Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Therapeutic Potential of Mesenchymal Stem Cells in PCOS

Author(s): Hamid Reza Nejabati*, Sadeneh Nikzad and Leila Roshangar*

Volume 19, Issue 2, 2024

Published on: 13 June, 2023

Page: [134 - 144] Pages: 11

DOI: 10.2174/1574888X18666230517123256

Price: $65

Abstract

Polycystic ovary syndrome (PCOS) is a major reproductive endocrine disorder affecting different facets of a woman’s life, comprising reproduction, metabolism, and mental health. Recently, several research groups have brought attention to the therapeutic capacity of mesenchymal stem cells (MSCs) for the treatment of female reproductive disorders. It is highlighted that the treatment with bone marrow mesenchymal stem cells (BMMSCs) considerably diminishes the levels of some inflammatory markers as well as essential genes for ovarian production of androgens, which are considerably higher in theca cells of PCOS women than in those of healthy cases. In addition, studies show that BMMSCs improve in vitro maturation (IVM) of germinal vesicles (GVs) and the number of antral follicles while lessening the number of primary and preantral follicles in mice with PCOS compared to healthy controls. Regarding adipose- derived mesenchymal stem cells (AdMSCs), these cells restore the ovarian structure, enhance the number of oocytes and corpora luteum, and diminish the number of aberrant cystic follicles in PCOS rats. Some research also indicates that umbilical cord mesenchymal stem cells (UC-MSCs) alleviate the inflammation of granulosa cells in women with PCOS. Therefore, due to the limited research on MSC therapy in PCOS, in this review, we summarize the current knowledge on the therapeutic potential of three types of MSCs: BMMSCs, AdMSCs, UC-MSCs and their secretome in the treatment of PCOS.

Keywords: Polycystic ovary syndrome, mesenchymal stem cells, secretome, exosomes, reproduction, ovarian reserve.

Graphical Abstract
[1]
Sirmans S, Pate K. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol 2013; 6: 1-13.
[http://dx.doi.org/10.2147/CLEP.S37559] [PMID: 24379699]
[2]
Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 1935; 29(2): 181-91.
[http://dx.doi.org/10.1016/S0002-9378(15)30642-6]
[3]
Aversa A, La Vignera S, Rago R, et al. Fundamental concepts and novel aspects of polycystic ovarian syndrome: Expert consensus resolutions. Front Endocrinol 2020; 11: 516.
[http://dx.doi.org/10.3389/fendo.2020.00516] [PMID: 32849300]
[4]
Escobar-Morreale HF. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol 2018; 14(5): 270-84.
[http://dx.doi.org/10.1038/nrendo.2018.24] [PMID: 29569621]
[5]
Carvalho LML, dos Reis FM, Candido AL, Nunes FFC, Ferreira CN, Gomes KB. Polycystic ovary syndrome as a systemic disease with multiple molecular pathways: A narrative review. Endocr Regul 2018; 52(4): 208-21.
[http://dx.doi.org/10.2478/enr-2018-0026] [PMID: 31517612]
[6]
Iervolino M, Lepore E, Forte G, Laganà AS. Natural molecules in the management of polycystic ovary syndrome (PCOS): An analytical review. Nutrients 2021; 13(5): 1677.
[7]
McLuskie I, Newth A. New diagnosis of polycystic ovary syndrome. BMJ 2017; 356: i6456.
[http://dx.doi.org/10.1136/bmj.i6456] [PMID: 28082338]
[8]
Palomba S, Santagni S, Falbo A, La Sala GB. Complications and challenges associated with polycystic ovary syndrome: current perspectives. Int J Womens Health 2015; 7: 745-63.
[http://dx.doi.org/10.2147/IJWH.S70314] [PMID: 26261426]
[9]
Galipeau J, Sensébé L. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell 2018; 22(6): 824-33.
[http://dx.doi.org/10.1016/j.stem.2018.05.004] [PMID: 29859173]
[10]
Naji A, Rouas-Freiss N, Durrbach A, Carosella ED, Sensébé L, Deschaseaux F. Concise review: Combining human leukocyte antigen G and mesenchymal stem cells for immunosuppressant biotherapy. Stem Cells 2013; 31(11): 2296-303.
[http://dx.doi.org/10.1002/stem.1494] [PMID: 23922260]
[11]
Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: An update. Cell Transplant 2016; 25(5): 829-48.
[http://dx.doi.org/10.3727/096368915X689622] [PMID: 26423725]
[12]
Trounson A, McDonald C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell 2015; 17(1): 11-22.
[http://dx.doi.org/10.1016/j.stem.2015.06.007] [PMID: 26140604]
[13]
Fan XL, Zhang Y, Li X, Fu QL. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci 2020; 77(14): 2771-94.
[http://dx.doi.org/10.1007/s00018-020-03454-6]
[14]
Rungsiwiwut R, Virutamasen P, Pruksananonda K. Mesenchymal stem cells for restoring endometrial function: An infertility perspective. Reprod Med Biol 2021; 20(1): 13-9.
[15]
Spitzhorn LS, Megges M, Wruck W, et al. Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Res Ther 2019; 10(1): 100.
[http://dx.doi.org/10.1186/s13287-019-1209-x] [PMID: 30885246]
[16]
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 2015; 35(2): e00191.
[http://dx.doi.org/10.1042/BSR20150025] [PMID: 25797907]
[17]
Yoon SY. Mesenchymal stem cells for restoration of ovarian function. Clin Exp Reprod Med 2019; 46(1): 1-7.
[http://dx.doi.org/10.5653/cerm.2019.46.1.1] [PMID: 30827071]
[18]
Liu F, Hu S, Yang H, Li Z, Huang K, Su T. Hyaluronic acid hydrogel integrated with mesenchymal stem cell-secretome to treat endometrial injury in a rat model of asherman’s syndrome. Adv Healthc Mater 2019; 8(14): e1900411.
[19]
Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019; 54(S2): 789-92.
[http://dx.doi.org/10.1038/s41409-019-0616-z] [PMID: 31431712]
[20]
Patel DB, Gray KM, Santharam Y, Lamichhane TN, Stroka KM, Jay SM. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med 2017; 2(2): 170-9.
[http://dx.doi.org/10.1002/btm2.10065]
[21]
Zhao AG, Shah K. Mesenchymal stem cell-derived extracellular vesicles and their therapeutic potential. Stem Cells Int 2020; 2020: 8825771.
[22]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[23]
Galipeau J, Krampera M, Barrett J, et al. International society for cellular therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 2016; 18(2): 151-9.
[http://dx.doi.org/10.1016/j.jcyt.2015.11.008] [PMID: 26724220]
[24]
Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L. Immunological characterization of multipotent mesenchymal stromal cells—The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 2013; 15(9): 1054-61.
[http://dx.doi.org/10.1016/j.jcyt.2013.02.010] [PMID: 23602578]
[25]
Zhao Y, Chen S, Su P, et al. Using mesenchymal stem cells to treat female infertility: An update on female reproductive diseases. Stem Cells Int 2019; 2019: 1-10.
[http://dx.doi.org/10.1155/2019/9071720] [PMID: 31885630]
[26]
Altaner C, Altanerova V, Cihova M, et al. Characterization of mesenchymal stem cells of “no-options” patients with critical limb ischemia treated by autologous bone marrow mononuclear cells. PLoS One 2013; 8(9): e73722.
[http://dx.doi.org/10.1371/journal.pone.0073722] [PMID: 24069226]
[27]
Owen M, Friedenstein AJ. Stromal stem cells: Marrow-derived osteogenic precursors. Ciba Found Symp 1988; 136: 42-60.
[PMID: 3068016]
[28]
Gao L, Huang Z, Lin H, Tian Y, Li P, Lin S. Bone marrow mesenchymal stem cells (BMSCs) restore functional endometrium in the rat model for severe asherman syndrome. Reprod Sci 2019; 26(3): 436-44.
[http://dx.doi.org/10.1177/1933719118799201] [PMID: 30458678]
[29]
Liu Y, Tal R, Pluchino N, Mamillapalli R, Taylor HS. Systemic administration of bone marrow-derived cells leads to better uterine engraftment than use of uterine-derived cells or local injection. J Cell Mol Med 2018; 22(1): 67-76.
[http://dx.doi.org/10.1111/jcmm.13294] [PMID: 28782281]
[30]
Tepper OM, Sealove BA, Murayama T, Asahara T. Newly emerging concepts in blood vessel growth: Recent discovery of endothelial progenitor cells and their function in tissue regeneration. J Investig Med 2003; 51(6): 353-9.
[31]
Besikcioglu HE, Sarıbas GS, Ozogul C, et al. Determination of the effects of bone marrow derived mesenchymal stem cells and ovarian stromal stem cells on follicular maturation in cyclophosphamide induced ovarian failure in rats. Taiwan J Obstet Gynecol 2019; 58(1): 53-9.
[http://dx.doi.org/10.1016/j.tjog.2018.11.010] [PMID: 30638481]
[32]
Badawy A, Sobh M, Ahdy M, Abdelhafez M. Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. Int J Womens Health 2017; 9: 441-7.
[http://dx.doi.org/10.2147/IJWH.S134074] [PMID: 28670143]
[33]
Fu X, He Y, Wang X, et al. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis. Stem Cell Res Ther 2017; 8(1): 187.
[http://dx.doi.org/10.1186/s13287-017-0641-z] [PMID: 28807003]
[34]
Zhang C. The roles of different stem cells in premature ovarian failure. Curr Stem Cell Res Ther 2020; 15(6): 473-81.
[http://dx.doi.org/10.2174/1574888X14666190314123006] [PMID: 30868961]
[35]
Panchal SY, Patel H, Nagori CB. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman′s syndrome. J Hum Reprod Sci 2011; 4(1): 43-8.
[http://dx.doi.org/10.4103/0974-1208.82360] [PMID: 21772740]
[36]
Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 2004; 292(1): 81-5.
[http://dx.doi.org/10.1001/jama.292.1.81] [PMID: 15238594]
[37]
Wang J, Ju B, Pan C, Gu Y, Zhang Y, Sun L. Application of bone marrow-derived mesenchymal stem cells in the treatment of intrauterine adhesions in rats. Cell Physiol Biochem 2016; 39(4): 1553-60.
[http://dx.doi.org/10.1159/000447857]
[38]
Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: Case report. J Craniomaxillofac Surg 2004; 32(6): 370-3.
[39]
Ra JC, Jeong EC, Kang SK, Lee SJ, Choi KH. A prospective, nonrandomized, no placebo-controlled, phase i/ii clinical trial assessing the safety and efficacy of intramuscular injection of autologous adipose tissue-derived mesenchymal stem cells in patients with severe buerger’s disease. Cell Med 2017; 9(3): 87-102.
[http://dx.doi.org/10.3727/215517916X693069] [PMID: 28713639]
[40]
Yang JA, Chung HM, Won CH, Sung JH. Potential application of adipose-derived stem cells and their secretory factors to skin: discussion from both clinical and industrial viewpoints. Expert Opin Biol Ther 2010; 10(4): 495-503.
[http://dx.doi.org/10.1517/14712591003610598] [PMID: 20218919]
[41]
Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med 2014; 12(1): 8.
[http://dx.doi.org/10.1186/1479-5876-12-8] [PMID: 24397850]
[42]
Damous LL, Nakamuta JS, Saturi de Carvalho AET, et al. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries? Reprod Biol Endocrinol 2015; 13(1): 108.
[http://dx.doi.org/10.1186/s12958-015-0104-2] [PMID: 26394676]
[43]
Sun M, Wang S, Li Y, et al. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Res Ther 2013; 4(4): 80.
[http://dx.doi.org/10.1186/scrt231] [PMID: 23838374]
[44]
Terraciano P, Garcez T. Cell therapy for chemically induced ovarian failure in mice. Stem Cells Int 2014; 2014: 720753.
[http://dx.doi.org/10.1155/2014/720753]
[45]
Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells 2014; 6(2): 195-202.
[http://dx.doi.org/10.4252/wjsc.v6.i2.195] [PMID: 24772246]
[46]
Mohamed SA, Shalaby S, Brakta S, Elam L. Umbilical cord blood mesenchymal stem cells as an infertility treatment for chemotherapy induced premature ovarian insufficiency. Biomedicines 2019; 7(1): 7.
[http://dx.doi.org/10.3390/biomedicines7010007]
[47]
Song D, Zhong Y, Qian C, Zou Q, Ou J, Shi Y. Human umbilical cord mesenchymal stem cells therapy in cyclophosphamide-induced premature ovarian failure rat model. BioMed Res Int 2016; 2016: 2517514.
[48]
Zhu SF, Hu HB, Xu HY, et al. Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries. J Cell Mol Med 2015; 19(9): 2108-17.
[http://dx.doi.org/10.1111/jcmm.12571] [PMID: 25922900]
[49]
Jalalie L, Rezaie MJ, Jalili A, et al. Distribution of the cm-dil-labeled human umbilical cord vein mesenchymal stem cells migrated to the cyclophosphamide-injured ovaries in C57BL/6 Mice. Iran Biomed J 2019; 23(3): 200-8.
[http://dx.doi.org/10.29252/ibj.23.3.200] [PMID: 30797224]
[50]
Conway G, Dewailly D, Diamanti-Kandarakis E, et al. The polycystic ovary syndrome: A position statement from the European Society of Endocrinology. Eur J Endocrinol 2014; 171(4): 1-P29.
[http://dx.doi.org/10.1530/EJE-14-0253] [PMID: 24849517]
[51]
Nejabati HR, Samadi N, Shahnazi V, et al. Nicotinamide and its metabolite N1-Methylnicotinamide alleviate endocrine and metabolic abnormalities in adipose and ovarian tissues in rat model of Polycystic Ovary Syndrome. Chem Biol Interact 2020; 324: 109093.
[http://dx.doi.org/10.1016/j.cbi.2020.109093] [PMID: 32298659]
[52]
Azziz R, Carmina E, Chen Z, et al. Polycystic ovary syndrome. Nat Rev Dis Primers 2016; 2(1): 16057.
[http://dx.doi.org/10.1038/nrdp.2016.57] [PMID: 27510637]
[53]
Escobar-Morreale HF. Diagnosis and management of hirsutism. Ann N Y Acad Sci 2010; 1205(1): 166-74.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05652.x] [PMID: 20840269]
[54]
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32(1): 81-151.
[http://dx.doi.org/10.1210/er.2010-0013] [PMID: 21051590]
[55]
Wickenheisser JK, Nelson-DeGrave VL, McAllister JM. Dysregulation of cytochrome P450 17alpha-hydroxylase messenger ribonucleic acid stability in theca cells isolated from women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90(3): 1720-7.
[http://dx.doi.org/10.1210/jc.2004-1860] [PMID: 15598676]
[56]
Legro RS, Arslanian SA, Ehrmann DA, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2013; 98(12): 4565-92.
[http://dx.doi.org/10.1210/jc.2013-2350] [PMID: 24151290]
[57]
Mathur R, Levin O, Azziz R. Use of ethinylestradiol/drospirenone combination in patients with the polycystic ovary syndrome. Ther Clin Risk Manag 2008; 4(2): 487-92.
[http://dx.doi.org/10.2147/TCRM.S6864] [PMID: 18728832]
[58]
Koulouri O, Conway GS. A systematic review of commonly used medical treatments for hirsutism in women. Clin Endocrinol 2008; 68(5): 800-5.
[http://dx.doi.org/10.1111/j.1365-2265.2007.03105.x] [PMID: 17980017]
[59]
Moghetti P, Tosi F, Tosti A, et al. Comparison of spironolactone, flutamide, and finasteride efficacy in the treatment of hirsutism: a randomized, double blind, placebo-controlled trial. J Clin Endocrinol Metab 2000; 85(1): 89-94.
[http://dx.doi.org/10.1210/jc.85.1.89] [PMID: 10634370]
[60]
Naka KK, Kalantaridou SN, Kravariti M, et al. Effect of the insulin sensitizers metformin and pioglitazone on endothelial function in young women with polycystic ovary syndrome: a prospective randomized study. Fertil Steril 2011; 95(1): 203-9.
[http://dx.doi.org/10.1016/j.fertnstert.2010.06.058] [PMID: 20684955]
[61]
Farquhar C, Brown J, Marjoribanks J. Laparoscopic drilling by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome. Cochrane Libr 2012; (6): CD001122.
[http://dx.doi.org/10.1002/14651858.CD001122.pub4] [PMID: 22696324]
[62]
Abu Hashim H, Al-Inany H, De Vos M, Tournaye H. Three decades after Gjönnaess’s laparoscopic ovarian drilling for treatment of PCOS; what do we know? An evidence-based approach. Arch Gynecol Obstet 2013; 288(2): 409-22.
[http://dx.doi.org/10.1007/s00404-013-2808-x] [PMID: 23543241]
[63]
Fox CW, Zhang L, Sohni A, et al. Inflammatory stimuli trigger increased androgen production and shifts in gene expression in theca-interstitial cells. Endocrinology 2019; 160(12): 2946-58.
[http://dx.doi.org/10.1210/en.2019-00588] [PMID: 31599939]
[64]
González F, Sia CL, Bearson DM, Blair HE. Hyperandrogenism induces a proinflammatory TNFα response to glucose ingestion in a receptor-dependent fashion. J Clin Endocrinol Metab 2014; 99(5): E848-54.
[http://dx.doi.org/10.1210/jc.2013-4109] [PMID: 24512496]
[65]
Lang Q, Yidong X, Xueguang Z, Sixian W, Wenming X, Tao Z. ETA-mediated anti-TNF-α therapy ameliorates the phenotype of PCOS model induced by letrozole. PLoS One 2019; 14(6): e0217495.
[http://dx.doi.org/10.1371/journal.pone.0217495] [PMID: 31170164]
[66]
Nelson VL, Qin K, Rosenfield RL, et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab 2001; 86(12): 5925-33.
[http://dx.doi.org/10.1210/jcem.86.12.8088] [PMID: 11739466]
[67]
Wickenheisser JK, Quinn PG, Nelson VL, Legro RS, Strauss JF III, McAllister JM. Differential activity of the cytochrome P450 17alpha-hydroxylase and steroidogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome theca cells. J Clin Endocrinol Metab 2000; 85(6): 2304-11.
[PMID: 10852468]
[68]
Chugh RM, Park HS, El Andaloussi A, Elsharoud A, Esfandyari S, Ulin M. Mesenchymal stem cell therapy ameliorates metabolic dysfunction and restores fertility in a PCOS mouse model through interleukin-10. Stem Cell Res Ther 2021; 12(1): 388.
[http://dx.doi.org/10.1186/s13287-021-02472-w]
[69]
Kyurkchiev D, Bochev I, Ivanova-Todorova E, et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 2014; 6(5): 552-70.
[http://dx.doi.org/10.4252/wjsc.v6.i5.552] [PMID: 25426252]
[70]
Qu X, Liu X, Cheng K, Yang R, Zhao RCH. Mesenchymal stem cells inhibit Th17 cell differentiation by IL-10 secretion. Exp Hematol 2012; 40(9): 761-70.
[http://dx.doi.org/10.1016/j.exphem.2012.05.006] [PMID: 22634392]
[71]
Wang J, Ren H, Yuan X, Ma H, Shi X, Ding Y. Interleukin‐10 secreted by mesenchymal stem cells attenuates acute liver failure through inhibiting pyroptosis. Hepatol Res 2018; 48(3): E194-202.
[http://dx.doi.org/10.1111/hepr.12969] [PMID: 28833919]
[72]
Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol 2012; 32(1): 23-63.
[73]
Talaat RM, Mohamed YA, Mohamad EH, Elsharkawy M, Guirgis AA. Interleukin 10 (− 1082 G/A) and (− 819 C/T) gene polymorphisms in Egyptian women with polycystic ovary syndrome (PCOS). Meta Gene 2016; 9: 254-8.
[http://dx.doi.org/10.1016/j.mgene.2016.08.001] [PMID: 27617227]
[74]
Hong EG, Ko HJ, Cho YR, et al. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes 2009; 58(11): 2525-35.
[http://dx.doi.org/10.2337/db08-1261] [PMID: 19690064]
[75]
Tarkun İ, Çetinarslan B, Türemen E, Cantürk Z, Biyikli M. Association between circulating tumor necrosis factor-alpha, interleukin-6, and insulin resistance in normal-weight women with polycystic ovary syndrome. Metab Syndr Relat Disord 2006; 4(2): 122-8.
[http://dx.doi.org/10.1089/met.2006.4.122] [PMID: 18370758]
[76]
Chugh RM, Park H, Esfandyari S, Elsharoud A, Ulin M, Al-Hendy A. Mesenchymal stem cell-conditioned media regulate steroidogenesis and inhibit androgen secretion in a PCOS cell model via BMP-2. Int J Mol Sci 2021; 22(17): 9184.
[http://dx.doi.org/10.3390/ijms22179184] [PMID: 34502090]
[77]
Legro RS, Brzyski RG, Diamond MP, et al. Letrozole versus clomiphene for infertility in the polycystic ovary syndrome. N Engl J Med 2014; 371(2): 119-29.
[http://dx.doi.org/10.1056/NEJMoa1313517] [PMID: 25006718]
[78]
Polson DW, Mason HD, Saldahna MBY, Franks S. Ovulation of a single dominant follicle during treatment with low-dose pulsatile follicle stimulating hormone in women with polycystic ovary syndrome. Clin Endocrinol 1987; 26(2): 205-12.
[http://dx.doi.org/10.1111/j.1365-2265.1987.tb00778.x] [PMID: 3117445]
[79]
Sagle MA, Hamilton-Fairley D, Kiddy DS, Franks S. A comparative, randomized study of low-dose human menopausal gonadotropin and follicle-stimulating hormone in women with polycystic ovarian syndrome. Fertil Steril 1991; 55(1): 56-60.
[http://dx.doi.org/10.1016/S0015-0282(16)54059-X] [PMID: 1898891]
[80]
Homburg R, Hendriks ML, König TE, et al. Clomifene citrate or low-dose FSH for the first-line treatment of infertile women with anovulation associated with polycystic ovary syndrome: A prospective randomized multinational study. Hum Reprod 2012; 27(2): 468-73.
[http://dx.doi.org/10.1093/humrep/der401] [PMID: 22128296]
[81]
Nahuis MJ, Kose N, Bayram N, et al. Long-term outcomes in women with polycystic ovary syndrome initially randomized to receive laparoscopic electrocautery of the ovaries or ovulation induction with gonadotrophins. Hum Reprod 2011; 26(7): 1899-904.
[http://dx.doi.org/10.1093/humrep/der141] [PMID: 21576081]
[82]
Cha KY, Chung HM, Lee DR, et al. Obstetric outcome of patients with polycystic ovary syndrome treated by in vitro maturation and in vitro fertilization–embryo transfer. Fertil Steril 2005; 83(5): 1461-5.
[http://dx.doi.org/10.1016/j.fertnstert.2004.11.044] [PMID: 15866585]
[83]
Siristatidis C, Sergentanis TN, Vogiatzi P, et al. In vitro maturation in women with vs. without polycystic ovarian syndrome: A systematic review and meta-analysis. PLoS One 2015; 10(8): e0134696.
[http://dx.doi.org/10.1371/journal.pone.0134696] [PMID: 26241855]
[84]
Walls ML, Hunter T, Ryan JP, Keelan JA, Nathan E, Hart RJ. In vitro maturation as an alternative to standard in vitro fertilization for patients diagnosed with polycystic ovaries: A comparative analysis of fresh, frozen and cumulative cycle outcomes. Hum Reprod 2015; 30(1): 88-96.
[http://dx.doi.org/10.1093/humrep/deu248] [PMID: 25355587]
[85]
Shi Y, Wei D, Liang X, et al. Live birth after fresh embryo transfer vs elective embryo cryopreservation/frozen embryo transfer in women with polycystic ovary syndrome undergoing IVF (FreFro-PCOS): study protocol for a multicenter, prospective, randomized controlled clinical trial. Trials 2014; 15(1): 154.
[http://dx.doi.org/10.1186/1745-6215-15-154] [PMID: 24885793]
[86]
Jafarzadeh H, Nazarian H, Ghaffari Novin M, Shams Mofarahe Z, Eini F, Piryaei A. Improvement of oocyte in vitro maturation from mice with polycystic ovary syndrome by human mesenchymal stromal cell–conditioned media. J Cell Biochem 2018; 119(12): 10365-75.
[http://dx.doi.org/10.1002/jcb.27380] [PMID: 30171726]
[87]
Kalhori Z, Azadbakht M, Soleimani MM, Shariatzadeh MA. Improvement of the folliculogenesis by transplantation of bone marrow mesenchymal stromal cells in mice with induced polycystic ovary syndrome. Cytotherapy 2018; 20(12): 1445-58.
[http://dx.doi.org/10.1016/j.jcyt.2018.09.005] [PMID: 30523787]
[88]
Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM. Exosomes. Commun Integr Biol 2010; 3(5): 447-50.
[http://dx.doi.org/10.4161/cib.3.5.12339] [PMID: 21057637]
[89]
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci 2010; 107(14): 6328-33.
[http://dx.doi.org/10.1073/pnas.0914843107] [PMID: 20304794]
[90]
Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 2015; 8(1): 122.
[http://dx.doi.org/10.1186/s13045-015-0220-7] [PMID: 26514126]
[91]
Qu Y, Zhang Q, Cai X, Li F, Ma Z, Xu M. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med 2017; 2(10): 2491-502.
[http://dx.doi.org/10.1111/jcmm.13170] [PMID: 28382720]
[92]
Xin H, Li Y, Buller B, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 2012; 30(7): 1556-64.
[http://dx.doi.org/10.1002/stem.1129] [PMID: 22605481]
[93]
Zhao Y, Tao M, Wei M, Du S, Wang H, Wang X. Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS). Artif Cells Nanomed Biotechnol 2019; 47(1): 3804-13.
[94]
Xu T, Huang C, Chen Z, Li J. MicroRNA-323-3p: A new biomarker and potential therapeutic target for rheumatoid arthritis. Rheumatol Int 2014; 34(5): 721-2.
[http://dx.doi.org/10.1007/s00296-013-2767-3] [PMID: 23615628]
[95]
Zhao Z, Zhao Q, Warrick J, et al. Circulating microRNA miR-323-3p as a biomarker of ectopic pregnancy. Clin Chem 2012; 58(5): 896-905.
[http://dx.doi.org/10.1373/clinchem.2011.179283] [PMID: 22395025]
[96]
Cao M, Zhao Y, Chen T, et al. Adipose mesenchymal stem cell–derived exosomal microRNAs ameliorate polycystic ovary syndrome by protecting against metabolic disturbances. Biomaterials 2022; 288: 121739.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121739] [PMID: 35987860]
[97]
Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: A systematic review and meta-analysis. Hum Reprod Update 2010; 16(4): 347-63.
[http://dx.doi.org/10.1093/humupd/dmq001] [PMID: 20159883]
[98]
Carmina E. PCOS: Metabolic impact and long-term management. Minerva Ginecol 2012; 64(6): 501-5.
[PMID: 23232534]
[99]
Tang T, Lord JM, Norman RJ, Yasmin E, Balen AH. Insulin‐sensitising drugs (metformin, rosiglitazone, pioglitazone, D‐chiro‐inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev 2012; 11(11): CD003053.
[100]
Naderpoor N, Shorakae S, de Courten B, Misso ML, Moran LJ, Teede HJ. Metformin and lifestyle modification in polycystic ovary syndrome: Systematic review and meta-analysis. Hum Reprod Update 2015; 21(5): 560-74.
[http://dx.doi.org/10.1093/humupd/dmv025] [PMID: 26060208]
[101]
Qiu J, Maekawa K, Kitamura Y, et al. Stimulation of glucose uptake by theasinensins through the AMP-activated protein kinase pathway in rat skeletal muscle cells. Biochem Pharmacol 2014; 87(2): 344-51.
[http://dx.doi.org/10.1016/j.bcp.2013.10.029] [PMID: 24225153]
[102]
Abraham SG, Divakar PY, Valsala GA. Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): An update. Arch Gynecol Obstet 2021; 303(3): 631-43.
[http://dx.doi.org/10.1007/s00404-020-05951-2] [PMID: 33439300]
[103]
Orisaka M, Tajima K, Tsang BK, Kotsuji F. Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res 2009; 2(1): 9.
[http://dx.doi.org/10.1186/1757-2215-2-9] [PMID: 19589134]
[104]
Xie Q, Xiong X. Mesenchymal stem cells alleviate DHEA-Induced polycystic ovary syndrome (PCOS) by inhibiting inflammation in mice. Stem Cells Int 2019; 2019: 9782373.
[105]
Zhao Y, Pan S, Wu X. Human umbilical cord mesenchymal stem cell-derived exosomes inhibit ovarian granulosa cells inflammatory response through inhibition of NF-κB signaling in polycystic ovary syndrome. J Reprod Immunol 2022; 152: 103638.
[http://dx.doi.org/10.1016/j.jri.2022.103638] [PMID: 35588629]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy