Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

Zingiber officinale, Phyllanthus emblica, Cinnamomum verum, and Curcuma longa to Prevent Type 2 Diabetes: An Integrative Review

Author(s): Uththara Wijewardhana*, Madhura Jayasinghe, Isuru Wijesekara and K.K.D.S. Ranaweera

Volume 19, Issue 8, 2023

Published on: 03 February, 2023

Article ID: e241122211183 Pages: 15

DOI: 10.2174/1573399819666221124104401

Price: $65

Abstract

Diabetes mellitus has become a global pandemic progressively rising and affecting almost every household in all world regions. Diet is a significant root cause of type II diabetes; thus, the significance of dietary interventions in preventing and managing the disease cannot be neglected. Lowering the glycemic impact of diet is an alternative way of managing type II diabetes while improving insulin sensitivity. Medicinal plants are rich in therapeutic phytochemicals which possess hypoglycemic properties. Therefore, it could be speculated that the glycemic impact of diet can be reduced by adding hypoglycemic plant ingredients without altering the sensory properties of food. The main aim of this review is to discuss dietary interventions to manage diabetes and summarize available information on the hypoglycemic properties of four prime herbs of Asian origin. This article collected, tabulated, and summarized groundbreaking reveals from promising studies. This integrative review provides information on the hypoglycemic properties of ginger, Indian gooseberry, cinnamon, and turmeric and discusses the possibility of those herbs reducing the glycemic impact of a diet once incorporated. Further research should be done regarding the incorporation of these herbs successfully into a regular diet.

Keywords: Type 2 diabetes, hypoglycemic, ginger, Indian gooseberry, cinnamon, turmeric.

[1]
Punthakee Z, Goldenberg R, Katz P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes 2018; 42: S10-5.
[http://dx.doi.org/10.1016/j.jcjd.2017.10.003]
[2]
Abbas G, Al Harrasi A, Hussain H, Hamaed A, Supuran CT. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α-glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorg Chem 2019; 86(86): 305-15.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.009] [PMID: 30738330]
[3]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edi. Diabetes Res Clin Pract 2019; 157: 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843]
[4]
Nanditha A, Ma RCW, Ramachandran A, et al. Diabetes in Asia and the Pacific: implications for the global epidemic. Diabetes Care 2016; 39(3): 472-85.
[http://dx.doi.org/10.2337/dc15-1536] [PMID: 26908931]
[5]
WHO. Global report on diabetes. 2016.
[6]
Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi-Samani M. The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician 2016; 8(1): 1832-42.
[http://dx.doi.org/10.19082/1832] [PMID: 26955456]
[7]
Buchholz T, Melzig MF. Medicinal plants traditionally used for treatment of obesity and diabetes mellitus - screening for pancreatic lipase and α-amylase inhibition. Phytother Res 2016; 30(2): 260-6.
[http://dx.doi.org/10.1002/ptr.5525] [PMID: 26632284]
[8]
Abbas G, Ali M, Hamaed A, Al-Sibani M, Hussain H, Al-Harrasi A. Azadirachta indica: the medicinal properties of the global problems-solving tree. In: Biodiversity and Biomedicine INC. 2020; pp. 305-16.
[http://dx.doi.org/10.1016/B978-0-12-819541-3.00017-7]
[9]
Jacob B, Narendhirakannan R. Role of medicinal plants in the management of diabetes mellitus: a review. 3 Biotech 2019; 9(1): 4.
[10]
Samarasinghe CH, Jayasinghe MA, Senadheera SPAS, et al. Determination of glycaemic response of a novel cane sugar product incorporated with Phyllanthus emblica and Zingiber officinale extracts. Malays J Nutr 2020; 26(1): 065-76.
[http://dx.doi.org/10.31246/mjn-2019-0063]
[11]
Gao J, Guo X, Brennan MA, Mason SL, Zeng XA, Brennan C. The potential of modulating the reducing sugar released (and the potential glycemic response) of muffi ns using a combination of a stevia sweetener and cocoa powder. Foods-MDPI 2019; 8(12): 644.
[12]
Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2015; 2016: 48.
[PMID: 26964835]
[13]
Ozougwu O, Obimba K, Belonwu C, Unakalamba C. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol 2013; 4(4): 46-57.
[http://dx.doi.org/10.5897/JPAP2013.0001]
[14]
Sami W, Ansari T, Butt NS, Hamid MRA, Hamid A. Effect of diet on type 2 diabetes mellitus: A review. Int J Health Sci 2017; 11(2): 65-71.
[PMID: 28539866]
[15]
Willett W, Manson J, Liu S. Glycemic index, glycemic load, and risk of type 2 diabetes. Am J Clin Nutr 2002; 76(1): 274S-80S.
[http://dx.doi.org/10.1093/ajcn/76.1.274S] [PMID: 12081851]
[16]
Salmerón J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 1997; 277(6): 472-7.
[http://dx.doi.org/10.1001/jama.1997.03540300040031] [PMID: 9020271]
[17]
Salmerón J, Ascherio A, Rimm EB, et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997; 20(4): 545-50.
[http://dx.doi.org/10.2337/diacare.20.4.545] [PMID: 9096978]
[18]
Livesey G, Taylor R, Hulshof T, Howlett J. Glycemic response and health-a systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am J Clin Nutr 2008; 87(1): 258S-68S.
[http://dx.doi.org/10.1093/ajcn/87.1.258S] [PMID: 18175766]
[19]
Venugopal S, Iyer U, Sanghvi R. Glycemic response of Emblica officinalis powder-incorporated Indian recipes. Nutr Food Sci 2020; 51(3): 1-96.
[20]
Wee MSM, Henry CJ. Reducing the glycemic impact of carbohydrates on foods and meals: Strategies for the food industry and consumers with special focus on Asia. Compr Rev Food Sci Food Saf 2020; 19(2): 670-702.
[http://dx.doi.org/10.1111/1541-4337.12525] [PMID: 33325165]
[21]
Pereira ASP, Banegas-Luna AJ, Peña-García J, Pérez-Sánchez H, Apostolides Z. Evaluation of the anti-diabetic activity of some common herbs and spices: providing new insights with inverse virtual screening. Molecules 2019; 24(22): 4030.
[http://dx.doi.org/10.3390/molecules24224030] [PMID: 31703341]
[22]
Nazir M, Saleem M, Ali I, et al. Fungal metabolites as anti-diabetic agents: emphasis on PTP1B inhibitors. Phytochem Rev 2021; 20(1): 119-43.
[http://dx.doi.org/10.1007/s11101-020-09701-9]
[23]
Hussain H, Ali I, Wang D, et al. 4-Benzyloxylonchocarpin and muracatanes a-c from Ranunculus muricatus l. and their biological effects. Biomolecules 2020; 10(11): 1562.
[http://dx.doi.org/10.3390/biom10111562] [PMID: 33212893]
[24]
Moradi B, Abbaszadeh S, Shahsavari S, Alizadeh M, Beyranvand F. The most useful medicinal herbs to treat diabetes. Biomed Res Ther 2018; 5(8): 2538-51.
[http://dx.doi.org/10.15419/bmrat.v5i8.463]
[25]
Mosihuzzman M, Naheed S, Hareem S, et al. Studies on α-glucosidase inhibition and anti-glycation potential of Iris loczyi and Iris unguicularis. Life Sci 2013; 92(3): 187-92.
[http://dx.doi.org/10.1016/j.lfs.2012.11.022] [PMID: 23270944]
[26]
Abbas G, Al-Harrasi AS, Hussain H, Sattar SA, Choudhary MI. Identification of natural products and their derivatives as promising inhibitors of protein glycation with non-toxic nature against mouse fibroblast 3T3 cells. Int J Phytomed 2017; 8(4): 533-40.
[http://dx.doi.org/10.5138/09750185.1924]
[27]
Pavalakumar D, Jayasinghe M, Edirisinghe M, Wijesekara I, Senadheera S. Cinnamomum zeylanicum and Curcuma longa incorporated dairy yoghurts with hindered glycaemic properties for healthy people. J Fut Foods 2021; 1(1): 104-12.
[http://dx.doi.org/10.1016/j.jfutfo.2021.09.006]
[28]
da silveira VM, Mota EF, Gomes-Rochette NF, Nunes-Pinheiro DCS, Nabavi SM, de Melo DF. Ginger (Zingiber officinale Roscoe). In: Nonvitamin and Nonmineral Nutritional Supplements. Elsevier Inc. 2019; pp. 235-9.
[29]
Bode AM, Dong Z. The Amazing and Mighty Ginger. Herbal Medicine: Biomolecular and Clinical Aspects. (2nd edi..), CRC press 2011.
[http://dx.doi.org/10.1201/b10787-8]
[30]
Srinivasan K. Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. PharmaNutrition 2017; 5(1): 18-28.
[http://dx.doi.org/10.1016/j.phanu.2017.01.001]
[31]
Butt MS, Sultan MT. Ginger and its health claims: molecular aspects. Crit Rev Food Sci Nutr 2011; 51(5): 383-93.
[http://dx.doi.org/10.1080/10408391003624848] [PMID: 21491265]
[32]
Vasala PA. Ginger Handbook of Herbs and Spices. (2nd ed.). Woodhead Publishing Ltd 2012; pp. 319-35.
[http://dx.doi.org/10.1533/9780857095671.319]
[33]
Daily JW, Yang M, Kim DS, Park S. Efficacy of ginger for treating Type 2 diabetes: A systematic review and meta-analysis of randomized clinical trials. J Ethnic Foods 2015; 2(1): 36-43.
[http://dx.doi.org/10.1016/j.jef.2015.02.007]
[34]
Li Y, Tran VH, Duke CC, Roufogalis BD. Preventive and protective properties of Zingiber officinale (Ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: a brief review. Evidence-Based Complement Altern Med 2012; 2012: 516870.
[35]
Stoilova I, Krastanov A, Stoyanova A, Denev P, Gargova S. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem 2007; 102(3): 764-70.
[http://dx.doi.org/10.1016/j.foodchem.2006.06.023]
[36]
Shukla Y, Singh M. Cancer preventive properties of ginger: A brief review. Food Chem Toxicol 2007; 45(5): 683-90.
[http://dx.doi.org/10.1016/j.fct.2006.11.002] [PMID: 17175086]
[37]
Ojewole JAO. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (roscoe) rhizomes (zingiberaceae) in mice and rats. Phytother Res 2006; 20(9): 764-72.
[http://dx.doi.org/10.1002/ptr.1952] [PMID: 16807883]
[38]
Jafri SA, Abass S, Qasim M. Hypoglycemic effect of Ginger (Zingiber officinale) in Alloxan induced diabetic rats (Rattus norvagicus). Pak Vet J 2010; 31(2): 160-2.
[39]
Elshater AE, Salman M, Moussa M. Effect of ginger extract consumption on levels of blood glucose, lipid profile and kidney functions in alloxan induced-diabetic rats. Egypt Acad J Biol Sci A Entomol 2009; 2(1): 153-62.
[http://dx.doi.org/10.21608/eajbsa.2009.15515]
[40]
Akhani SP, Vishwakarma SL, Goyal RK. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J Pharm Pharmacol 2010; 56(1): 101-5.
[http://dx.doi.org/10.1211/0022357022403] [PMID: 14980006]
[41]
Oludoyin AP, Adegoke SR. Effect of Ginger (Zingiber officinale) extracts on blood glucose in normal and streptozotocin-induced diabetic rats. Int J Clin Nutr 2014; 2(2): 32-5.
[42]
Islam MS, Choi H. Comparative effects of dietary ginger (Zingiber officinale) and garlic (Allium sativum) investigated in a type 2 diabetes model of rats. J Med Food 2008; 11(1): 152-9.
[http://dx.doi.org/10.1089/jmf.2007.634] [PMID: 18361751]
[43]
Al-Amin ZM, Thomson M, Al-Qattan KK, Peltonen-Shalaby R, Ali M. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. Br J Nutr 2006; 96(4): 660-6.
[http://dx.doi.org/10.1079/BJN20061849] [PMID: 17010224]
[44]
Bhandari U, Kanojia R, Pillai KK. Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats. J Ethnopharmacol 2005; 97(2): 227-30.
[http://dx.doi.org/10.1016/j.jep.2004.11.011] [PMID: 15707757]
[45]
Andallu B, Radhika B, Suryakantham V. Effect of aswagandha, ginger and mulberry on hyperglycemia and hyperlipidemia. Plant Foods Hum Nutr 2003; 58(3): 1-7.
[http://dx.doi.org/10.1023/B:QUAL.0000040352.23559.04]
[46]
Arablou T, Aryaeian N, Valizadeh M, Sharifi F, Hosseini A, Djalali M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int J Food Sci Nutr 2014; 65(4): 515-20.
[http://dx.doi.org/10.3109/09637486.2014.880671] [PMID: 24490949]
[47]
Khandouzi N, Shidfar F, Rajab A, Rahideh T, Hosseini P, Mir Taheri M. The effects of ginger on fasting blood sugar, hemoglobin a1c, apolipoprotein B, apolipoprotein a-I and malondialdehyde in type 2 diabetic patients. Iran J Pharm Res 2015; 14(1): 131-40.
[PMID: 25561919]
[48]
Azimi P, Ghiasvand R, Feizi A, Hariri M, Abbasi B. Effects of cinnamon, cardamom, saffron, and ginger consumption on markers of glycemic control, lipid profile, oxidative stress, and inflammation in type 2 diabetes patients. Rev Diabet Stud 2014; 11(3-4): 258-66.
[http://dx.doi.org/10.1900/RDS.2014.11.258] [PMID: 26177486]
[49]
Bordia A, Verma SK, Srivastava KC. Effect of ginger (Zingiber officinale Rosc.) and fenugreek (Trigonella foenumgraecum L.) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease. Prostaglandins Leukot Essent Fatty Acids 1997; 56(5): 379-84.
[http://dx.doi.org/10.1016/S0952-3278(97)90587-1] [PMID: 9175175]
[50]
Makhdoomi AM, Mohammadzadeh HN, Saedisomeolia A, et al. The effects of ginger on fasting blood sugar, hemoglobin A1c, and lipid profiles in patients with type 2 diabetes. Int J Endocrinol Metab 2017; e57927.
[http://dx.doi.org/10.5812/ijem.57927] [PMID: 29344037]
[51]
Mahluji S, Attari VE, Mobasseri M, Payahoo L, Ostadrahimi A, Golzari SEJ. Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. Int J Food Sci Nutr 2013; 64(6): 682-6.
[http://dx.doi.org/10.3109/09637486.2013.775223] [PMID: 23496212]
[52]
Mozaffari-Khosravi H, Talaei B, Jalali BA, Najarzadeh A, Mozayan MR. The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Complement Ther Med 2014; 22(1): 9-16.
[http://dx.doi.org/10.1016/j.ctim.2013.12.017] [PMID: 24559810]
[53]
Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S. The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J Complement Integr Med 2015; 12(2): 165-70.
[http://dx.doi.org/10.1515/jcim-2014-0021] [PMID: 25719344]
[54]
Shanmugam KR, Mallikarjuna K, Kesireddy N, Sathyavelu RK. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol 2011; 49(4): 893-7.
[http://dx.doi.org/10.1016/j.fct.2010.12.013] [PMID: 21184796]
[55]
Baliga MS, Dsouza JJ. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur J Cancer Prev 2011; 20(3): 225-39.
[http://dx.doi.org/10.1097/CEJ.0b013e32834473f4] [PMID: 21317655]
[56]
D’souza JJ, D’souza PP, Fazal F, Kumar A, Bhat H, Baliga MS. Function Anti-diabetic effects of the Indian indigenous fruit Emblica officinalis Gaertn: active constituents and. Food Funct 2014; 5: 635-44.
[http://dx.doi.org/10.1039/c3fo60366k] [PMID: 24577384]
[57]
Khan KH. Roles of Emblica officinalis in medicine - A review. Bot Res Int 2009; 2(4): 218-28.
[58]
Hasan MR, Islam MN, Islam MR. Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis: A review. Int Curr Pharm J 2016; 5(2): 14-21.
[http://dx.doi.org/10.3329/icpj.v5i2.26441]
[59]
Yadav SS, Singh MK, Singh PK, Kumar V. Traditional knowledge to clinical trials: A review on therapeutic actions of Emblica officinalis. Biomed Pharmacother 2017; 93: 1292-302.
[http://dx.doi.org/10.1016/j.biopha.2017.07.065] [PMID: 28747010]
[60]
Bhandari P, Kamdod M. Emblica officinalis (Amla): A review of potential therapeutic applications. Int J Green Pharm 2012; 6(4): 257-69.
[http://dx.doi.org/10.4103/0973-8258.108204]
[61]
Ansari A, Shahriar MSZ, Hassan MM, et al. Emblica officinalis improves glycemic status and oxidative stress in STZ induced type 2 diabetic model rats. Asian Pac J Trop Med 2014; 7(1): 21-5.
[http://dx.doi.org/10.1016/S1995-7645(13)60185-6] [PMID: 24418077]
[62]
Singh MK, Dwivedi S, Yadav SS, Yadav RS, Khattri S. Anti-diabetic effect of Emblica-officinalis (Amla) against arsenic induced metabolic disorder in mice. Indian J Clin Biochem 2020; 35(2): 179-87.
[http://dx.doi.org/10.1007/s12291-019-00820-5] [PMID: 32226249]
[63]
Elobeid MA, Ahmed EA. Antidiabetic efficacy of aqueous fruit extract of Amla (Emblica officinalis, gaertn) in streptozotocininduced diabetes mellitus in male rats. 2015; 14(5): 801-6.
[64]
Akhtar MS, Ramzan A, Ali A, Ahmad M. Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int J Food Sci Nutr 2011; 62(6): 609-16.
[http://dx.doi.org/10.3109/09637486.2011.560565] [PMID: 21495900]
[65]
Sri KVS, Kumari DJ, Sivannarayana G. Original research article effect of amla, an approach towards the control of diabetes mellitus. Int J Curr Microbiol Appl Sci 2013; 2(9): 103-8.
[66]
Usharani P, Fatima N, Muralidhar N. Effects of Phyllanthus emblica extract on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: a randomized, double-blind, controlled study. Diabetes Metab Syndr Obes 2013; 6: 275-84.
[PMID: 23935377]
[67]
Rao TP, Sakaguchi N, Juneja LR, Wada E, Yokozawa T. Amla (Emblica officinalis Gaertn.) extracts reduce oxidative stress in streptozotocin-induced diabetic rats. J Med Food 2005; 8(3): 362-8.
[http://dx.doi.org/10.1089/jmf.2005.8.362] [PMID: 16176148]
[68]
Variya BC, Bakrania AK, Patel SS. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR- γ and Akt signaling. Phytomedicine 2019; 52: 152906.
[PMID: 31064680]
[69]
Kapoor MP, Suzuki K, Derek T, Ozeki M, Okubo T. Clinical evaluation of Emblica officinalis Gatertn (Amla) in healthy human subjects: Health benefits and safety results from a randomized, double-blind, crossover placebo-controlled study. Contemp Clin Trials Commun 2020; 17: 100499.
[http://dx.doi.org/10.1016/j.conctc.2019.100499] [PMID: 31890983]
[70]
Barceloux DG. Cinnamon (Cinnamomum species). Dis Mon 2009; 55(6): 327-35.
[http://dx.doi.org/10.1016/j.disamonth.2009.03.003] [PMID: 19446676]
[71]
Mbaveng AT, Kuete V. Cinnamon species. Medicinal Spices and Vegetables from Africa. Elsevier Inc. 2017; pp. 385-95.
[http://dx.doi.org/10.1016/B978-0-12-809286-6.00017-0]
[72]
Thomas J, Kuruvilla K. Cinnamon. Handbook of Herbs and Spices. (2nd edi..). Woodhead Publishing Ltd 2012; pp. 182-96.
[http://dx.doi.org/10.1533/9780857095671.182]
[73]
Wang J, Su B, Jiang H, et al. Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum: A review. Fitoterapi 2020; p. 146.
[74]
Charles D. Cinnamon. In: Antioxidant properties of spices, herbs and other sources. New York: springer 2012; pp. 231-43.
[75]
Gruenwald J, Freder J, Armbruester N. Cinnamon and health. Crit Rev Food Sci Nutr 2010; 50(9): 822-34.
[http://dx.doi.org/10.1080/10408390902773052] [PMID: 20924865]
[76]
Rao PV, Gan SH. Cinnamon: A multifaceted medicinal plant. Evidence-Based Complement Altern Med 2014; 2014: 642942.
[77]
Ranasinghe P, Gunatilake M, Gunapala N, et al. Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model. Pharmacognosy Res 2012; 4(2): 73-9.
[http://dx.doi.org/10.4103/0974-8490.94719] [PMID: 22518078]
[78]
Kim SH, Hyun SH, Choung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol 2006; 104(1-2): 119-23.
[http://dx.doi.org/10.1016/j.jep.2005.08.059] [PMID: 16213119]
[79]
Mang B, Wolters M, Schmitt B, et al. Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. Eur J Clin Invest 2006; 36(5): 340-4.
[http://dx.doi.org/10.1111/j.1365-2362.2006.01629.x] [PMID: 16634838]
[80]
Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 2003; 26(12): 3215-8.
[http://dx.doi.org/10.2337/diacare.26.12.3215] [PMID: 14633804]
[81]
Vanschoonbeek K, Thomassen BJW, Senden JM, Wodzig WKWH, van Loon LJC. Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J Nutr 2006; 136(4): 977-80.
[http://dx.doi.org/10.1093/jn/136.4.977] [PMID: 16549460]
[82]
Soni R, Bhatnagar V. Effect of Cinnamon (Cinnamomum cassia) intervention on blood glucose of middle aged adult male with non insulin dependent diabetes mellitus (NIDDM). Stud Ethno-Med 2009; 3(2): 141-4.
[http://dx.doi.org/10.1080/09735070.2009.11886352]
[83]
Sahib A. Anti-diabetic and antioxidant effect of cinnamon in poorly controlled type-2 diabetic Iraqi patients: A randomized, placebo-controlled clinical trial. J Intercult Ethnopharmacol 2016; 5(2): 108-13.
[http://dx.doi.org/10.5455/jice.20160217044511] [PMID: 27104030]
[84]
Talaei B, Amouzegar A, Sahranavard S, Hedayati M, Mirmiran P, Azizi F. Effects of cinnamon consumption on glycemic indicators, advanced glycation end products, and antioxidant status in type 2 diabetic patients. Nutrients 2017; 9(9): 991.
[http://dx.doi.org/10.3390/nu9090991] [PMID: 28885566]
[85]
Pham AQ, Kourlas H, Pham DQ, Pham DQ, Pharm D. Cinnamon supplementation in patients with type 2 diabetes mellitus. Pharmacotherapy 2007; 27(4): 595-9.
[http://dx.doi.org/10.1592/phco.27.4.595] [PMID: 17381386]
[86]
Qin B, Panickar KS, Anderson RA. Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. J Diabetes Sci Technol 2010; 4(3): 685-93.
[http://dx.doi.org/10.1177/193229681000400324] [PMID: 20513336]
[87]
Anderson RA, Broadhurst CL, Polansky MM, et al. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J Agric Food Chem 2004; 52(1): 65-70.
[http://dx.doi.org/10.1021/jf034916b] [PMID: 14709014]
[88]
Medagama AB. The glycaemic outcomes of cinnamon, a review of the experimental evidence and clinical trials. Nutr J 2015; 14(1): 108.
[http://dx.doi.org/10.1186/s12937-015-0098-9] [PMID: 26475130]
[89]
Hlebowicz J, Darwiche G, Björgell O, Almér LO. Effect of cinnamon on postprandial blood glucose, gastric emptying, and satiety in healthy subjects. Am J Clin Nutr 2007; 85(6): 1552-6.
[http://dx.doi.org/10.1093/ajcn/85.6.1552] [PMID: 17556692]
[90]
Prasad S, Aggarwal BB. Turmeric, the Golden Spice: From Traditional Medicine to Modern Medicine. In: Benzie IFF, Wachtel-Galor S, Eds. Herbal Medicine: Biomolecular and Clinical Aspects. (2nd edition.), Boca Raton (FL): CRC Press 2011.
[http://dx.doi.org/10.1201/b10787-14]
[91]
Attokaran M. Turmeric. In: Natural Food flavors and Colorants. (2nd ed.). John Wiley & Sons Ltd 2017; pp. 360-7.
[http://dx.doi.org/10.1002/9781119114796.ch100]
[92]
Hewlings SJ, Kalman DS. Curcumin: A review of its ’ effects on human health. Foods 2017; 6(10): 92.
[93]
Kuroda M, Mimaki Y, Nishiyama T, et al. Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. Biol Pharm Bull 2005; 28(5): 937-9.
[http://dx.doi.org/10.1248/bpb.28.937] [PMID: 15863912]
[94]
Honda S, Aoki F, Tanaka H, et al. Effects of ingested turmeric oleoresin on glucose and lipid metabolisms in obese diabetic mice: a DNA microarray study. J Agric Food Chem 2006; 54(24): 9055-62.
[http://dx.doi.org/10.1021/jf061788t] [PMID: 17117790]
[95]
Abdel Aziz MT, El-Asmar MF, Rezq AM, et al. The effect of a novel curcumin derivative on pancreatic islet regeneration in experimental type-1 diabetes in rats (long term study). Diabetol Metab Syndr 2013; 5(1): 75.
[http://dx.doi.org/10.1186/1758-5996-5-75] [PMID: 24279645]
[96]
Wickenberg J, Ingemansson SL, Hlebowicz J. Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects. Nutr J 2010; 9(1): 43.
[http://dx.doi.org/10.1186/1475-2891-9-43] [PMID: 20937162]
[97]
Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012; 35(11): 2121-7.
[http://dx.doi.org/10.2337/dc12-0116] [PMID: 22773702]
[98]
Na L, Li Y, Pan H, et al. Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial. Mol Nutr Food Res 2012; 57(9): 1569-77.
[PMID: 22930403]
[99]
Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 2008; 149(7): 3549-58.
[http://dx.doi.org/10.1210/en.2008-0262] [PMID: 18403477]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy