Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

DFT and Molecular Dynamics Simulation Studies of 4-(2-(2-(2- Chloroacetamido)phenoxy)acetamido)-3-Nitrobenzoic Acid and 4-(2- (Benzo[D]thiazol-2-ylthio)acetamido)-3-Nitrobenzoic Acid against Escherichia coli ParE Enzyme

Author(s): Vidyasrilekha Yele*, Bharat Kumar Reddy Sanapalli and Afzal Azam Mohammed*

Volume 21, Issue 2, 2024

Published on: 28 September, 2022

Page: [289 - 296] Pages: 8

DOI: 10.2174/1570180819666220811102929

Price: $65

Abstract

Background: The increased emergence of multidrug-resistant bacterial strains is a continuous life-threatening global problem. The best approach to prevent the reproduction and invasion of the pathogenic bacteria is to inhibit the replication stage. The untapped molecular machinery involved in the replication is ParE subunit of topoisomerase IV. In this study, compounds active against the ParE were selected.

Objective: This study aimed to analyze the electronic parameters, chemical stability, kinetic stability, and binding modes of the compounds.

Methods: Density functional theory (DFT) and molecular electrostatic potential (MESP) calculations were computed using Jaguar with a basis set of 6-31G**++ (B3LYP) in the gas phase. MD simulation was performed for the 100 ns using Desmond available in Maestro to determine the stability and obtain an insight into the molecular mechanism of E. coli ParE docked complexes.

Results: From the DFT calculations, the energy gap ΔE -7.58 and -7.75 eV between the HOMO and LUMO of both the compounds P1 (4-(2-(2-(2-chloroacetamido)phenoxy)acetamido)-3-nitrobenzoic acid) and P2 (4-(2-(benzo[d]thiazol-2-ylthio)acetamido)-3-nitrobenzoic acid) explained the chemical and kinetic stability of the system. MD results demonstrated the minimum fluctuations and conformational stability of the protein structures.

Conclusion: The P1 and P2 compounds were chemically and kinetically stable. Furthermore, MD results demonstrated the stability and inhibitory action of the ligands dependent on hydrophobic, ionic and water bridges than that of hydrogen-bonding interactions.

Keywords: ParE, density functional theory, molecular electrostatic potential, molecular dynamics simulation studies, highest occupied molecular orbital, lowest unoccupied molecular orbital

Graphical Abstract
[1]
Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev., 2011, 24(1), 71-109.
[http://dx.doi.org/10.1128/CMR.00030-10] [PMID: 21233508]
[2]
Miller, J.R.; Waldrop, G.L. Discovery of novel antibacterials. Expert Opin. Drug Discov., 2010, 5(2), 145-154.
[http://dx.doi.org/10.1517/17460440903493449] [PMID: 22822914]
[3]
Fischbach, M.A.; Walsh, C.T. Antibiotics for emerging pathogens. Science, 2009, 325(5944), 1089-1093.
[http://dx.doi.org/10.1126/science.1176667] [PMID: 19713519]
[4]
Skurnik, D.; Clermont, O.; Guillard, T.; Launay, A.; Danilchanka, O.; Pons, S.; Diancourt, L.; Lebreton, F.; Kadlec, K.; Roux, D.; Jiang, D.; Dion, S.; Aschard, H.; Denamur, M.; Cywes-Bentley, C.; Schwarz, S.; Tenaillon, O.; Andremont, A.; Picard, B.; Mekalanos, J.; Brisse, S.; Denamur, E. Emergence of antimicrobial-resistant Escherichia coli of animal origin spreading in humans. Mol. Biol. Evol., 2016, 33(4), 898-914.
[http://dx.doi.org/10.1093/molbev/msv280] [PMID: 26613786]
[5]
Griffin, P.M.; Tauxe, R.V. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol. Rev., 1991, 13(1), 60-98.
[http://dx.doi.org/10.1093/oxfordjournals.epirev.a036079] [PMID: 1765120]
[6]
Kim, Y.K.; Pai, H.; Lee, H.J.; Park, S.E.; Choi, E.H.; Kim, J.; Kim, J.H.; Kim, E.C. Bloodstream infections by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: Epidemiology and clinical outcome. Antimicrob. Agents Chemother., 2002, 46(5), 1481-1491.
[http://dx.doi.org/10.1128/AAC.46.5.1481-1491.2002] [PMID: 11959586]
[7]
Maxwell, A. DNA gyrase as a drug target. Trends Microbiol., 1997, 5(3), 102-109.
[http://dx.doi.org/10.1016/S0966-842X(96)10085-8] [PMID: 9080608]
[8]
Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70(1), 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[9]
Mitscher, L.A. Bacterial topoisomerase inhibitors: Quinolone and pyridone antibacterial agents. Chem. Rev., 2005, 105(2), 559-592.
[http://dx.doi.org/10.1021/cr030101q] [PMID: 15700957]
[10]
O’Dea, M.H.; Tamura, J.K.; Gellert, M. Mutations in the B subunit of Escherichia coli DNA gyrase that affect ATP-dependent reactions. J. Biol. Chem., 1996, 271(16), 9723-9729.
[http://dx.doi.org/10.1074/jbc.271.16.9723] [PMID: 8621650]
[11]
Sifaoui, F.; Lamour, V.; Varon, E.; Moras, D.; Gutmann, L. ATP-bound conformation of topoisomerase IV: A possible target for quinolones in Streptococcus pneumoniae. J. Bacteriol., 2003, 185(20), 6137-6146.
[http://dx.doi.org/10.1128/JB.185.20.6137-6146.2003] [PMID: 14526026]
[12]
Janoir, C.; Zeller, V.; Kitzis, M.D.; Moreau, N.J.; Gutmann, L. High-level fluoroquinolone resistance in Streptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob. Agents Chemother., 1996, 40(12), 2760-2764.
[http://dx.doi.org/10.1128/AAC.40.12.2760] [PMID: 9124836]
[13]
Wigley, D.B.; Davies, G.J.; Dodson, E.J.; Maxwell, A.; Dodson, G. Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature, 1991, 351(6328), 624-629.
[http://dx.doi.org/10.1038/351624a0] [PMID: 1646964]
[14]
Tsai, F.T.; Singh, O.M.; Skarzynski, T.; Wonacott, A.J.; Weston, S.; Tucker, A.; Pauptit, R.A.; Breeze, A.L.; Poyser, J.P.; O’Brien, R.; Ladbury, J.E.; Wigley, D.B. The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Proteins, 1997, 28(1), 41-52.
[http://dx.doi.org/10.1002/(SICI)1097-0134(199705)28:1<41:AID-PROT4>3.0.CO;2-M] [PMID: 9144789]
[15]
Lübbers, T.; Angehrn, P.; Gmünder, H.; Herzig, S.; Kulhanek, J. Design, synthesis, and structure-activity relationship studies of ATP analogues as DNA gyrase inhibitors. Bioorg. Med. Chem. Lett., 2000, 10(8), 821-826.
[http://dx.doi.org/10.1016/S0960-894X(00)00109-8] [PMID: 10782694]
[16]
Bellon, S.; Parsons, J.D.; Wei, Y.; Hayakawa, K.; Swenson, L.L.; Charifson, P.S.; Lippke, J.A.; Aldape, R.; Gross, C.H. Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): A single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase. Antimicrob. Agents Chemother., 2004, 48(5), 1856-1864.
[http://dx.doi.org/10.1128/AAC.48.5.1856-1864.2004] [PMID: 15105144]
[17]
Li, Y.; Wong, Y.X.; Poh, Z.Y.; Wong, Y.L.; Lee, M.Y.; Ng, H.Q.; Liu, B.; Hung, A.W.; Cherian, J.; Hill, J.; Keller, T.H.; Kang, C. NMR structural characterization of the N-terminal active domain of the gyrase B subunit from Pseudomonas aeruginosa and its complex with an inhibitor. FEBS Lett., 2015, 589(19 Pt B), 2683-2689.
[http://dx.doi.org/10.1016/j.febslet.2015.07.044] [PMID: 26272827]
[18]
Li, Y.; Wong, Y.L.; Ng, F.M.; Liu, B.; Wong, Y.X.; Poh, Z.Y.; Then, S.W.; Lee, M.Y.; Ng, H.Q.; Hung, A.W.; Cherian, J.; Hill, J.; Keller, T.H.; Kang, C. Characterization of the interaction between Escherichia coli topoisomerase IV E subunit and an ATP competitive inhibitor. Biochem. Biophys. Res. Commun., 2015, 467(4), 961-966.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.036] [PMID: 26471301]
[19]
Kang, C.; Li, Y.; Cherian, J.; Liu, B.; Ng, H.Q.; Lee, M.Y.; Binte Ahmad, N.H.; Poh, Z.Y.; Wong, Y.X.; Huang, Q.; Wong, Y.L.; Hung, A.W.; Hill, J.; Keller, T.H. Biophysical studies of bacterial topoisomerases substantiate their binding modes to an inhibitor. Biophys. J., 2015, 109(9), 1969-1977.
[http://dx.doi.org/10.1016/j.bpj.2015.10.001] [PMID: 26536273]
[20]
Li, Y.; Wong, Y.L.; Lee, M.Y.; Ng, H.Q.; Kang, C. Backbone assignment of the N-terminal 24-kDa fragment of Escherichia coli topoisomerase IV ParE subunit. Biomol. NMR Assign., 2016, 10(1), 135-138.
[http://dx.doi.org/10.1007/s12104-015-9652-9] [PMID: 26482923]
[21]
Yele, V.; Azam, M.A.; Wadhwani, A.D. Synthesis, molecular docking and biological evaluation of 2-aryloxy-N-phenylacetamide and N′-(2-aryloxyoxyacetyl) benzohydrazide derivatives as potential antibacterial agents. Chem. Biodivers., 2021, 18(4), e2000907.
[http://dx.doi.org/10.1002/cbdv.202000907] [PMID: 33576162]
[22]
Yele, V.; Mohammed, A.A.; Wadhwani, A.D. Synthesis and evaluation of aryl/heteroaryl benzohydrazide and phenylacetamide derivatives as broad‐spectrum antibacterial agents. ChemistrySelect, 2020, 5(34), 10581-10587.
[http://dx.doi.org/10.1002/slct.202002178]
[23]
Yele, V.; Sanapalli, B.K.R.; Wadhwani, A.D.; Mohammed, A.A. Benzohydrazide and phenylacetamide scaffolds: New putative ParE inhibitors. Front. Bioeng. Biotechnol., 2021, 9, 669728.
[http://dx.doi.org/10.3389/fbioe.2021.669728] [PMID: 34222214]
[24]
Wei, Y.; Charifson, P.; Letiran, A. . Crystal structure of E. coli topoisomerase IV co-complexed with inhibitor 2010.
[25]
Hall, M.L.; Goldfeld, D.A.; Bochevarov, A.D.; Friesner, R.A. Localized orbital corrections for the calculation of barrier heights in density functional theory. J. Chem. Theory Comput., 2009, 5(11), 2996-3009.
[http://dx.doi.org/10.1021/ct9003965] [PMID: 20161583]
[26]
Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A. Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem., 2013, 113(18), 2110-2142.
[http://dx.doi.org/10.1002/qua.24481]
[27]
Katritzky, A.R.; Lobanov, V.S.; Karelson, M. QSPR: The correlation and quantitative prediction of chemical and physical properties from structure. Chem. Soc. Rev., 1995, 24(4), 279-287.
[http://dx.doi.org/10.1039/cs9952400279]
[28]
Choubey, S.K.; Mariadasse, R.; Rajendran, S.; Jeyaraman, J. Identification of novel histone deacetylase 1 inhibitors by combined pharmacophore modeling, 3D-QSAR analysis, in silico screening and Density Functional Theory (DFT) approaches. J. Mol. Struct., 2016, 1125, 391-404.
[http://dx.doi.org/10.1016/j.molstruc.2016.06.082]
[29]
Jorgensen, W.L.; Madura, J.D. Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol. Phys., 1985, 56(6), 1381-1392.
[http://dx.doi.org/10.1080/00268978500103111]
[30]
Lawrence, C.; Skinner, J. Flexible TIP4P model for molecular dynamics simulation of liquid water. Chem. Phys. Lett., 2003, 372(5-6), 842-847.
[http://dx.doi.org/10.1016/S0009-2614(03)00526-8]
[31]
Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103(19), 8577-8593.
[http://dx.doi.org/10.1063/1.470117]
[32]
Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys., 1994, 101(5), 4177-4189.
[http://dx.doi.org/10.1063/1.467468]
[33]
Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 1992, 97(4), 2635-2643.
[http://dx.doi.org/10.1063/1.463940]
[34]
Martyna, G.J.; Tuckerman, M.E.; Tobias, D.J.; Klein, M.L. Explicit reversible integrators for extended systems dynamics. Mol. Phys., 1996, 87(5), 1117-1157.
[http://dx.doi.org/10.1080/00268979600100761]
[35]
Sjoberg, P.; Murray, J.S.; Brinck, T.; Politzer, P. Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity. Can. J. Chem., 1990, 68(8), 1440-1443.
[http://dx.doi.org/10.1139/v90-220]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy