Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Reducing Hepatotoxicity Mechanism of Radix Wikstroemia Indica by Processing with “Sweat Soaking Method” Using UPLC-MS/MS and a Cocktail Probe Substrate

Author(s): Hongmei Su, Guo Feng*, Qin Xu, Wei Li, Wen Liu, Zengguang Wu, Lailai Li, Wenjing Wang, Guanglin Zhu, Chenchen Ren, Xueli Song, Ju Zhang and Zhengyan He

Volume 20, Issue 7, 2023

Published on: 23 January, 2023

Page: [965 - 976] Pages: 12

DOI: 10.2174/1570180820666230104121731

open access plus

Abstract

Background: Radix Wikstroemia indica is a traditional Chinese medicine (TCM) used as antiinflammatory and anti-tumor drug. However, it has serious hepatotoxicity, "Sweat soaking method" processed could effectively decrease its hepatotoxicity.

Objective: The objective of this study is to study the effects of Radix Wikstroemia indica on six kinds of cytochrome P450(CYP450) isozymes of rat liver microsomes before and after processing, and to study the mechanism of Radix Wikstroemia indica processed by the "Sweat soaking method" to reduce liver toxicity in rats.

Methods: In this study, the effects of Radix Wikstroemia indica and processed Radix Wikstroemia indica on the six main CYP450 isoforms (2E1, 1A2, 2C6, 2D1, 2C11, and 3A1) were investigated in vitro. Using a cocktail probe of CYP450 isoform-specific substrates and their metabolites, we carried out in vitro enzymatic studies in liver microsomal incubation systems via UPLC-MS/MS.

Results: The results showed that the established UPLC-MS/MS method was precise and reliable. Compared with the blank group, the activities of six enzymes in the RWI and PRWI groups were higher than those in the blank group. At the same dose, the enzyme activities of CYP2E1, CYP1A2, CYP2C6, CYP2C11, and CYP3A1 increased with the increase in dose, and the enzyme activities of the RWI group were higher than those of the PRWI group. The enzyme activities of CYP2E1 and CYP1A2 in the Radix Wikstroemia indica group were significantly increased compared with the blank group, CYP3A1 in the RWI high-dose group was higher than that in the blank group and PRWI group with statistical differences (p < 0.05 or p < 0.01).

Conclusion: The processed Radix Wikstroemia indica could reduce liver injury, and its detoxication mechanism might be related to the decrease in enzyme activity of CYP1A2, CYP2E1 and CYP3A1.

Keywords: Wikstroemia indica, sweat soaking method, cytochrome P450 enzyme, cocktail probe drug method, hepatotoxicity, LC-MS/MS.

« Previous
Graphical Abstract
[1]
Ko, F.N.; Chang, Y.L.; Kuo, Y.H.; Lin, Y.L.; Teng, C.M. Daphnoretin, a new protein kinase C activator isolated from Wikstroemia indica C.A. Mey. Biochem. J., 1993, 295(1), 321-327.
[http://dx.doi.org/10.1042/bj2950321] [PMID: 8216237]
[2]
Zhang, J.J.; Xiong, Y.; Zhang, G.L.; Li, W. Acute toxicity of extract from indian stringbush root and its different extracted parts. Lishizhen Med. Mater. Med. Res., 2011, 22(11), 2829-2830.
[3]
Feng, G.; Li, W.; He, X.; Zheng, C.Q.; Leng, A.B.; Tian, X.F. Comparison of acute toxicity effects of ethanol extract from different processed products of miao medicine Wikstroemia indica on mice. Chin. Pharm., 2017, 28(25), 3536-3540.
[4]
Feng, G.; Chen, Y.; Li, W.; Li, L.; Wu, Z.; Wu, Z.; Hai, Y.; Zhang, S.; Zheng, C.; Liu, C.; He, X. Exploring the Q-marker of “sweat soaking method” processed radix Wikstroemia indica: Based on the “effect-toxicity-chemicals” study. Phytomedicine, 2018, 45, 49-58.
[http://dx.doi.org/10.1016/j.phymed.2018.03.063] [PMID: 29691116]
[5]
Zhang, J.J.; Xiong, Y.; Li, W.; Wang, J.k.; Lin, C.; Wu, L.; Yang, Q. Comparison of antibacterial and anti - inflammatory effect of unprocessed and processed products of Indian stringbush root. Lishizhen Med. Mater. Med. Res., 2015, 26(05), 1118-1120.
[6]
Zhang, J.J.; Xiong, Y.; Li, W.; Zhang, G.L.; Wang, J.k.; Lin, C.; Wu, L. A comparative study on the acute toxicity of the Wikstroemia indica raw product and two kinds of processed products was conducted. Chin. J. Chin. Mater. Med., 2011, 36(09), 1172-1174.
[7]
Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets, 2018, 19(1), 38-54.
[PMID: 28124606]
[8]
Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and induction of CYP enzymes in humans: An update. Arch. Toxicol., 2020, 94(11), 3671-3722.
[http://dx.doi.org/10.1007/s00204-020-02936-7] [PMID: 33111191]
[9]
Liao, N.S.; Chen, W.L. Application progress of cytochrome oxidase P450 family in toxicity study of traditional Chinese medicine. Zhongguo Yaolixue Yu Dulixue Zazhi, 2012, 26(3), 402-405.
[10]
Li, Z.; Hou, J.; Li, W.; Li, D.K.; Song, M.Z.; Wang, M.X.; Ju, A.C. Effect of injection of Yiqi Fumai Lyophilized Injection on activity of CYP450 subtypes in human liver microsomes. Yaowu Pingjia Yanjiu, 2018, 41(7), 1224-1228.
[11]
Zhu, L.Y.; Guo, J.; Zhang, A.L.; Wang, B.J.; Zeng, L.F.; Xu, F.R.; Ma, X.H. Research progress on CYP450 involved in medicinal plant triterpenoid biosynthesis. Chin. Tradit. Herbal Drugs, 2019, 50(22), 5597-5610.
[12]
Wang, Q.L.; Zhou, Z.S. Association between cytochrome P450 gene polymorphism and drug-induced liver injury. J. Clin. Hepatol., 2020, 36(5), 199-202.
[13]
Geng, T.; Si, H.; Kang, D.; Li, Y.; Huang, W.; Ding, G.; Wang, Z.; Bi, Y.; Zhang, H.; Xiao, W. Influences of Re Du Ning Injection, a traditional Chinese medicine injection, on the CYP450 activities in rats using a cocktail method. J. Ethnopharmacol., 2015, 174, 426-436.
[http://dx.doi.org/10.1016/j.jep.2015.08.035] [PMID: 26318744]
[14]
Breimer, D.D.; Schellens, J.H.M.A. ‘cocktail’ strategy to assess in vivo oxidative drug metabolism in humans. Trends Pharmacol. Sci., 1990, 11(6), 223-225.
[http://dx.doi.org/10.1016/0165-6147(90)90245-4] [PMID: 2200179]
[15]
Hou, C.S.; Yang, Z.H.; Sun, X.B. Progress of “Cocktail” probe substrate approach and its application in studying the influence of Traditional Chinese medicine on cytochrome P450. Zhongguo Yaolixue Yu Dulixue Zazhi, 2013, 27(03), 445-450.
[16]
Du, X.; He, X.; Huang, Y.H.; Li, Z.Q. Progress on studies of impact on CYP450 enzymes activity of traditional Chinese medicine by Cocktail probe substrates approach. Zhongguo Zhongyao Zazhi, 2016, 41(24), 4541-4549.
[PMID: 28936835]
[17]
Spaggiari, D.; Geiser, L.; Daali, Y.; Rudaz, S. Phenotyping of CYP450 in human liver microsomes using the cocktail approach. Anal. Bioanal. Chem., 2014, 406(20), 4875-4887.
[http://dx.doi.org/10.1007/s00216-014-7915-4] [PMID: 24894520]
[18]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[19]
Kenaan, C.; Shea, E.V.; Lin, H.; Zhang, H.; Pratt-Hyatt, M.J.; Hollenberg, P.F. Interactions between CYP2E1 and CYP2B4: Effects on affinity for NADPH-cytochrome P450 reductase and substrate metabolism. Drug Metab. Dispos., 2013, 41(1), 101-110.
[http://dx.doi.org/10.1124/dmd.112.046094] [PMID: 23043184]
[20]
Angireddy, R.; Chowdhury, A.R.; Zielonka, J.; Ruthel, G.; Kalyanaraman, B.; Avadhani, N.G. Alcohol-induced CYP2E1, mitochondrial dynamics and retrograde signaling in human hepatic 3D organoids. Free Radic. Biol. Med., 2020, 159, 1-14.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.030] [PMID: 32738395]
[21]
Zhao, X.; Li, L.; Zhou, M.; Liu, M.; Deng, Y.; He, L.; Guo, C.; Li, Y. An overview of the mechanism of Penthorum chinense pursh on alcoholic fatty Liver. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/4875764] [PMID: 33014105]
[22]
Chen, K.; Guo, N.; Zhang, R.; Wei, C.; Guo, R. CYP2E1 and miRNA‐378a‐3p contribute to acetaminophen‐ or tripterygium glycosides‐induced hepatotoxicity Basic Clin. Pharmacol. Toxicol., 2020, 126(2), 153-165.
[http://dx.doi.org/10.1111/bcpt.13313] [PMID: 31468699]
[23]
Liu, X.; Chen, C.; Zhang, X. Drug-drug interaction of acetaminophen and roxithromycin with the cocktail of cytochrome P450 and hepatotoxicity in rats. Int. J. Med. Sci., 2020, 17(3), 414-421.
[http://dx.doi.org/10.7150/ijms.38527] [PMID: 32132876]
[24]
Yang, S.; Kuang, G.; Jiang, R.; Wu, S.; Zeng, T.; Wang, Y.; Xu, F.; Xiong, L.; Gong, X.; Wan, J. Geniposide protected hepatocytes from acetaminophen hepatotoxicity by down-regulating CYP 2E1 expression and inhibiting TLR 4/NF-κB signaling pathway. Int. Immunopharmacol., 2019, 74105625
[http://dx.doi.org/10.1016/j.intimp.2019.05.010] [PMID: 31302451]
[25]
Park, W.O.O.J.A.E.; Kim, S.Y.; Kim, Y.R.; Park, J.O.O.W.O.N. Bortezomib alleviates drug-induced liver injury by regulating CYP2E1 gene transcription. Int. J. Mol. Med., 2016, 37(3), 613-622.
[http://dx.doi.org/10.3892/ijmm.2016.2461] [PMID: 26797017]
[26]
Klein, K.; Winter, S.; Turpeinen, M.; Schwab, M.; Zanger, U.M. Pathway-targeted pharmacogenomics of CYP1A2 in human liver. Front. Pharmacol., 2010, 1(129), 129.
[http://dx.doi.org/10.3389/fphar.2010.00129] [PMID: 21918647]
[27]
Guo, J.; Zhu, X.; Badawy, S.; Ihsan, A.; Liu, Z.; Xie, C.; Wang, X. Metabolism and mechanism of human cytochrome P450 enzyme 1A2. Curr. Drug Metab., 2021, 22(1), 40-49.
[http://dx.doi.org/10.2174/1389200221999210101233135] [PMID: 33397254]
[28]
Jing, X.Y.; Peng, Y.R.; Wang, X.M.; Ying, J.A. Combined effect of Euphorbia kansui and Glycyrrhiza uralensis on CYP1A2, CYP2C19 and CYP2E1. Chin. Pharmacol. Bull., 2015, 31(11), 1625-1626.
[29]
Ci, R.; Zhang, K.; Zhu, A.; Zang, W. Dendrobine attenuates isoniazid- and rifampicin-induced liver injury by inhibiting miR-295-5p. Hum. Exp. Toxicol., 2020, 39(12), 1671-1680.
[http://dx.doi.org/10.1177/0960327120937047] [PMID: 32633153]
[30]
Dong, H.; Zhang, H.H.; Dou, G.F.; Meng, Z.Y.; Zhu, X.X.; Gu, N.L.; Wu, Z.N.; Gan, H. Effects of γ-ray radiation on protein expression and drug metabolism activity of drug metabolism enzymes CYP1A2, CYP2C9 and CYP2D6 in rat liver. Zhongguo Yaolixue Yu Dulixue Zazhi, 2021, 35(04), 290-296.
[31]
Samuels, E.R.; Sevrioukova, I. Inhibition of human CYP3A4 by rationally designed ritonavir-like compounds: Impact and interplay of the side group functionalities. Mol. Pharm., 2018, 15(1), 279-288.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00957] [PMID: 29232137]
[32]
Guengerich, F.P. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu. Rev. Pharmacol. Toxicol., 1999, 39(1), 1-17.
[http://dx.doi.org/10.1146/annurev.pharmtox.39.1.1] [PMID: 10331074]
[33]
Chen, Y.; Ye, X.L.; Wang, X.J.; Yang, L.; Xiong, A.Z.; Wang, C.H.; Wang, Z.T. The protective effect of ritonavir against Gynura japonica induced liver injury in rats. Yao Xue Xue Bao, 2022, 57(02), 392-398.
[34]
Ruan, J.; Liao, C.; Ye, Y.; Lin, G. Lack of metabolic activation and predominant formation of an excreted metabolite of nontoxic platynecine-type pyrrolizidine alkaloids. Chem. Res. Toxicol., 2014, 27(1), 7-16.
[http://dx.doi.org/10.1021/tx4004159] [PMID: 24308637]

© 2024 Bentham Science Publishers | Privacy Policy