Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Therapeutic Approaches of Dual-targeted Nanomedicines for Tumor Multidrug Resistance

Author(s): Weili Han*, Zhenglin Shen, Jie Zou, Qiufang Ye, Cheng Ge, Yuqin Zhao, Ting Wang and Yafang Chen

Volume 21, Issue 2, 2024

Published on: 15 May, 2023

Page: [155 - 167] Pages: 13

DOI: 10.2174/1567201820666230504145614

Price: $65

Abstract

Currently, the main cause of cancer chemotherapy failure is multi-drug resistance (MDR), which involves a variety of complex mechanisms. Compared with traditional small-molecule chemotherapy, targeted nanomedicines offer promising alternative strategies as an emerging form of therapy, especially active targeted nanomedicines. However, although single-targeted nanomedicines have made some progress in tumor therapy, the complexity of tumor microenvironment and tumor heterogeneity limits their efficacy. Dual-targeted nanomedicines can simultaneously target two tumor-specific factors that cause tumor MDR, which have the potential in overcoming tumor MDR superior to single-targeted nanomedicines by further enhancing cell uptake and cytotoxicity in new forms, as well as the effectiveness of tumor-targeted delivery. This review discusses tumor MDR mechanisms and the latest achievements applied to dual-targeted nanomedicines in tumor MDR.

Keywords: Dual-targeted nanomedicines, multi-drug resistance (MDR), active target, tumor microenvironment, tumor heterogeneity, single-targeted nanomedicines, ABC.

Next »
Graphical Abstract
[1]
Harris, A.L.; Hochhauser, D. Mechanisms of multidrug resistance in cancer treatment. Acta Oncol., 1992, 31(2), 205-213.
[http://dx.doi.org/10.3109/02841869209088904] [PMID: 1352455]
[2]
Gao, Z.; Zhang, L.; Sun, Y. Nanotechnology applied to overcome tumor drug resistance. J. Control. Release, 2012, 162(1), 45-55.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.051] [PMID: 22698943]
[3]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[4]
Pakunlu, R.I.; Wang, Y.; Tsao, W.; Pozharov, V.; Cook, T.J.; Minko, T. Enhancement of the efficacy of chemotherapy for lung cancer by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense: Novel multicomponent delivery system. Cancer Res., 2004, 64(17), 6214-6224.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0001] [PMID: 15342407]
[5]
Li, Y.; Xu, X. Nanomedicine solutions to intricate physiological-pathological barriers and molecular mechanisms of tumor multidrug resistance. J. Control. Release, 2020, 323, 483-501.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.007] [PMID: 32387548]
[6]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[7]
Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release, 2016, 244(Pt A), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.015] [PMID: 27871992]
[8]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[9]
Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Control. Release, 2012, 161(2), 175-187.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063] [PMID: 21945285]
[10]
Varshosaz, J.; Taymouri, S.; Hassanzadeh, F.; Storm, G. Folated synperonic-cholesteryl hemisuccinate polymeric micelles for the targeted delivery of docetaxel in melanoma. BioMed Res. Int., 2015, 2015, 746093.
[11]
Luo, Y.; Yang, H.; Zhou, Y.F.; Hu, B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J. Control. Release, 2020, 317, 195-215.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.037] [PMID: 31794799]
[12]
Seidi, K.; Neubauer, H.A.; Moriggl, R.; Jahanban-Esfahlan, R.; Javaheri, T. Tumor target amplification: Implications for nano drug delivery systems. J. Control. Release, 2018, 275, 142-161.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.020] [PMID: 29454742]
[13]
Saul, J.M.; Annapragada, A.V.; Bellamkonda, R.V. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J. Control. Release, 2006, 114(3), 277-287.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.028] [PMID: 16904220]
[14]
Zhou, G.; Lu, Z.; McCadden, J.D.; Levitsky, H.I.; Marson, A.L. Reciprocal changes in tumor antigenicity and antigen-specific T cell function during tumor progression. J. Exp. Med., 2004, 200(12), 1581-1592.
[http://dx.doi.org/10.1084/jem.20041240] [PMID: 15596524]
[15]
Jahanban-Esfahlan, R.; Seidi, K.; Zarghami, N. Tumor vascular infarction: Prospects and challenges. Int. J. Hematol., 2017, 105(3), 244-256.
[http://dx.doi.org/10.1007/s12185-016-2171-3] [PMID: 28044258]
[16]
Ai, P.; Wang, H.; Liu, K.; Wang, T.; Gu, W.; Ye, L.; Yan, C. The relative length of dual-target conjugated on iron oxide nanoparticles plays a role in brain glioma targeting. RSC Advances, 2017, 7(32), 19954-19959.
[http://dx.doi.org/10.1039/C7RA02102J]
[17]
Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol., 2010, 188(6), 759-768.
[http://dx.doi.org/10.1083/jcb.200910104] [PMID: 20231381]
[18]
Zhu, Y.; Feijen, J.; Zhong, Z. Dual-targeted nanomedicines for enhanced tumor treatment. Nano Today, 2018, 18, 65-85.
[19]
Jurczyk, M.; Jelonek, K. Musiał-Kulik, M.; Beberok, A.; Wrześniok, D.; Kasperczyk, J. Single- versus Dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery. Pharmaceutics, 2021, 13(3), 326.
[http://dx.doi.org/10.3390/pharmaceutics13030326] [PMID: 33802531]
[20]
Kluza, E.; van der Schaft, D.W.J.; Hautvast, P.A.I.; Mulder, W.J.M.; Mayo, K.H.; Griffioen, A.W.; Strijkers, G.J.; Nicolay, K. Synergistic targeting of alphavbeta3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. Nano Lett., 2010, 10(1), 52-58.
[http://dx.doi.org/10.1021/nl902659g] [PMID: 19968235]
[21]
Shi, S.; Zhou, M.; Li, X.; Hu, M.; Li, C.; Li, M.; Sheng, F.; Li, Z.; Wu, G.; Luo, M.; Cui, H.; Li, Z.; Fu, R.; Xiang, M.; Xu, J.; Zhang, Q.; Lu, L. Synergistic active targeting of dually integrin α v β 3/CD44-targeted nanoparticles to B16F10 tumors located at different sites of mouse bodies. J. Control. Release, 2016, 235, 1-13.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.050] [PMID: 27235150]
[22]
Zhang, Q.; Li, F.; Zhuo, R.X.; Zhang, X-Z.; Cheng, S-X. Self-assembled complexes with dual-targeting properties for gene delivery. J. Mater. Chem., 2011, 21(12), 4636-4643.
[http://dx.doi.org/10.1039/c0jm03134h]
[23]
Zhu, S.; Qian, L.; Hong, M.; Zhang, L.; Pei, Y.; Jiang, Y. RGD-modified PEG-PAMAM-DOX conjugate: In vitro and in vivo targeting to both tumor neovascular endothelial cells and tumor cells. Adv. Mater., 2011, 23(12), H84-H89.
[http://dx.doi.org/10.1002/adma.201003944] [PMID: 21360776]
[24]
Dai, W.; Yang, T.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. PHSCNK-Modified and doxorubicin-loaded liposomes as a dual targeting system to integrin-overexpressing tumor neovasculature and tumor cells. J. Drug Target., 2010, 18(4), 254-263.
[http://dx.doi.org/10.3109/10611860903353354] [PMID: 19824864]
[25]
Huang, C.; Tang, Z.; Zhou, Y.; Zhou, X.; Jin, Y.; Li, D.; Yang, Y.; Zhou, S. Magnetic micelles as a potential platform for dual targeted drug delivery in cancer therapy. Int. J. Pharm., 2012, 429(1-2), 113-122.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.001] [PMID: 22406331]
[26]
Lu, Y.J.; Wei, K.C.; Ma, C.C.M.; Yang, S.Y.; Chen, J.P. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf. B Biointerfaces, 2012, 89, 1-9.
[http://dx.doi.org/10.1016/j.colsurfb.2011.08.001] [PMID: 21982868]
[27]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[28]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[29]
Shapira, A.; Livney, Y.D.; Broxterman, H.J.; Assaraf, Y.G. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resist. Updat., 2011, 14(3), 150-163.
[http://dx.doi.org/10.1016/j.drup.2011.01.003] [PMID: 21330184]
[30]
Juliano, R.L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta Biomembr., 1976, 455(1), 152-162.
[http://dx.doi.org/10.1016/0005-2736(76)90160-7] [PMID: 990323]
[31]
Thomas, H.; Coley, H.M. Overcoming multidrug resistance in cancer: An update on the clinical strategy of inhibiting p-glycoprotein. Cancer Contr., 2003, 10(2), 159-165.
[http://dx.doi.org/10.1177/107327480301000207] [PMID: 12712010]
[32]
Wang, Y.; Zhao, R.; Wang, S.; Liu, Z.; Tang, R. In vivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier. Biomaterials, 2016, 75, 71-81.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.030] [PMID: 26491996]
[33]
Li, W.M.; Chiang, C.S.; Huang, W.C.; Su, C.W.; Chiang, M.Y.; Chen, J.Y.; Chen, S.Y. Amifostine-conjugated pH-sensitive calcium phosphate-covered magnetic-amphiphilic gelatin nanoparticles for controlled intracellular dual drug release for dual-targeting in HER-2-overexpressing breast cancer. J. Control. Release, 2015, 220(Pt A), 107-118.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.020] [PMID: 26478017]
[34]
Kim, D.; Lee, E.S.; Oh, K.T.; Gao, Z.G.; Bae, Y.H. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small, 2008, 4(11), 2043-2050.
[http://dx.doi.org/10.1002/smll.200701275] [PMID: 18949788]
[35]
Liu, Y.; Zhou, C.; Wei, S.; Yang, T.; Lan, Y.; Cao, A.; Yang, J.; Hou, Y. Paclitaxel delivered by CD44 receptor-targeting and endosomal pH sensitive dual functionalized hyaluronic acid micelles for multidrug resistance reversion. Colloids Surf. B Biointerfaces, 2018, 170, 330-340.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.024] [PMID: 29936386]
[36]
Liu, Y.; Sun, J.; Lian, H.; Cao, W.; Wang, Y.; He, Z. Folate and CD44 receptors dual-targeting hydrophobized hyaluronic acid paclitaxel-loaded polymeric micelles for overcoming multidrug resistance and improving tumor distribution. J. Pharm. Sci., 2014, 103(5), 1538-1547.
[http://dx.doi.org/10.1002/jps.23934] [PMID: 24619562]
[37]
Dreaden, E.C.; Gryder, B.E.; Austin, L.A.; Teno Defo, B.A. Hayden, S.C.; Pi, M.; Quarles, L.D.; Oyelere, A.K.; El-Sayed, M.A. Antiandrogen gold nanoparticles dual-target and overcome treatment resistance in hormone-insensitive prostate cancer cells. Bioconjug. Chem., 2012, 23(8), 1507-1512.
[http://dx.doi.org/10.1021/bc300158k] [PMID: 22768914]
[38]
Najafi, M.; Farhood, B.; Mortezaee, K. Cancer Stem Cells (CSCs) in cancer progression and therapy. J. Cell. Physiol., 2019, 234(6), 8381-8395.
[http://dx.doi.org/10.1002/jcp.27740] [PMID: 30417375]
[39]
Lytle, N.K.; Barber, A.G.; Reya, T. Stem cell fate in cancer growth, progression and therapy resistance. Nat. Rev. Cancer, 2018, 18(11), 669-680.
[http://dx.doi.org/10.1038/s41568-018-0056-x] [PMID: 30228301]
[40]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[41]
Dianat-Moghadam, H.; Heidarifard, M.; Jahanban-Esfahlan, R.; Panahi, Y.; Hamishehkar, H.; Pouremamali, F.; Rahbarghazi, R.; Nouri, M. Cancer stem cells-emanated therapy resistance: Implications for liposomal drug delivery systems. J. Control. Release, 2018, 288, 62-83.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.043] [PMID: 30184466]
[42]
Puisieux, A.; Brabletz, T.; Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol., 2014, 16(6), 488-494.
[http://dx.doi.org/10.1038/ncb2976] [PMID: 24875735]
[43]
Raha, D.; Wilson, T.R.; Peng, J.; Peterson, D.; Yue, P.; Evangelista, M.; Wilson, C.; Merchant, M.; Settleman, J. The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Res., 2014, 74(13), 3579-3590.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3456] [PMID: 24812274]
[44]
Zakaria, N.; Mohd Yusoff, N.; Zakaria, Z.; Widera, D.; Yahaya, B.H. Inhibition of NF-κB signaling reduces the stemness characteristics of lung cancer stem cells. Front. Oncol., 2018, 8, 166.
[http://dx.doi.org/10.3389/fonc.2018.00166] [PMID: 29868483]
[45]
Dontu, G.; Jackson, K.W.; McNicholas, E.; Kawamura, M.J.; Abdallah, W.M.; Wicha, M.S. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res., 2004, 6(6), R605-R615.
[http://dx.doi.org/10.1186/bcr920] [PMID: 15535842]
[46]
Yang, L.; Xie, G.; Fan, Q.; Xie, J. Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene, 2010, 29(4), 469-481.
[http://dx.doi.org/10.1038/onc.2009.392] [PMID: 19935712]
[47]
Yang, W.; Yan, H.X.; Chen, L.; Liu, Q.; He, Y.Q.; Yu, L.X.; Zhang, S.H.; Huang, D.D.; Tang, L.; Kong, X.N.; Chen, C.; Liu, S.Q.; Wu, M.C.; Wang, H.Y. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res., 2008, 68(11), 4287-4295.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6691] [PMID: 18519688]
[48]
Bao, B.; Azmi, A.S.; Ali, S.; Ahmad, A.; Li, Y.; Banerjee, S.; Kong, D.; Sarkar, F.H. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim. Biophys. Acta, 2012, 1826(2), 272-296.
[PMID: 22579961]
[49]
Miller-Kleinhenz, J.; Guo, X.; Qian, W.; Zhou, H.; Bozeman, E.N.; Zhu, L.; Ji, X.; Wang, Y.A.; Styblo, T.; O’Regan, R.; Mao, H.; Yang, L. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials, 2018, 152, 47-62.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.035] [PMID: 29107218]
[50]
Asuthkar, S.; Gondi, C.S.; Nalla, A.K.; Velpula, K.K.; Gorantla, B.; Rao, J.S. Urokinase-type Plasminogen Activator Receptor (uPAR)-mediated regulation of WNT/β-catenin signaling is enhanced in irradiated medulloblastoma cells. J. Biol. Chem., 2012, 287(24), 20576-20589.
[http://dx.doi.org/10.1074/jbc.M112.348888] [PMID: 22511755]
[51]
Vermeulen, L.; Sprick, M.R.; Kemper, K.; Stassi, G.; Medema, J.P. Cancer stem cells-old concepts, new insights. Cell Death Differ., 2008, 15(6), 947-958.
[http://dx.doi.org/10.1038/cdd.2008.20] [PMID: 18259194]
[52]
Mao, Y.; Wang, J.; Zhao, Y.; Wu, Y.; Kwak, K.J.; Chen, C.S.; Byrd, J.C.; Lee, R.J.; Phelps, M.A.; Lee, L.J.; Muthusamy, N. A novel liposomal formulation of FTY720 (Fingolimod) for promising enhanced targeted delivery. Nanomedicine, 2014, 10(2), 393-400.
[http://dx.doi.org/10.1016/j.nano.2013.08.001] [PMID: 23969101]
[53]
Yu, B.; Mao, Y.; Yuan, Y.; Yue, C.; Wang, X.; Mo, X.; Jarjoura, D.; Paulaitis, M.E.; Lee, R.J.; Byrd, J.C.; Lee, L.J.; Muthusamy, N. Targeted drug delivery and cross-linking induced apoptosis with anti-CD37 based dual-ligand immunoliposomes in B chronic lymphocytic leukemia cells. Biomaterials, 2013, 34(26), 6185-6193.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.063] [PMID: 23726226]
[54]
Laginha, K.; Mumbengegwi, D.; Allen, T. Liposomes targeted via two different antibodies: Assay, B-cell binding and cytotoxicity. Biochim. Biophys. Acta Biomembr., 2005, 1711(1), 25-32.
[http://dx.doi.org/10.1016/j.bbamem.2005.02.007] [PMID: 15904660]
[55]
Chen, F.; Zeng, Y.; Qi, X.; Chen, Y.; Ge, Z.; Jiang, Z.; Zhang, X.; Dong, Y.; Chen, H.; Yu, Z. Targeted salinomycin delivery with EGFR and CD133 aptamers based dual-ligand lipid-polymer nanoparticles to both osteosarcoma cells and cancer stem cells. Nanomedicine, 2018, 14(7), 2115-2127.
[http://dx.doi.org/10.1016/j.nano.2018.05.015] [PMID: 29898423]
[56]
Dewangan, J.; Srivastava, S.; Rath, S.K. Salinomycin: A new paradigm in cancer therapy. Tumour Biol., 2017, 39(3)
[http://dx.doi.org/10.1177/1010428317695035] [PMID: 28349817]
[57]
Ni, M.; Xiong, M.; Zhang, X.; Cai, G.; Chen, H.; Zeng, Q.; Yu, Z. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells. Int. J. Nanomed., 2015, 10, 2537-2554.
[PMID: 25848270]
[58]
Tang, Q.L.; Zhao, Z.Q.; Li, J.; Liang, Y.; Yin, J.Q.; Zou, C.Y.; Xie, X.B.; Zeng, Y.X.; Shen, J.N.; Kang, T.; Wang, J. Salinomycin inhibits osteosarcoma by targeting its tumor stem cells. Cancer Lett., 2011, 311(1), 113-121.
[http://dx.doi.org/10.1016/j.canlet.2011.07.016] [PMID: 21835542]
[59]
Li, J.; Xu, W.; Yuan, X.; Chen, H.; Song, H.; Wang, B.; Han, J. Polymer-lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells. Int. J. Nanomedicine, 2017, 12, 6909-6921.
[http://dx.doi.org/10.2147/IJN.S144184] [PMID: 29075110]
[60]
Wang, Q.; Yen, Y.T.; Xie, C.; Liu, F.; Liu, Q.; Wei, J.; Yu, L.; Wang, L.; Meng, F.; Li, R.; Liu, B. Combined delivery of salinomycin and docetaxel by dual-targeting gelatinase nanoparticles effectively inhibits cervical cancer cells and cancer stem cells. Drug Deliv., 2021, 28(1), 510-519.
[http://dx.doi.org/10.1080/10717544.2021.1886378] [PMID: 33657950]
[61]
Celià-Terrassa, T.; Jolly, M.K. Cancer stem cells and Epithelial-to-Mesenchymal transition in cancer metastasis. Cold Spring Harb. Perspect. Med., 2020, 10(7), a036905.
[http://dx.doi.org/10.1101/cshperspect.a036905] [PMID: 31570380]
[62]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[63]
Erin, N.; Grahovac, J.; Brozovic, A.; Efferth, T. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist. Updat., 2020, 53, 100715.
[http://dx.doi.org/10.1016/j.drup.2020.100715] [PMID: 32679188]
[64]
Shibue, T.; Weinberg, R.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol., 2017, 14(10), 611-629.
[http://dx.doi.org/10.1038/nrclinonc.2017.44] [PMID: 28397828]
[65]
Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139(5), 871-890.
[http://dx.doi.org/10.1016/j.cell.2009.11.007] [PMID: 19945376]
[66]
Li, W.; Guo, Z.; Zheng, K.; Ma, K.; Cui, C.; Wang, L.; Yuan, Y.; Tang, Y. Dual targeting mesoporous silica nanoparticles for inhibiting tumour cell invasion and metastasis. Int. J. Pharm., 2017, 534(1-2), 71-80.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.066] [PMID: 28958879]
[67]
Augustine, C.K.; Yoshimoto, Y.; Gupta, M.; Zipfel, P.A.; Selim, M.A.; Febbo, P.; Pendergast, A.M.; Peters, W.P.; Tyler, D.S. Targeting N-cadherin enhances antitumor activity of cytotoxic therapies in melanoma treatment. Cancer Res., 2008, 68(10), 3777-3784.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5949] [PMID: 18483261]
[68]
Guo, Z.; Zheng, K.; Tan, Z.; Liu, Y.; Zhao, Z.; Zhu, G.; Ma, K.; Cui, C.; Wang, L.; Kang, T. Overcoming drug resistance with functional mesoporous titanium dioxide nanoparticles combining targeting, drug delivery and photodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(46), 7750-7759.
[http://dx.doi.org/10.1039/C8TB01810C] [PMID: 32254897]
[69]
Du, B.; Shim, J. Targeting Epithelial-Mesenchymal Transition (EMT) to overcome drug resistance in cancer. Molecules, 2016, 21(7), 965.
[http://dx.doi.org/10.3390/molecules21070965] [PMID: 27455225]
[70]
Li, J.; Liu, H.; Yu, J.; Yu, H. Chemoresistance to doxorubicin induces epithelial-mesenchymal transition via upregulation of transforming growth factor β signaling in HCT116 colon cancer cells. Mol. Med. Rep., 2015, 12(1), 192-198.
[http://dx.doi.org/10.3892/mmr.2015.3356] [PMID: 25684678]
[71]
Yang, L.; Zhang, F.; Wang, X.; Tsai, Y.; Chuang, K.H.; Keng, P.C.; Lee, S.O.; Chen, Y.A. FASN-TGF-β1-FASN regulatory loop contributes to high EMT/metastatic potential of cisplatin-resistant non-small cell lung cancer. Oncotarget, 2016, 7(34), 55543-55554.
[http://dx.doi.org/10.18632/oncotarget.10837] [PMID: 27765901]
[72]
Mitra, S.K.; Hanson, D.A.; Schlaepfer, D.D. Focal adhesion kinase: In command and control of cell motility. Nat. Rev. Mol. Cell Biol., 2005, 6(1), 56-68.
[http://dx.doi.org/10.1038/nrm1549] [PMID: 15688067]
[73]
Goldman, A.; Majumder, B.; Dhawan, A.; Ravi, S.; Goldman, D.; Kohandel, M.; Majumder, P.K.; Sengupta, S. Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat. Commun., 2015, 6(1), 6139.
[http://dx.doi.org/10.1038/ncomms7139] [PMID: 25669750]
[74]
Zuo, W.; Chen, Y.G. Specific activation of mitogen-activated protein kinase by transforming growth factor-beta receptors in lipid rafts is required for epithelial cell plasticity. Mol. Biol. Cell, 2009, 20(3), 1020-1029.
[http://dx.doi.org/10.1091/mbc.e08-09-0898] [PMID: 19056678]
[75]
Medbury, M.J.; Williams, H.; Li, S. The bidirectional relationship between cholesterol and macrophage polarization. J. Clin. Cell. Immunol., 2009, 6, 1-7.
[76]
Chockley, P.J.; Keshamouni, V.G. Immunological consequences of epithelial–mesenchymal transition in tumor progression. J. Immunol., 2016, 197(3), 691-698.
[http://dx.doi.org/10.4049/jimmunol.1600458] [PMID: 27431984]
[77]
Jin, H.; He, Y.; Zhao, P.; Hu, Y.; He, Y.; Zhao, P.; Hu, Y. Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics, 2019, 9(1), 265-278.
[78]
Liu, Z.; Xiong, M.; Gong, J.; Zhang, Y.; Bai, N.; Luo, Y.; Li, L.; Wei, Y.; Liu, Y.; Tan, X.; Xiang, R. Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat. Commun., 2014, 5(1), 4280.
[http://dx.doi.org/10.1038/ncomms5280] [PMID: 24969588]
[79]
Seebacher, N.A.; Krchniakova, M.; Stacy, A.E.; Skoda, J.; Jansson, P.J. Tumour microenvironment stress promotes the development of drug resistance. Antioxidants, 2021, 10(11), 1801.
[http://dx.doi.org/10.3390/antiox10111801] [PMID: 34829672]
[80]
Sun, Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett., 2016, 380(1), 205-215.
[http://dx.doi.org/10.1016/j.canlet.2015.07.044] [PMID: 26272180]
[81]
Lei, X.; Lei, Y.; Li, J.K.; Du, W.X.; Li, R.G.; Yang, J.; Li, J.; Li, F.; Tan, H.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett., 2020, 470, 126-133.
[http://dx.doi.org/10.1016/j.canlet.2019.11.009] [PMID: 31730903]
[82]
Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers, 2014, 6(3), 1670-1690.
[http://dx.doi.org/10.3390/cancers6031670] [PMID: 25125485]
[83]
Zhao, P.; Yin, W.; Wu, A.; Tang, Y.; Wang, J.; Pan, Z.; Lin, T.; Zhang, M.; Chen, B.; Duan, Y.; Huang, Y. Dual-targeting to cancer cells and M2 macrophages via biomimetic delivery of mannosylated albumin nanoparticles for drug-resistant cancer therapy. Adv. Funct. Mater., 2017, 27(44), 1700403.
[http://dx.doi.org/10.1002/adfm.201700403]
[84]
Flaherty, K.T.; Manola, J.B.; Pins, M.; McDermott, D.F.; Atkins, M.B.; Dutcher, J.J.; George, D.J.; Margolin, K.A.; DiPaola, R.S. BEST: A Randomized phase ii study of vascular endothelial growth factor, RAF Kinase, and Mammalian target of rapamycin combination targeted therapy with Bevacizumab, Sorafenib, and Temsirolimus in advanced Renal Cell Carcinoma-A trial of the ECOG–ACRIN cancer research group (E2804). J. Clin. Oncol., 2015, 33(21), 2384-2391.
[http://dx.doi.org/10.1200/JCO.2015.60.9727] [PMID: 26077237]
[85]
Jing, L.; Qu, H.; Wu, D.; Zhu, C.; Yang, Y.; Jin, X.; Zheng, J.; Shi, X.; Yan, X.; Wang, Y. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy. Theranostics, 2018, 8(10), 2683-2695.
[http://dx.doi.org/10.7150/thno.23654] [PMID: 29774068]
[86]
Brooks, P.C.; Strömblad, S.; Sanders, L.C.; von Schalscha, T.L.; Aimes, R.T.; Stetler-Stevenson, W.G.; Quigley, J.P.; Cheresh, D.A. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell, 1996, 85(5), 683-693.
[http://dx.doi.org/10.1016/S0092-8674(00)81235-0] [PMID: 8646777]
[87]
Kang, S.; Zhou, G.; Yang, P.; Liu, Y.; Sun, B.; Huynh, T.; Meng, H.; Zhao, L.; Xing, G.; Chen, C.; Zhao, Y.; Zhou, R. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C 82 (OH) 22 and its implication for de novo design of nanomedicine. Proc. Natl. Acad. Sci., 2012, 109(38), 15431-15436.
[http://dx.doi.org/10.1073/pnas.1204600109] [PMID: 22949663]
[88]
Yao, Q.; Choi, J.H.; Dai, Z.; Wang, J.; Kim, D.; Tang, X.; Zhu, L. Improving tumor specificity and anticancer activity of dasatinib by dual-targeted polymeric micelles. ACS Appl. Mater. Interfaces, 2017, 9(42), 36642-36654.
[http://dx.doi.org/10.1021/acsami.7b12233] [PMID: 28960955]
[89]
Chen, W.H.; Luo, G.F.; Zhang, X.Z. Recent advances in subcellular targeted cancer therapy based on functional materials. Adv. Mater., 2019, 31(3), 1802725.
[http://dx.doi.org/10.1002/adma.201802725] [PMID: 30260521]
[90]
Rin Jean, S.; Tulumello, D.V.; Wisnovsky, S.P.; Lei, E.K.; Pereira, M.P.; Kelley, S.O. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem. Biol., 2014, 9(2), 323-333.
[http://dx.doi.org/10.1021/cb400821p] [PMID: 24410267]
[91]
Klingenberg, M. The ADP-ATP Translocation in mitochondria, a membrane potential controlled transport. J. Membr. Biol., 1980, 56(2), 97-105.
[http://dx.doi.org/10.1007/BF01875961] [PMID: 7003152]
[92]
Orrenius, S.; Gogvadze, V.; Zhivotovsky, B. Mitochondrial oxidative stress: Implications for cell death. Annu. Rev. Pharmacol. Toxicol., 2007, 47(1), 143-183.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105122] [PMID: 17029566]
[93]
Chourasia, A.H.; Boland, M.L.; Macleod, K.F. Mitophagy and cancer. Cancer Metab., 2015, 3(1), 4.
[http://dx.doi.org/10.1186/s40170-015-0130-8] [PMID: 25810907]
[94]
DeNicola, G.M.; Karreth, F.A.; Humpton, T.J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K.H.; Yeo, C.J.; Calhoun, E.S.; Scrimieri, F.; Winter, J.M.; Hruban, R.H.; Iacobuzio-Donahue, C.; Kern, S.E.; Blair, I.A.; Tuveson, D.A. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 2011, 475(7354), 106-109.
[http://dx.doi.org/10.1038/nature10189] [PMID: 21734707]
[95]
Li, X.; Jiang, Y.; Meisenhelder, J.; Yang, W.; Hawke, D.H.; Zheng, Y.; Xia, Y.; Aldape, K.; He, J.; Hunter, T.; Wang, L.; Lu, Z. Mitochondria-Translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol. Cell, 2016, 61(5), 705-719.
[http://dx.doi.org/10.1016/j.molcel.2016.02.009] [PMID: 26942675]
[96]
Ghosh, J.C.; Siegelin, M.D.; Vaira, V.; Faversani, A.; Tavecchio, M.; Chae, Y.C.; Lisanti, S.; Rampini, P.; Giroda, M.; Caino, M.C.; Seo, J.H.; Kossenkov, A.V.; Michalek, R.D.; Schultz, D.C.; Bosari, S.; Languino, L.R.; Altieri, D.C. Adaptive mitochondrial reprogramming and resistance to PI3K therapy. J. Natl. Cancer Inst., 2015, 107(3), dju502.
[http://dx.doi.org/10.1093/jnci/dju502] [PMID: 25650317]
[97]
Carew, J.S.; Huang, P. Mitochondrial defects in cancer. Mol. Cancer, 2002, 1(1), 9.
[http://dx.doi.org/10.1186/1476-4598-1-9] [PMID: 12513701]
[98]
Chan, M.S.; Liu, L.S.; Leung, H.M.; Lo, P.K. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl. Mater. Interfaces, 2017, 9(13), 11780-11789.
[http://dx.doi.org/10.1021/acsami.6b15954] [PMID: 28291330]
[99]
Pan, L.; Liu, J.; He, Q.; Shi, J. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv. Mater., 2014, 26(39), 6742-6748.
[http://dx.doi.org/10.1002/adma.201402752] [PMID: 25159109]
[100]
Xiong, H.; Du, S.; Ni, J.; Zhou, J.; Yao, J. Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials, 2016, 94, 70-83.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.004] [PMID: 27105438]
[101]
Xie, R.; Lian, S.; Peng, H.; OuYang, C.; Li, S.; Lu, Y.; Cao, X.; Zhang, C.; Xu, J.; Jia, L. Mitochondria and nuclei dual-targeted hollow carbon nanospheres for cancer chemophotodynamic synergistic therapy. Mol. Pharm., 2019, 16(5), 2235-2248.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00259] [PMID: 30896172]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy