Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Artificial Intelligence Assisted Fabrication of 3D, 4D and 5D Printed Formulations or Devices for Drug Delivery

Author(s): Kiran Singh Sharma*

Volume 20, Issue 6, 2023

Published on: 27 December, 2022

Page: [752 - 769] Pages: 18

DOI: 10.2174/1567201820666221207140956

Price: $65

Abstract

5D & 4D printings are an advanced version of 3D printing class and are one of the most revolutionary and powerful fabrication methods used for preparing innovative structures and solid substances using precise additive manufacturing technology. It captures the imagination of one with its potential to produce flexible designing and fabrication of innovative products with high complexity and speed. This technology with the assistance of AI (Artificial Intelligence) facilitates real-time sensing, adapting to change, and predicting the state of printing. 3D printing works by employing advanced materials utilizing a computer aided design with tomography scan under AI control which deposits printing material in accordance with the nature of a file usually in STL format, but it requires time for printing. This shortcoming can be overcome by 4D printing where smart materials are incorporated with time as 4th dimension. This technique has self-repair and self-assembly properties that will save around 80% of time. Some printed materials are made sensitive to temperature, humidity, light, and other parameters so that they can respond to stimulus, but it’s one limitation of not being able to print complex shapes having curved surfaces can be overcome by utilising 5D printing where additive manufacturing is done by rotation of extruder head and rotation of print bed to print in 5 different axes. This review evaluates the prospective of these techniques with AI interference in medicine and pharmacy, with its effective and efficient production for the required design precision.

Keywords: 3D printing, 4D printing, 5D printing, smart materials, shape changing, additive manufacturing, artificial intelligence, solid freeform technology (SFF).

Graphical Abstract
[1]
Dimitrov, D.; Schreve, K.; de Beer, N. Advances in three dimensional printing-State of the art and future perspectives. Rapid Prototyping J., 2006, 12(3), 136-147.
[http://dx.doi.org/10.1108/13552540610670717]
[2]
Yu, D.G.; Yang, X.L.; Huang, W.D.; Liu, J.; Wang, Y.G.; Xu, H. Tablets with material gradients fabricated by three-dimensional printing. J. Pharm. Sci., 2007, 96(9), 2446-2456.
[http://dx.doi.org/10.1002/jps.20864] [PMID: 17497729]
[3]
Wu, G.; Wu, W.; Zheng, Q.; Li, J.; Zhou, J.; Hu, Z. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro. Biomed. Eng. Online, 2014, 13(1), 97.
[http://dx.doi.org/10.1186/1475-925X-13-97] [PMID: 25038793]
[4]
Jamróz, W.; Szafraniec, J.; Kurek, M.; Jachowicz, R. 3D printing in pharmaceutical and medical applications- Recent achievements and challenges. Pharm. Res., 2018, 35(9), 176.
[http://dx.doi.org/10.1007/s11095-018-2454-x] [PMID: 29998405]
[5]
Momeni, F.; Hassani, S.M.M.; Liu, X.; Ni, J. A review of 4D printing. Mater. Des., 2017, 122, 42-79.
[http://dx.doi.org/10.1016/j.matdes.2017.02.068]
[6]
Valentine, A.D.; Busbee, T.A.; Boley, J.W.; Raney, J.R.; Chortos, A.; Kotikian, A.; Berrigan, J.D.; Durstock, M.F.; Lewis, J.A. Hybrid 3D printing of soft electronics. Adv. Mater., 2017, 29(40), 1703817.
[http://dx.doi.org/10.1002/adma.201703817] [PMID: 28875572]
[7]
Razaviarab, N.; Sharifi, S.; Banadaki, Y.M. Smart additive manufacturing empowered by a closed-loop machine learning algorithm. Proc. SPIE, 2019, 8, 17.
[http://dx.doi.org/10.1117/12.2513816]
[8]
Sitthi-Amorn, P.; Ramos, J.E.; Wangy, Y.; Kwan, J.; Lan, J.; Wang, W.; Matusik, W. MultiFab. ACM Trans. Graph., 2015, 34(4), 1-11.
[http://dx.doi.org/10.1145/2766962]
[9]
Zhu, Z.; Ng, D.W.H.; Parl, H.S.; McAlpine, M.C. 3D-printed multifunctional materials enabled by artificial-intelligence assisted. Natl. Rev., 2020, 6, 27-47.
[10]
Mao, Y.; Yu, K.; Isakov, M.S.; Wu, J.; Dunn, M.L.; Jerry Qi, H. Sequential Self-Folding structures by 3d printed digital shape memory polymers. Sci. Rep., 2015, 5(1), 13616.
[http://dx.doi.org/10.1038/srep13616] [PMID: 26346202]
[11]
Zhang, Q.; Yan, D.; Zhang, K.; Hu, G. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci. Rep., 2015, 5(1), 8936.
[http://dx.doi.org/10.1038/srep08936] [PMID: 25757881]
[12]
Villar, G.; Graham, A.D.; Bayley, H. A tissue-like printed material. Science, 2013, 340(6128), 48-52.
[http://dx.doi.org/10.1126/science.1229495] [PMID: 23559243]
[13]
Dimas, L.S.; Bratzel, G.H.; Eylon, I.; Buehler, M.J. Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing. Adv. Funct. Mater., 2013, 23(36), 4629-4638.
[http://dx.doi.org/10.1002/adfm.201300215]
[14]
Sun, K.; Wei, T.S.; Ahn, B.Y.; Seo, J.Y.; Dillon, S.J.; Lewis, J.A. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater., 2013, 25(33), 4539-4543.
[http://dx.doi.org/10.1002/adma.201301036] [PMID: 23776158]
[15]
Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol., 2014, 32(8), 773-785.
[http://dx.doi.org/10.1038/nbt.2958] [PMID: 25093879]
[16]
Ge, Q.; Dunn, C.K.; Qi, H.J.; Dunn, M.L. Active origami by 4D printing. Smart Mater. Struct., 2014, 23(9), 094007-094015.
[http://dx.doi.org/10.1088/0964-1726/23/9/094007]
[17]
Pei, E. 4D Printing: dawn of an emerging technology cycle. Assem. Autom., 2014, 34(4), 310-314.
[http://dx.doi.org/10.1108/AA-07-2014-062]
[18]
Haleem, A.; Javaid, M.; Vaishya, R. 5D printing and its expected applications in orthopaedics. J. Clin. Orthop. Trauma, 2019, 10(4), 809-810.
[http://dx.doi.org/10.1016/j.jcot.2018.11.014] [PMID: 31316262]
[19]
Ravinder, R.P.; Anjani, D.P. Review on the advancements to additive manufacturing-4D and 5D printing. Int. J. Mech. Prod. Eng. Res. Dev., 2018, 8, 397-402.
[http://dx.doi.org/10.24247/ijmperdaug201841]
[20]
Hartl, DJ; Lagoudas, DC Aerospace applications of shape memory alloys. P I Mech Eng G-J Aer., 2007, 221, 535-552.
[21]
Liu, C.; Qin, H.; Mather, P.T. Review of progress in shape-memory polymers. J. Mater. Chem., 2007, 17(16), 1543-1558.
[http://dx.doi.org/10.1039/b615954k]
[22]
Yang, W.; Lu, H.; Huang, W.; Qi, H.; Wu, X.; Sun, K. Advanced shape memory technology to reshape product design, manufacturing and recycling. Polymers (Basel), 2014, 6(8), 2287-2308.
[http://dx.doi.org/10.3390/polym6082287]
[23]
Andreas, L.; Oliver, E.C. Reprogrammable recovery and actuation behaviour of shape- memory polymers. Nat. Rev. Mater., 2019, 4, 116-133.
[24]
Huang, W.M.; Yang, B.; Zhao, Y.; Ding, Z. Thermo-moisture responsive polyurethane shape-memory polymer and composites: A review. J. Mater. Chem., 2010, 20(17), 3367-3381.
[http://dx.doi.org/10.1039/b922943d]
[25]
White, E.M.; Yatvin, J.; Grubbs, J.B., III; Bilbrey, J.A.; Locklin, J. Advances in smart materials: Stimuli-responsive hydrogel thin films. J. Polym. Sci., B, Polym. Phys., 2013, 51(14), 1084-1099.
[http://dx.doi.org/10.1002/polb.23312]
[26]
Ge, Q.; Qi, H.J.; Dunn, M.L. Active materials by four-dimension printing. Appl. Phys. Lett., 2013, 103(13), 131901.
[http://dx.doi.org/10.1063/1.4819837]
[27]
Raviv, D.; Zhao, W.; McKnelly, C.; Papadopoulou, A.; Kadambi, A.; Shi, B.; Hirsch, S.; Dikovsky, D.; Zyracki, M.; Olguin, C.; Raskar, R.; Tibbits, S. Active printed materials for complex self-evolving deformations. Sci. Rep., 2014, 4(1), 7422.
[http://dx.doi.org/10.1038/srep07422] [PMID: 25522053]
[28]
Hussein, M.I.; Leamy, M.J.; Ruzzene, M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev., 2014, 66(4), 040802.
[http://dx.doi.org/10.1115/1.4026911]
[29]
Wang, Q.; Jackson, J.A.; Ge, Q.; Hopkins, J.B.; Spadaccini, C.M.; Fang, N.X. Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys. Rev. Lett., 2016, 117(17), 175901.
[http://dx.doi.org/10.1103/PhysRevLett.117.175901] [PMID: 27824463]
[30]
Linden, S.; Enkrich, C.; Wegener, M.; Zhou, J.; Koschny, T.; Soukoulis, C.M. Magnetic response of metamaterials at 100 terahertz. Science, 2004, 306(5700), 1351-1353.
[http://dx.doi.org/10.1126/science.1105371] [PMID: 15550664]
[31]
Pei, E.; Loh, G.H. Technological considerations for 4D printing: an overview. Prog. Addit. Manuf., 2018, 3(1-2), 95-107.
[http://dx.doi.org/10.1007/s40964-018-0047-1]
[32]
Gillaspie, E.A.; Matsumoto, J.S.; Morris, N.E. From 3D printing to 5D printing: enhancing thoracic surgical planning and resection of complex tumours. Ann. Thorac. Surg., 2016, 101(5), 1958-1962.
[http://dx.doi.org/10.1016/j.athoracsur.2015.12.075] [PMID: 27106426]
[33]
Lewis, J.A.; Gratson, G.M. Direct writing in three dimensions. Mater. Today, 2004, 7(7-8), 32-39.
[http://dx.doi.org/10.1016/S1369-7021(04)00344-X]
[34]
Su, J.W.; Tao, X.; Deng, H.; Zhang, C.; Jiang, S.; Lin, Y.; Lin, J. 4D printing of a self-morphing polymer driven by a swellable guest medium. Soft Matter, 2018, 14(5), 765-772.
[http://dx.doi.org/10.1039/C7SM01796K] [PMID: 29302670]
[35]
Gittard, S.D.; Narayan, R.J. Laser direct writing of micro- and nano-scale medical devices. Expert Rev. Med. Devices, 2010, 7(3), 343-356.
[http://dx.doi.org/10.1586/erd.10.14] [PMID: 20420557]
[36]
Yu, D.G.; Zhu, L.M.; Branford-White, C.J.; Yang, X.L. Three-dimensional printing in pharmaceutics: Promises and problems. J. Pharm. Sci., 2008, 97(9), 3666-3690.
[http://dx.doi.org/10.1002/jps.21284] [PMID: 18257041]
[37]
Desu, P.K.; Maddiboyina, B.; Vanitha, K.; Rao Gudhanti, S.N.K.; Anusha, R.; Jhawat, V. 3D printing technology in pharmaceutical dosage forms: Advantages and challenges. Curr. Drug Targets, 2021, 22(16), 1901-1914.
[http://dx.doi.org/10.2174/1389450122666210120142416] [PMID: 33494666]
[38]
Konta, A.; García-Piña, M.; Serrano, D. Personalised 3D printed medicines: which techniques and polymers are more successful? Bioengineering (Basel), 2017, 4(4), 79.
[http://dx.doi.org/10.3390/bioengineering4040079] [PMID: 28952558]
[39]
Kunchala, P.; Kappagantula, K. 3D printing high density ceramics using binder jetting with nanoparticle densifiers. Mater. Des., 2018, 155, 443-450.
[http://dx.doi.org/10.1016/j.matdes.2018.06.009]
[40]
Bansal, M.; Sharma, V.; Singh, G.; Harikumar, S.L. 3D printing for the future of pharmaceuticals dosage forms. Int. J. App. Pharm., 2018, 10(3), 1-7.
[41]
Westbrook, K.K.; Kao, P.H.; Castro, F.; Ding, Y.; Jerry Qi, H. A 3D finite deformation constitutive model for amorphous shape memory polymers: A multi-branch modeling approach for nonequilibrium relaxation processes. Mech. Mater., 2011, 43(12), 853-869.
[http://dx.doi.org/10.1016/j.mechmat.2011.09.004]
[42]
Preis, M.; Breitkreutz, J.; Sandler, N. Perspective: Concepts of printing technologies for oral film formulations. Int. J. Pharm., 2015, 494(2), 578-584.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.032] [PMID: 25683143]
[43]
Wang, J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int. J. Pharm., 2016, 503(1-2), 207-212.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.016] [PMID: 26976500]
[44]
Shin, D.G.; Kim, T.H.; Kim, D.E. Review of 4D printing materials and their properties. Int. J. Precis. Eng. Manuf. -. Green Technol., 2017, 4, 349-357.
[45]
Wang, C.C.; Tejwani Motwani, M.R.; Roach, W.J.; Kay, J.L.; Yoo, J.; Surprenant, H.L.; Monkhouse, D.C.; Pryor, T.J. Development of near zero-order release dosage forms using three-dimensional printing (3-DP) technology. Drug Dev. Ind. Pharm., 2006, 32(3), 367-376.
[http://dx.doi.org/10.1080/03639040500519300] [PMID: 16556541]
[46]
Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-curing 3D printing technique and its challenges. Bioact. Mater., 2020, 5(1), 110-115.
[http://dx.doi.org/10.1016/j.bioactmat.2019.12.003] [PMID: 32021945]
[47]
Ziaee, M.; Crane, N.B. Binder jetting: A review of process, materials, and methods. Addit. Manuf., 2019, 28, 781-801.
[http://dx.doi.org/10.1016/j.addma.2019.05.031]
[48]
Matai, I.; Kaur, G.; Seyedsalehi, A.; McClinton, A.; Laurencin, C.T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020, 226, 119536.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119536] [PMID: 31648135]
[49]
Yi, H.G.; Lee, H.; Cho, D.W. 3D printing of organs-on-chips. Bioengineering (Basel), 2017, 4(4), 10.
[http://dx.doi.org/10.3390/bioengineering4010010] [PMID: 28952489]
[50]
Fernandez, J.G.; Khademhosseini, A. Micro-masonry: construction of 3D structures by microscale self-assembly. Adv. Mater., 2010, 22(23), 2538-2541.
[http://dx.doi.org/10.1002/adma.200903893] [PMID: 20440697]
[51]
Mironov, V.; Boland, T.; Trusk, T.; Forgacs, G.; Markwald, R.R. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol., 2003, 21(4), 157-161.
[http://dx.doi.org/10.1016/S0167-7799(03)00033-7] [PMID: 12679063]
[52]
Elele, E.; Shen, Y.; Susarla, R.; Khusid, B.; Keyvan, G.; Michniak-Kohn, B. Electrodeless electrohydrodynamic drop-on-demand encapsulation of drugs into porous polymer films for fabrication of personalized dosage units. J. Pharm. Sci., 2012, 101(7), 2523-2533.
[http://dx.doi.org/10.1002/jps.23165] [PMID: 22527973]
[53]
Lee, B.K. Yun, Yh; Choi, JS.; Choi, YC.; Kim, JD.; Cho, YM. Fabrication of drug loaded polymer microparticles with arbitrary geometrices using a piezoelectric inkjet printing system. Int. J. Pharm., 2012, 427(2), 305-310.
[http://dx.doi.org/10.1016/j.ijpharm.2012.02.011] [PMID: 22366486]
[54]
Huang, K.K.; Wang, D.P.; Meng, C.L. Development of extended release dosage forms using non-uniform drug distribution techniques. Drug Dev. Ind. Pharm., 2002, 28(5), 593-599.
[http://dx.doi.org/10.1081/DDC-120003455] [PMID: 12098848]
[55]
Katstra, W.E.; Palazzolo, R.D.; Rowe, C.W.; Giritlioglu, B.; Teung, P.; Cima, M.J. Oral dosage forms fabricated by Three Dimensional Printing™. J. Control. Release, 2000, 66(1), 1-9.
[http://dx.doi.org/10.1016/S0168-3659(99)00225-4] [PMID: 10708873]
[56]
Kuang, M.; Wang, L.; Song, Y. Controllable printing droplets for high-resolution patterns. Adv. Mater., 2014, 26(40), 6950-6958.
[http://dx.doi.org/10.1002/adma.201305416] [PMID: 24687946]
[57]
Khaled, S.A.; Burley, J.C.; Alexander, M.R.; Yang, J.; Roberts, C.J. 3D printing of tablets containing multiple drugs with defined release profiles. Int. J. Pharm., 2015, 494(2), 643-650.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.067] [PMID: 26235921]
[58]
Fu, Y.; Yang, S.; Jeong, S.H.; Kimura, S.; Park, K. Orally fast disintegrating tablets: developments, technologies, taste-masking and clinical studies. Crit. Rev. Ther. Drug Carrier Syst., 2004, 21(6), 433-476.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i6.10] [PMID: 15658933]
[59]
Zhou, Z.; Buchanan, F.; Mitchell, C.; Dunne, N. Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater. Sci. Eng. C, 2014, 38, 1-10.
[http://dx.doi.org/10.1016/j.msec.2014.01.027] [PMID: 24656346]
[60]
Goyanes, A.; Robles Martinez, P.; Buanz, A.; Basit, A.W.; Gaisford, S. Effect of geometry on drug release from 3D printed tablets. Int. J. Pharm., 2015, 494(2), 657-663.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.069] [PMID: 25934428]
[61]
Khaled, S.A.; Alexander, M.R.; Irvine, D.J.; Wildman, R.D.; Wallace, M.J.; Sharpe, S.; Yoo, J.; Roberts, C.J. Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry. AAPS PharmSciTech, 2018, 19(8), 3403-3413.
[http://dx.doi.org/10.1208/s12249-018-1107-z] [PMID: 30097806]
[62]
Alhnan, M.A.; Okwuosa, T.C.; Sadia, M.; Wan, K.W.; Ahmed, W.; Arafat, B. Emergence of 3D printed dosage forms: Opportunities and challenges. Pharm. Res., 2016, 33(8), 1817-1832.
[http://dx.doi.org/10.1007/s11095-016-1933-1] [PMID: 27194002]
[63]
Khaled, S.A.; Burley, J.C.; Alexander, M.R.; Yang, J.; Roberts, C.J. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J. Control. Release, 2015, 217, 308-314.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.028] [PMID: 26390808]
[64]
Lee, W.L.; Yu, P.; Hong, M.; Widjaja, E.; Loo, S.C.J. Designing multilayered particulate systems for tunable drug release profiles. Acta Biomater., 2012, 8(6), 2271-2278.
[http://dx.doi.org/10.1016/j.actbio.2012.02.007] [PMID: 22342827]
[65]
Öblom, H.; Zhang, J.; Pimparade, M.; Speer, I.; Preis, M.; Repka, M.; Sandler, N. 3D printed Isoniazid tablets for the treatment and prevention of tuberculosis-Personalized dosing and drug release. AAPS PharmSciTech, 2019, 20(2), 52-53.
[http://dx.doi.org/10.1208/s12249-018-1233-7] [PMID: 30617660]
[66]
Pardeike, J.; Strohmeier, D.M.; Schrödl, N.; Voura, C.; Gruber, M.; Khinast, J.G.; Zimmer, A. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int. J. Pharm., 2011, 420(1), 93-100.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.033] [PMID: 21889582]
[67]
Kim, D.S.; Lee, W.H.; Kim, J.S.; Lee, M.C. A study on improvement of strength by using photopolymer resin in the 3DP process. In. 2006 IEEE International Symposium on Industrial Electronics, 2006, pp. 2990-2995.
[http://dx.doi.org/10.1109/ISIE.2006.296092]
[68]
Rattanakit, P.; Moulton, S.E.; Santiago, K.S.; Liawruangrath, S.; Wallace, G.G. Extrusion printed polymer structures: A facile and versatile approach to tailored drug delivery platforms. Int. J. Pharm., 2012, 422(1-2), 254-263.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.007] [PMID: 22101281]
[69]
Sadia, M. Sośnicka, A.; Arafat, B.; Isreb, A.; Ahmed, W.; Kelarakis, A.; Alhnan, M.A. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int. J. Pharm., 2016, 513(1-2), 659-668.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.050] [PMID: 27640246]
[70]
Skowyra, J.; Pietrzak, K.; Alhnan, M.A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur. J. Pharm. Sci., 2015, 68, 11-17.
[http://dx.doi.org/10.1016/j.ejps.2014.11.009] [PMID: 25460545]
[71]
Stevenson, C.L.; Santini, J.T., Jr; Langer, R. Reservoir-based drug delivery systems utilizing microtechnology. Adv. Drug Deliv. Rev., 2012, 64(14), 1590-1602.
[http://dx.doi.org/10.1016/j.addr.2012.02.005] [PMID: 22465783]
[72]
Alomari, M.; Mohamed, F.H.; Basit, A.W.; Gaisford, S. Personalised dosing: Printing a dose of one’s own medicine. Int. J. Pharm., 2015, 494(2), 568-577.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.006] [PMID: 25498157]
[73]
Ehtezazi, T.; Algellay, M.; Islam, Y.; Roberts, M.; Dempster, N.M.; Sarker, S.D. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J. Pharm. Sci., 2018, 107(4), 1076-1085.
[http://dx.doi.org/10.1016/j.xphs.2017.11.019] [PMID: 29208374]
[74]
Goyanes, A.; Wang, J.; Buanz, A.; Martínez-Pacheco, R.; Telford, R.; Gaisford, S.; Basit, A.W. 3D printing of medicines: Engineering novel oral devices with unique design and drug release characteristics. Mol. Pharm., 2015, 12(11), 4077-4084.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00510] [PMID: 26473653]
[75]
Buanz, A.B.M.; Saunders, M.H.; Basit, A.W.; Gaisford, S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm. Res., 2011, 28(10), 2386-2392.
[http://dx.doi.org/10.1007/s11095-011-0450-5] [PMID: 21544688]
[76]
Charoo, N.A.; Shamsher, A.A.A.; Zidan, A.S.; Rahman, Z. Quality by design approach for formulation development: A case study of dispersible tablets. Int. J. Pharm., 2012, 423(2), 167-178.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.024] [PMID: 22209997]
[77]
Chen, L.; Wang, H.; Wang, J.; Chen, M.; Shang, L. Ofloxacin-delivery system of a polyanhydride and polylactide blend used in the treatment of bone infection. J. Biomed. Mater. Res. B Appl. Biomater., 2007, 83B(2), 589-595.
[http://dx.doi.org/10.1002/jbm.b.30832] [PMID: 17410574]
[78]
Seidenstuecker, M.; Kerr, L.; Bernstein, A.; Mayr, H.; Suedkamp, N.; Gadow, R.; Krieg, P.; Hernandez Latorre, S.; Thomann, R.; Syrowatka, F.; Esslinger, S. 3D powder printed bioglass and β-Tricalcium phosphate bone scaffolds. Materials (Basel), 2017, 11(1), 13-16.
[http://dx.doi.org/10.3390/ma11010013] [PMID: 29271932]
[79]
Butscher, A.; Bohner, M.; Roth, C.; Ernstberger, A.; Heuberger, R.; Doebelin, N.; Rudolf von Rohr, P.; Müller, R. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater., 2012, 8(1), 373-385.
[http://dx.doi.org/10.1016/j.actbio.2011.08.027] [PMID: 21925623]
[80]
Highley, C.B.; Song, K.H.; Daly, A.C.; Burdick, J.A. Jammed microgel inks for 3D printing applications. Adv. Sci. (Weinh.), 2019, 6(1), 1801076.
[http://dx.doi.org/10.1002/advs.201801076] [PMID: 30643716]
[81]
Gupta, S.; Webster, T.J.; Sinha, A. Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface. J. Mater. Sci. Mater. Med., 2011, 22(7), 1763-1772.
[http://dx.doi.org/10.1007/s10856-011-4343-2] [PMID: 21643819]
[82]
Ghalanbor, Z.; Körber, M.; Bodmeier, R. Protein release from poly(lactide-co-glycolide) implants prepared by hot-melt extrusion: Thioester formation as a reason for incomplete release. Int. J. Pharm., 2012, 438(1-2), 302-306.
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.015] [PMID: 22989984]
[83]
Reddy, P.R.; Devi, P.A. Review on the advancements of additive manufacturing-4D and 5D printing. Int. J. Mech. Prod. Eng. Res. Dev., 2018, 8(4), 397-402.
[84]
Ding, Z.; Yuan, C.; Peng, X.; Wang, T.; Qi, H.J.; Dunn, M.L. Direct 4D printing via active composite materials. Sci. Adv., 2017, 3(4), e1602890.
[http://dx.doi.org/10.1126/sciadv.1602890] [PMID: 28439560]
[85]
Kolakovic, R.; Viitala, T.; Ihalainen, P.; Genina, N.; Peltonen, J.; Sandler, N. Printing technologies in fabrication of drug delivery systems. Expert Opin. Drug Deliv., 2013, 10(12), 1711-1723.
[http://dx.doi.org/10.1517/17425247.2013.859134] [PMID: 24256326]
[86]
Ma, G. Microencapsulation of protein drugs for drug delivery: Strategy, preparation, and applications. J. Control. Release, 2014, 193, 324-340.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.003] [PMID: 25218676]
[87]
Huang, W.; Zheng, Q.; Sun, W.; Xu, H.; Yang, X. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int. J. Pharm., 2007, 339(1-2), 33-38.
[http://dx.doi.org/10.1016/j.ijpharm.2007.02.021] [PMID: 17412538]
[88]
Haleem, A.; Javaid, M.; Vaishya, R. 4D printing and its applications in Orthopaedics. J. Clin. Orthop. Trauma, 2018, 9(3), 275-276.
[http://dx.doi.org/10.1016/j.jcot.2018.08.016] [PMID: 30202161]
[89]
Lu, K.; Hiser, M.; Wu, W. Effect of particle size on three dimensional printed mesh structures. Powder Technol., 2009, 192(2), 178-183.
[http://dx.doi.org/10.1016/j.powtec.2008.12.011]
[90]
Trenfield, S.J.; Awad, A.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D printing pharmaceuticals: Drug development to frontline care. Trends Pharmacol. Sci., 2018, 39(5), 440-451.
[http://dx.doi.org/10.1016/j.tips.2018.02.006] [PMID: 29534837]
[91]
Goyanes, A.; Buanz, A.B.M.; Hatton, G.B.; Gaisford, S.; Basit, A.W. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur. J. Pharm. Biopharm., 2015, 89, 157-162.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.003] [PMID: 25497178]
[92]
Akbari, S.; Sakhaei, A.H.; Kowsari, K.; Yang, B.; Serjouei, A.; Yuanfang, Z.; Ge, Q. Enhanced multimaterial 4D printing with active hinges. Smart Mater. Struct., 2018, 27(6), 065027.
[http://dx.doi.org/10.1088/1361-665X/aabe63]
[93]
Khoo, Z.X.; Teoh, J.E.M.; Liu, Y.; Chua, C.K.; Yang, S.; An, J.; Leong, K.F.; Yeong, W.Y. 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys. Prototyp., 2015, 10(3), 103-122.
[http://dx.doi.org/10.1080/17452759.2015.1097054]
[94]
Baker, A.B.; Wass, D.F.; Trask, R.S. 4D sequential actuation: combining ionoprinting and redox chemistry in hydrogels. Smart Mater. Struct., 2016, 25(10), 10LT02.
[http://dx.doi.org/10.1088/0964-1726/25/10/10LT02]
[95]
Ge, Q.; Sakhaei, A.H.; Lee, H.; Dunn, C.K.; Fang, N.X.; Dunn, M.L. Multi-material 4D printing with tailorable shape memory polymers. Sci. Rep., 2016, 6(1), 31110.
[http://dx.doi.org/10.1038/srep31110]
[96]
Goyanes, A.; Buanz, A.B.M.; Basit, A.W.; Gaisford, S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int. J. Pharm., 2014, 476(1-2), 88-92.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.044] [PMID: 25275937]
[97]
Jain, R.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000, 21(23), 2475-2490.
[http://dx.doi.org/10.1016/S0142-9612(00)00115-0] [PMID: 11055295]
[98]
Zhou, Y.; Huang, W.M.; Kang, S.F.; Wu, X.L.; Lu, H.B.; Fu, J.; Cui, H. From 3D to 4D printing: approaches and typical applications. J. Mech. Sci. Technol., 2015, 29(10), 4281-4288.
[http://dx.doi.org/10.1007/s12206-015-0925-0]
[99]
Bao, M.; Lou, X.; Zhou, Q.; Dong, W.; Yuan, H.; Zhang, Y. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering. ACS Appl. Mater. Interfaces, 2014, 6(4), 2611-2621.
[http://dx.doi.org/10.1021/am405101k] [PMID: 24476093]
[100]
Westedt, U.; Wittmar, M.; Hellwig, M.; Hanefeld, P.; Greiner, A.; Schaper, A.K.; Kissel, T. Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) and their potential as biodegradable stent coatings. J. Control. Release, 2006, 111(1-2), 235-246.
[http://dx.doi.org/10.1016/j.jconrel.2005.12.012] [PMID: 16466824]
[101]
Pietrzak, K.; Isreb, A.; Alhnan, M.A. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur. J. Pharm. Biopharm., 2015, 96, 380-387.
[http://dx.doi.org/10.1016/j.ejpb.2015.07.027] [PMID: 26277660]
[102]
Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Light-induced shape-memory polymers. Nature, 2005, 434(7035), 879-882.
[http://dx.doi.org/10.1038/nature03496] [PMID: 15829960]
[103]
Buckley, P.R.; McKinley, G.H.; Wilson, T.S.; Small, W.; Benett, W.J.; Bearinger, J.P.; McElfresh, M.W.; Maitland, D.J. Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans. Biomed. Eng., 2006, 53(10), 2075-2083.
[http://dx.doi.org/10.1109/TBME.2006.877113] [PMID: 17019872]
[104]
Serrano, M.C.; Ameer, G.A. Recent insights into the biomedical applications of shape-memory polymers. Macromol. Biosci., 2012, 12(9), 1156-1171.
[http://dx.doi.org/10.1002/mabi.201200097] [PMID: 22887759]
[105]
Korpela, J.; Kokkari, A.; Korhonen, H.; Malin, M.; Närhi, T.; Seppälä, J. Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J. Biomed. Mater. Res. B Appl. Biomater., 2013, 101B(4), 610-619.
[http://dx.doi.org/10.1002/jbm.b.32863] [PMID: 23281260]
[106]
Hu, G.F.; Damanpack, A.R.; Bodaghi, M.; Liao, W.H. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling. Smart Mater. Struct., 2017, 26(12), 125023.
[http://dx.doi.org/10.1088/1361-665X/aa95ec]
[107]
Yu, L.X. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm. Res., 2008, 25(4), 781-791.
[http://dx.doi.org/10.1007/s11095-007-9511-1] [PMID: 18185986]
[108]
Zhao, Q.; Qi, H.J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci., 2015, 49-50, 79-120.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.04.001]
[109]
Lee, H.; Cho, D.W. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip, 2016, 16(14), 2618-2625.
[http://dx.doi.org/10.1039/C6LC00450D] [PMID: 27302471]
[110]
Sydney Gladman, A.; Matsumoto, E.A.; Nuzzo, R.G.; Mahadevan, L.; Lewis, J.A. Biomimetic 4D printing. Nat. Mater., 2016, 15(4), 413-418.
[http://dx.doi.org/10.1038/nmat4544] [PMID: 26808461]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy