Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis, Biological Evaluation and Molecular Modeling Studies of Novel C (7) Modified Analogues of Chrysin

Author(s): Pulabala Ramesh, Vankadari Srinivasa Rao, Puchakayala Muralidhar Reddy*, Katragadda Suresh Babu and Mutheneni Srinivasa Rao

Volume 17, Issue 7, 2020

Page: [873 - 883] Pages: 11

DOI: 10.2174/1570180816666190913183623

Price: $65

Abstract

Background: Most of the currently available pharmaceutical drugs are either natural products or analogues of natural products. Flavonoids are plant based natural polyphenolic compounds which exhibit a wide range of biological activities. Chrysin, a natural flavone, exhibits several biological activities like antiallergic, anti-inflammatory and anticancer. Many efforts were made to enhance the biological activity of chrysin. In continuation of our work on synthetic modifications of chrysin, amino-alcohol containing heterocyclic moiety is linked to chrysin at C (7) position to enhance its biological activity.

Methods: A series of new C (7) modified analogues of chrysin (3a-k) have been designed and synthesized in two steps. Chrysin, on reacting with epichlorohydrin in the presence of K2CO3 in DMF gave epoxide (2) which was made to react with cyclic secondary amines in the presence of LiBr to form the designed products (3a-k). All the synthesized compounds (3a-k) were well characterized by 1H NMR, 13C NMR and mass spectral data. The synthesized analogues (3a-k) were screened for their in vitro biological activities against a panel of bacterial and fungal strains. Molecular docking studies were also performed on these compounds with E. coli FabH (1HNJ) and S. cerevisiae (5EQB) enzymes, to support the observed biological activities.

Results: A series of new 2-hydroxy 3-amino chrysin derivatives (3a-k) were synthesized in two steps, starting with chrysin and their structures were characterized by spectral analysis. In vitro biological activities of these analogues against a panel of bacterial and fungal strains indicated that some of the derivatives manifested significant activities compared to standard drugs. Molecular docking and binding energy values were also correlated with experimental antimicrobial screening results. Lipinski’s “rule of five” is also obeyed by these analogues (3a-k) and exhibit drug-likeness.

Conclusion: In the present study, a series of new C (7) modified chrysin analogues (3a-k) were synthesized and tested for their in vitro antimicrobial activities. These biological studies indicated that some of the derivatives exhibited moderate to good antimicrobial activities compared to standard drugs. Molecular docking studies performed on these compounds correlated with the experimental antimicrobial activities. The results obtained in the study will be useful in establishing new drug entities to control the pathogenic epidemics.

Keywords: Chrysin, epoxide, amino alcohol, biological activities, molecular docking studies, lipinski’s “rule of five.

Graphical Abstract
[1]
Leeb, M. Antibiotics: A shot in the arm. Nature, 2004, 431(7011), 892-893.
[http://dx.doi.org/10.1038/431892a] [PMID: 15496888]
[2]
Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7), 1022-1037.
[http://dx.doi.org/10.1021/np030096l] [PMID: 12880330]
[3]
Coasta, F.C.; Nicoluci, R.P.; Silva, M.; Rocha, W.C.; Vieira, P.C.; Oliva, G.; Thiemann, O.H.; Andricopulo, A.D. Natural products biological screening and ligand-based virtual screening for the discovery of new antileishmanial agents. Lett. Drug Des. Disc.,, 2008.5, pp. (3)517-520..
[4]
Farooq, S.; Wahab, A.; Azarpira, A.; Rahman, A.; Choudhary, M.I. Reversal of multi-drug resistance in staphylococcus aures by natural product-way forward. Lett. Drug Des. Disc, 2016. 13, pp. (7)668-675.
[5]
Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr., 2003, 78(3)(Suppl.), 517S-520S.
[http://dx.doi.org/10.1093/ajcn/78.3.517S] [PMID: 12936943]
[6]
Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003, 3(10), 768-780.
[http://dx.doi.org/10.1038/nrc1189] [PMID: 14570043]
[7]
de Kok, T.M.; van Breda, S.G.; Manson, M.M. Mechanisms of combined action of different chemopreventive dietary compounds: a review. Eur. J. Nutr., 2008, 47(2)(Suppl. 2), 51-59.
[http://dx.doi.org/10.1007/s00394-008-2006-y] [PMID: 18458834]
[8]
Shilpa, S.; Mansi, G.; Ashish, S.; Subhash, M.A. Oral bioavailability of naturally occurring anticancer phytomolecules., 2018.
[9]
Lin, J.K.; Tsai, S.H.; Lin, S.Y. Antiinflammatory and antitumor effects of flavonoids and flavanoids. Drugs Future, 2001, 26, 145-152.
[http://dx.doi.org/10.1358/dof.2001.026.02.858703]
[10]
Birt, D.F.; Hendrich, S.; Wang, W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol. Ther., 2001, 90(2-3), 157-177.
[http://dx.doi.org/10.1016/S0163-7258(01)00137-1] [PMID: 11578656]
[11]
Mahomoodally, M.F.; Fakim, A.G.; Subratty, A.H. Antimicrobial activities and phytochemical profiles of endemic medicinal plants of Mauritius. Pharm. Biol., 2005, 43(3), 237-242.
[http://dx.doi.org/10.1080/13880200590928825]
[12]
Pandey, A.K. Anti-staphylococcal activity of a pan-tropical aggressive and obnoxious weed parthenium histerophorus: An in vitro study. Natl. Acad. Sci. Lett., 2007, 30(11-12), 383-386.
[13]
Bohm, B.A. Introduction to flavonoids; Gordon & Breach: Amsterdam, Netherlands, 1998.
[14]
Harborne, J.B.; Baxter, H., Eds.; ; Wiley: Chichester, The Handbook of Natural Flavonoids; UK, , 1999. 1&2,.
[15]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[16]
Skibola, C.F.; Smith, M.T. Potential health impacts of excessive flavonoid intake. Free Radic. Biol. Med., 2000, 29(3-4), 375-383.
[http://dx.doi.org/10.1016/S0891-5849(00)00304-X] [PMID: 11035267]
[17]
Cazarolli, L.H.; Zanatta, L.; Alberton, E.H.; Figueiredo, M.S.R.B.; Folador, P.; Damazio, R.G.; Pizzolatti, M.G.; Silva, F.R. Flavonoids: prospective drug candidates. Mini Rev. Med. Chem., 2008, 8(13), 1429-1440.
[http://dx.doi.org/10.2174/138955708786369564] [PMID: 18991758]
[18]
Lalou, C.; Basak, P.; Mohanta, B.C.; Banik, R.; Dinda, B.; Khatib, A.M. Inhibition of tumor cells by the flavonoid furin inhibitor isolated from oroxylum indicum. Curr. Med. Chem., 2013, 20(4), 583-591.
[PMID: 23210773]
[19]
Donald, G.; Hertzer, K.; Eibl, G. Baicalein--an intriguing therapeutic phytochemical in pancreatic cancer. Curr. Drug Targets, 2012, 13(14), 1772-1776.
[http://dx.doi.org/10.2174/138945012804545470] [PMID: 23140288]
[20]
Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[http://dx.doi.org/10.2174/156800908786241050] [PMID: 18991571]
[21]
López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem., 2009, 9(1), 31-59.
[http://dx.doi.org/10.2174/138955709787001712] [PMID: 19149659]
[22]
Noolu, B.; Gogulothu, R.; Bhat, M.; Qadri, S.S.Y.H.; Reddy, V.S.; Reddy, G.B.; Ismail, A. In vivo inhibition of proteasome activity and tumor growth by murraya koenigii leaf extract in breast cancer xenografts and by its active flavonoids in breast cancer cells. Anticancer. Agents Med. Chem., 2016, 16(12), 1605-1614.
[http://dx.doi.org/10.2174/1871520616666160520112210] [PMID: 27198988]
[23]
Qais, N.; Rahman, M.M.; Rashid, M.A.; Koshino, H.; Nagasawa, K.; Nakata, T. Antibacterial flavonoids from desmos chinensis. Fitoterapia, 1996, 67(6), 554.
[24]
Fishkin, R.J.; Winslow, J.T. Endotoxin-induced reduction of social investigation by mice: interaction with amphetamine and anti-inflammatory drugs. Psychopharmacology (Berl.), 1997, 132(4), 335-341.
[http://dx.doi.org/10.1007/s002130050353] [PMID: 9298510]
[25]
Pearce, F.L.; Befs, A.D.; Bienenstock, J. Effect of Quercetin and other flavonoids on antigen-induced histamine secrection from rat intestinal mast cells. J. Allergy Clin. Immunol., 1984, 73, 819-823.
[http://dx.doi.org/10.1016/0091-6749(84)90453-6] [PMID: 6202731]
[26]
Hecker, M.; Preiss, C.; Klemm, P.; Busse, R. Inhibition by antioxidants of nitric oxide synthase expression in murine macrophages: role of nuclear factor kappa B and interferon regulatory factor 1. Br. J. Pharmacol., 1996, 118(8), 2178-2184.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15660.x] [PMID: 8864559]
[27]
Habtemariam, S. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-α in L-929 tumor cells. J. Nat. Prod., 1997, 60(8), 775-778.
[http://dx.doi.org/10.1021/np960581z] [PMID: 9287415]
[28]
Cárdenas, M.; Marder, M.; Blank, V.C.; Roguin, L.P. Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Bioorg. Med. Chem., 2006, 14(9), 2966-2971.
[http://dx.doi.org/10.1016/j.bmc.2005.12.021] [PMID: 16412650]
[29]
Suresh Babu, K.; Hari, Babu. T.; Srinivas, P.V.; Hara Kishore, K.; Murthy, U.S.; Rao, J.M. Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg. Med. Chem. Lett., 2006, 16(1), 221-224.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.009] [PMID: 16213726]
[30]
Li, H.Q.; Shi, L.; Li, Q.S.; Liu, P.G.; Luo, Y.; Zhao, J.; Zhu, H.L. Synthesis of C(7) modified chrysin derivatives designing to inhibit beta-ketoacyl-acyl carrier protein synthase III (FabH) as antibiotics. Bioorg. Med. Chem., 2009, 17(17), 6264-6269.
[http://dx.doi.org/10.1016/j.bmc.2009.07.046] [PMID: 19664929]
[31]
Dao, T.T.; Chi, Y.S.; Kim, J.; Kim, H.P.; Kim, S.; Park, H. Synthesis and inhibitory activity against COX-2 catalyzed prostaglandin production of chrysin derivatives. Bioorg. Med. Chem. Lett., 2004, 14(5), 1165-1167.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.087] [PMID: 14980657]
[32]
Park, H.; Dao, T.T.; Kim, H.P. Synthesis and inhibition of PGE2 production of 6,8-disubstituted chrysin derivatives. Eur. J. Med. Chem., 2005, 40(9), 943-948.
[http://dx.doi.org/10.1016/j.ejmech.2005.04.013] [PMID: 15963606]
[33]
Che, H.; Lim, H.; Kim, H.P.; Park, H. A chrysin analog exhibited strong inhibitory activities against both PGE2 and NO production. Eur. J. Med. Chem., 2011, 46(9), 4657-4660.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.044] [PMID: 21719163]
[34]
Peng, S.M.; Zou, X.Q.; Ding, H.L.; Ding, Y.L.; Lin, Y.B. Synthesis and promotion angiogenesis effect of chrysin derivatives coupled to NO donors. Bioorg. Med. Chem. Lett., 2009, 19(4), 1264-1266.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.116] [PMID: 19167219]
[35]
Peng, C.L.; Kai, R.W.; Qing, S.L.; Jin, C.; Juan, S.; Hai, L.Z. Design, synthesis and biological evaluation of chrysin long-chain derivatives as potent anticancer agents. Bioorg. Med. Chem., 2010, 18, 117-1123.
[36]
Zou, X.Q.; Peng, S.M.; Hu, C.P.; Tan, L.F.; Yuan, Q.; Deng, H.W.; Li, Y.J. Synthesis, characterization and vasculoprotective effects of nitric oxide-donating derivatives of chrysin. Bioorg. Med. Chem., 2010, 18(9), 3020-3025.
[http://dx.doi.org/10.1016/j.bmc.2010.03.056] [PMID: 20395149]
[37]
Zou, X.Q.; Peng, S.M.; Hu, C.P.; Tan, L.F.; Deng, H.W.; Li, Y.J. Furoxan nitric oxide donor coupled chrysin derivatives: synthesis and vasculoprotection. Bioorg. Med. Chem. Lett., 2011, 21(4), 1222-1226.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.077] [PMID: 21256748]
[38]
Kun, H.; Wei, W.; Hong, C.; Sha, S.P.; Jie, R. Synthesis and cytotoxicity of novel chrysin derivatives. Med. Chem. Res., 2011, 20(7), 838-846.
[http://dx.doi.org/10.1007/s00044-010-9395-1]
[39]
Zhu, Z.Y.; Wang, W.X.; Wang, Z.Q.; Chen, L.J.; Zhang, J.Y.; Liu, X.C.; Wu, S.P.; Zhang, Y.M. Synthesis and antitumor activity evaluation of chrysin derivatives. Eur. J. Med. Chem., 2014, 75, 297-300.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.044] [PMID: 24556144]
[40]
Mistry, B.M.; Patel, R.V.; Keum, Y.S.; Kim, D.H. Chrysin-benzothiazole conjugates as antioxidant and anticancer agents. Bioorg. Med. Chem. Lett., 2015, 25(23), 5561-5565.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.052] [PMID: 26514745]
[41]
Ramesh, P. Ch., Sanjeeva Reddy.; K., Suresh Babu.; P., uralidhar Reddy.M; V., Srinivasa Rao; T., arthasarathy. Synthesis, characterization and molecular docking studies of novel 2-amino 3-cyano pyrano[2,3H]chrysin derivatives as potential antimicrobial agents. Med. Chem. Res., 2015, 24, 3696-3709.
[http://dx.doi.org/10.1007/s00044-015-1396-7]
[42]
Patel, M.A.; Bhila, V.G.; Patel, N.H.; Patel, A.K.; Brahmbhatt, D.I. Synthesis, characterization and biological evaluation of some pyridine and quinoline fused chromenone derivatives. Med. Chem. Res., 2012, 21, 4381-4388.
[http://dx.doi.org/10.1007/s00044-012-9978-0]
[43]
Sridhar, R.; Perumal, P.T.; Etti, S.; Shanmugam, G.; Ponnuswamy, M.N.; Prabavathy, V.R.; Mathivanan, N. Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates. Bioorg. Med. Chem. Lett., 2004, 14(24), 6035-6040.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.066] [PMID: 15546724]
[44]
Keche, A.P.; Hatnapure, G.D.; Tale, R.T.; Rodge, A.H.; Birajdar, S.S.; Kamble, V.M. Synthesis, anti-inflammatory and antimicrobial evaluation of novel N1-(quinolin-4-yl) ethane-1,2-diamine phenyl urea derivatives. Med. Chem. Res., 2013, 22, 1480-1487.
[http://dx.doi.org/10.1007/s00044-012-0144-5]
[45]
Shamroukh, A.H.; Zaki, M.E.A.; Morsy, E.M.H.; Abdel-Motti, F.M.; Abdel-Megeid, F.M.E. Synthesis, isomerization, and antimicrobial evaluation of some pyrazolopyranotriazolopyrimidine derivatives. Arch. Pharm. (Weinheim), 2007, 340(7), 345-351.
[http://dx.doi.org/10.1002/ardp.200700007] [PMID: 17610300]
[46]
Devi Alaparthi, M.; Gopinath, G.; Bandaru, S.; Sankeshi, V.; Mangalarapu, M.; Sudha Nagamalla, S.; Sudhakar, K.; Roja Rani, A.; Rao Sagurthi, S. Virtual screening of RAGE inhibitors using molecular docking. Bioinformation, 2016, 12(3), 124-130.
[http://dx.doi.org/10.6026/97320630012124] [PMID: 28149046]
[47]
Jorgensen, W.L.; Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci. USA, 2005, 102(19), 6665-6670.
[http://dx.doi.org/10.1073/pnas.0408037102] [PMID: 15870211]
[48]
Phase, Version. 3.1, Schrodinger; L.L.C. York: NY, 2009.
[49]
Brown, A.; Long, F.; Nicholls, R.A.; Toots, J.; Emsley, P.; Murshudov, G. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(Pt 1), 136-153.
[http://dx.doi.org/10.1107/S1399004714021683] [PMID: 25615868]
[50]
Brooks, B.R.; Brooks, C.L., III; Mackerell, A.D., Jr; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A.R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M. Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R.M.; Woodcock, H.L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M. CHARMM: the biomolecular simulation program. J. Comput. Chem., 2009, 30(10), 1545-1614.
[http://dx.doi.org/10.1002/jcc.21287] [PMID: 19444816]
[51]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[52]
Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J., 1965, 7, 308-313.
[http://dx.doi.org/10.1093/comjnl/7.4.308]
[53]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[54]
Molinspiration Cheminformatics, Bratislava, Slovak Republic [Last Accessed on 2010 Apr 22]. Available from: http://www.molinspiration.com/services/properties.html
[55]
Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res., 2002, 19(10), 1446-1457.
[http://dx.doi.org/10.1023/A:1020444330011] [PMID: 12425461]
[56]
Drug-likeness and molecular property prediction, available from: http://www.molsoft.com/mptop
[57]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714-3717.
[http://dx.doi.org/10.1021/jm000942e] [PMID: 11020286]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy