. A phase I study of LY3009120, a Pan-RAF inhibitor, in patients with advanced or metastatic cancer. Mol. Cancer Ther., 2020, 19(2), 460-467.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0681] [PMID: 31645440]
[160]
Friedman, J.A.; Hewit, T.; Bruckheimer, E.; Trusko, S.; Dorsey, B.; Ruggeri, B. Antitumor activity of CEP-32496, a novel orally active BRAFV600E inhibitor, in a panel of champions tumor graft models of melanoma and colorectal cancer with B-Raf V600E mutations. AACR, 2012, 72(8), 3755-3755.
[161]
Esteban-Burgos, L.; Wang, H.; Nieto, P.; Zheng, J.; Blanco-Aparicio, C.; Varela, C.; Gómez-López, G.; Fernández-García, F.; Sanclemente, M.; Guerra, C.; Drosten, M.; Galán, J.; Caleiras, E.; Martínez-Torrecuadrada, J.; Fajas, L.; Peng, S.B.; Santamaría, D.; Musteanu, M.; Barbacid, M. Tumor regression and resistance mechanisms upon CDK4 and RAF1 inactivation in KRAS/P53 mutant lung adenocarcinomas. Proc. Natl. Acad. Sci. USA, 2020, 117(39), 24415-24426.
[http://dx.doi.org/10.1073/pnas.2002520117] [PMID: 32913049]
[162]
Tang, Z.; Yuan, X.; Du, R.; Cheung, S.H.; Zhang, G.; Wei, J.; Zhao, Y.; Feng, Y.; Peng, H.; Zhang, Y.; Du, Y.; Hu, X.; Gong, W.; Liu, Y.; Gao, Y.; Liu, Y.; Hao, R.; Li, S.; Wang, S.; Ji, J.; Zhang, L.; Li, S.; Sutton, D.; Wei, M.; Zhou, C.; Wang, L.; Luo, L. BGB-283, a novel RAF kinase and EGFR inhibitor, displays potent antitumor activity in BRAF-mutated colorectal cancers. Mol. Cancer Ther., 2015, 14(10), 2187-2197.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0262] [PMID: 26208524]
[163]
Shao, W.; Mishina, Y.M.; Feng, Y.; Caponigro, G.; Cooke, V.G.; Rivera, S.; Wang, Y.; Shen, F.; Korn, J.M.; Mathews Griner, L.A.; Nishiguchi, G.; Rico, A.; Tellew, J.; Haling, J.R.; Aversa, R.; Polyakov, V.; Zang, R.; Hekmat-Nejad, M.; Amiri, P.; Singh, M.; Keen, N.; Dillon, M.P.; Lees, E.; Ramurthy, S.; Sellers, W.R.; Stuart, D.D. Antitumor properties of RAF709, a highly selective and potent inhibitor of RAF kinase dimers, in tumors driven by mutant RAS or BRAF. Cancer Res., 2018, 78(6), 1537-1548.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2033] [PMID: 29343524]
[164]
Janku, F.; Vaishampayan, U.N.; Khemka, V.; Bhatty, M.; Sherman, E.J.; Tao, J.; Whisenant, J.R.; Hong, D.S.; Bui, N.; Kummar, S.; Feun, L.G.; Parikh, A.R.; Zhang, C.; Michelson, G.; Martin, E.; Shellooe, R.; Severson, P.; Pelayo, M.; Karlin, D.A.; Sharma, S. Phase 1/2 precision medicine study of the next-generation BRAF inhibitor PLX8394. J. Clin. Oncol., 2018, 36(15), 2583-2583.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.2583]
[165]
Wang, P.F.; Qiu, H.Y.; Zhu, H.L. A patent review of BRAF inhibitors: 2013-2018. Expert Opin. Ther. Pat., 2019, 29(8), 595-603.
[http://dx.doi.org/10.1080/13543776.2019.1640680] [PMID: 31280615]
[166]
Durrant, D.E.; Morrison, D.K. Targeting the Raf kinases in human cancer: The Raf dimer dilemma. Br. J. Cancer, 2018, 118(1), 3-8.
[http://dx.doi.org/10.1038/bjc.2017.399] [PMID: 29235562]
[167]
Koumaki, K.; Kontogianni, G.; Kosmidou, V.; Pahitsa, F.; Kritsi, E.; Zervou, M.; Chatziioannou, A.; Souliotis, V.L.; Papadodima, O.; Pintzas, A. BRAF paradox breakers PLX8394, PLX7904 are more effective against BRAFV600E CRC cells compared with the BRAF inhibitor PLX4720 and shown by detailed pathway analysis. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(4), 166061-166074.
[http://dx.doi.org/10.1016/j.bbadis.2020.166061] [PMID: 33385518]
[168]
Yao, Z.; Torres, N.M.; Tao, A.; Gao, Y.; Luo, L.; Li, Q.; de Stanchina, E.; Abdel-Wahab, O.; Solit, D.B.; Poulikakos, P.I.; Rosen, N. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell, 2015, 28(3), 370-383.
[http://dx.doi.org/10.1016/j.ccell.2015.08.001] [PMID: 26343582]
[169]
Fouladi, M.; Pfister, S.M. MEK and RAF inhibitors: time for a paradigm shift in the treatment of pediatric low-grade gliomas? Neuro-oncol., 2017, 19(6), 741-743.
[http://dx.doi.org/10.1093/neuonc/nox039] [PMID: 28379448]
[170]
Rose, J.C.; Dieter, E.M.; Cunningham-Bryant, D.; Maly, D.J. Examining RAS pathway rewiring with a chemically inducible activator of RAS. Small GTPases, 2020, 11(6), 413-420.
[http://dx.doi.org/10.1080/21541248.2018.1446697] [PMID: 29634387]
[171]
Kortum, R.L.; Morrison, D.K. Path forward for RAF therapies: Inhibition of monomers and dimers. Cancer Cell, 2015, 28(3), 279-281.
[http://dx.doi.org/10.1016/j.ccell.2015.08.006] [PMID: 26373275]
[172]
Lamberti, G.; Andrini, E.; Sisi, M.; Rizzo, A.; Parisi, C.; Di Federico, A.; Gelsomino, F.; Ardizzoni, A. Beyond EGFR, ALK and ROS1: Current evidence and future perspectives on newly targetable oncogenic drivers in lung adenocarcinoma. Crit. Rev. Oncol. Hematol., 2020, 156, 103119-102137.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103119] [PMID: 33053439]
[173]
Uehling, D.E.; Harris, P.A. Recent progress on MAP kinase pathway inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(19), 4047-4056.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.093] [PMID: 26298497]
[174]
James, J.; Ruggeri, B.; Armstrong, R.C.; Rowbottom, M.W.; Jones-Bolin, S.; Gunawardane, R.N.; Dobrzanski, P.; Gardner, M.F.; Zhao, H.; Cramer, M.D.; Hunter, K.; Nepomuceno, R.R.; Cheng, M.; Gitnick, D.; Yazdanian, M.; Insko, D.E.; Ator, M.A.; Apuy, J.L.; Faraoni, R.; Dorsey, B.D.; Williams, M.; Bhagwat, S.S.; Holladay, M.W. CEP-32496: A novel orally active BRAF(V600E) inhibitor with selective cellular and in vivo antitumor activity. Mol. Cancer Ther., 2012, 11(4), 930-941.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0645] [PMID: 22319199]
[175]
Saturno, G.; Lopes, F.; Niculescu-Duvaz, I.; Niculescu-Duvaz, D.; Zambon, A.; Davies, L.; Johnson, L.; Preece, N.; Lee, R.; Viros, A.; Holovanchuk, D.; Pedersen, M.; McLeary, R.; Lorigan, P.; Dhomen, N.; Fisher, C.; Banerji, U.; Dean, E.; Krebs, M.G.; Gore, M.; Larkin, J.; Marais, R.; Springer, C. The paradox-breaking panRAF plus SRC family kinase inhibitor, CCT3833, is effective in mutant KRAS-driven cancers. Ann. Oncol., 2021, 32(2), 269-278.
[http://dx.doi.org/10.1016/j.annonc.2020.10.483] [PMID: 33130216]
[176]
Halaban, R.; Bacchiocchi, A.; Straub, R.; Cao, J.; Sznol, M.; Narayan, D.; Allam, A.; Krauthammer, M.; Mansour, T.S. A novel anti-melanoma SRC-family kinase inhibitor. Oncotarget, 2019, 10(23), 2237-2251.
[http://dx.doi.org/10.18632/oncotarget.26787] [PMID: 31040916]
[177]
Nishiguchi, G.A.; Rico, A.; Tanner, H.; Aversa, R.J.; Taft, B.R.; Subramanian, S.; Setti, L.; Burger, M.T.; Wan, L.; Tamez, V.; Smith, A.; Lou, Y.; Barsanti, P.A.; Appleton, B.A.; Mamo, M.; Tandeske, L.; Dix, I.; Tellew, J.E.; Huang, S.; Mathews Griner, L.A.; Cooke, V.G.; Van Abbema, A.; Merritt, H.; Ma, S.; Gampa, K.; Feng, F.; Yuan, J.; Wang, Y.; Haling, J.R.; Vaziri, S.; Hekmat-Nejad, M.; Jansen, J.M.; Polyakov, V.; Zang, R.; Sethuraman, V.; Amiri, P.; Singh, M.; Lees, E.; Shao, W.; Stuart, D.D.; Dillon, M.P.; Ramurthy, S. Design and Discovery of N-(2-Methyl-5′-morpholino-6′-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3′-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (RAF709): A potent, selective, and efficacious RAF inhibitor targeting RAS mutant cancers. J. Med. Chem., 2017, 60(12), 4869-4881.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01862] [PMID: 28557458]
[178]
Röck, R.; Mayrhofer, J.; Torres-Quesada, O.; Enzler, F.; Troppmair, J.; Stefan, E. Abstract B45: Surveillance of RAS-RAF dynamics in vivo: Tracking activity conformations and drug-induced interactions. AACR, 2020, 18(5), B45.
[http://dx.doi.org/10.1158/1557-3125.RAS18-B45]
[179]
Liu, T.; Wang, Z.; Guo, P.; Ding, N. Electrostatic mechanism of V600E mutation-induced B-Raf constitutive activation in colorectal cancer: molecular implications for the selectivity difference between type-I and type-II inhibitors. Eur. Biophys. J., 2019, 48(1), 73-82.
[http://dx.doi.org/10.1007/s00249-018-1334-y] [PMID: 30218115]
[180]
Yang, W.; Chen, Y.; Zhou, X.; Gu, Y.; Qian, W.; Zhang, F.; Han, W.; Lu, T.; Tang, W. Design, synthesis and biological evaluation of bis-aryl ureas and amides based on 2-amino-3-purinylpyridine scaffold as DFG-out B-Raf kinase inhibitors. Eur. J. Med. Chem., 2015, 89, 581-596.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.039] [PMID: 25462267]
[181]
Brummer, T.; McInnes, C. RAF kinase dimerization: Implications for drug discovery and clinical outcomes. Oncogene, 2020, 39(21), 4155-4169.
[http://dx.doi.org/10.1038/s41388-020-1263-y] [PMID: 32269299]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy