Review Article

Endemic and Indigenous Plants from Mascarene Islands with Antiviral Propensities

Author(s): Mahomoodally Mohamad Fawzi*, Jugreet Bibi Sharmeen, Haddad Juliano and El Kalamouni Chaker

Volume 23, Issue 1, 2022

Published on: 24 August, 2021

Page: [72 - 86] Pages: 15

DOI: 10.2174/1389450122666210824143910

Price: $65

Abstract

Background: Antiviral resistance and inefficiency of available antiviral drugs to effectively treat viral infections have prompted many researchers worldwide to explore medicinal plants and their isolated compounds as alternative antivirals. The rich flora from the Mascarene Islands has also been thoroughly studied for their wide therapeutic activities, including their antiviral properties.

Objective: The aim of this review is to highlight the antiviral propensities of Mascarene endemic and indigenous medicinal plants.

Methodology: A review of the literature was conducted via major databases and other primary sources of information. The inhibitory concentration/effective dose causing 50% viral inhibition (IC50/ED50), cytotoxic concentration causing 50% reduction in cell viability (CC50), and selectivity index (SI) were reported, and mechanisms of antiviral action were also discussed.

Results: Stillingia lineata was the most effective against chikungunya virus (SI: 10.9), and among its isolated compounds, 12-O-acetylphorbol-13(2″-methyl)- butyrate and 12-deoxyphorbol- 13(2″-methyl)butyrate were the most potent and selective inhibitors of chikungunya virus replication (SI: 41 and >240, respectively). 12-O-acetylphorbol-13(2″-methyl)- butyrate, 12β-O-[nona- 2Z,4E,6E-trienoyl]-4α-deoxyphorbol-13-butyrate, 12-deoxyphorbol-13(2″-methyl)butyrate, and 12-deoxyphorbol-13-[8′-oxohexadeca-2E,4E,6E-trienoate showed strong selective antiviral effect on human immunodeficiency virus-I (SI: 36-899) and II (SI: 33-2056). Obetia ficifolia and Erythroxylon laurifolium were most active against the herpes virus (SI: 18.5 and 16, respectively). Labourdonnaisia glauca showed potent anti-poliovirus activity (SI: 40), while Badula insularis, Labourdonnaisia glauca and Myonima violacea were active against rhinovirus (SI: 1.3-2.5). Both anti-zika and anti-dengue virus activities were reported for Aphloia theiformis, Doratoxylon apetalum, Phyllanthus phillyreifolius and Psiloxylon mauritianum.

Conclusion: Promising spectrum of antiviral properties notably against zika, dengue, chikungunya, polio-, rhino-, herpes, and human immunodeficiency viruses were presented by the Mascarene plants suggesting them as viable candidates for the potential development of effective natural antiviral drugs.

Keywords: Endemic, indigenous, medicinal plants, mascarene, islands, antiviral.

Graphical Abstract
[1]
Matias G, Taylor R, Haguinet F, Schuck-Paim C, Lustig R, Shinde V. Estimates of mortality attributable to influenza and RSV in the United States during 1997-2009 by influenza type or subtype, age, cause of death, and risk status. Influenza Other Respir Viruses 2014; 8(5): 507-15.
[http://dx.doi.org/10.1111/irv.12258] [PMID: 24975705]
[2]
Stanaway JD, Flaxman AD, Naghavi M, et al. The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013. Lancet 2016; 388(10049): 1081-8.
[http://dx.doi.org/10.1016/S0140-6736(16)30579-7] [PMID: 27394647]
[3]
Danforth K, Granich R, Wiedeman D, Baxi S, Padian N. Global mortality and morbidity of HIV/AIDS. In: In: Holmes KK, Bertozzi S, Bloom BR, Jha P, 3rd Eds. Major Infectious Diseases 2017, 3. Washington (DC): The International Bank for Reconstruction and Development / The World Bank 2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK525184/
[http://dx.doi.org/10.1596/978-1-4648-0524-0_ch2]
[4]
Paixão ES, Teixeira MG, Rodrigues LC. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob Health 2018; 3(1): e000530.
[http://dx.doi.org/10.1136/bmjgh-2017-000530] [PMID: 29435366]
[5]
Sheu TG, Deyde VM, Okomo-Adhiambo M, et al. Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother 2008; 52(9): 3284-92.
[http://dx.doi.org/10.1128/AAC.00555-08] [PMID: 18625765]
[6]
Locarnini SA, Yuen L. Molecular genesis of drug-resistant and vaccine-escape HBV mutants. Antivir Ther 2010; 15(3 Pt B): 451-61.
[http://dx.doi.org/10.3851/IMP1499] [PMID: 20516565]
[7]
Geretti AM, Armenia D, Ceccherini-Silberstein F. Emerging patterns and implications of HIV-1 integrase inhibitor resistance. Curr Opin Infect Dis 2012; 25(6): 677-86.
[http://dx.doi.org/10.1097/QCO.0b013e32835a1de7] [PMID: 23086187]
[8]
Wyles DL. Antiviral resistance and the future landscape of hepatitis C virus infection therapy. J Infect Dis 2013; 207(Suppl. 1): S33-9.
[http://dx.doi.org/10.1093/infdis/jis761] [PMID: 23390303]
[9]
Perazella MA. Crystal-induced acute renal failure. Am J Med 1999; 106(4): 459-65.
[http://dx.doi.org/10.1016/S0002-9343(99)00041-8] [PMID: 10225250]
[10]
Izzedine H, Launay-Vacher V, Deray G. Antiviral drug-induced nephrotoxicity. Am J Kidney Dis 2005; 45(5): 804-17.
[http://dx.doi.org/10.1053/j.ajkd.2005.02.010] [PMID: 15861345]
[11]
Zhang Y, Cong Y, Teng Y. Acute renal injury induced by valacyclovir hydrochloride: A case report. Exp Ther Med 2016; 12(6): 4025-8.
[http://dx.doi.org/10.3892/etm.2016.3905] [PMID: 28101180]
[12]
Baron S, Fons M, Albrecht T. Viral pathogenesis. 4th ed. Medical Microbiology 1996.
[13]
Martin KW, Ernst E. Antiviral agents from plants and herbs: A systematic review. Antivir Ther 2003; 8(2): 77-90.
[PMID: 12741619]
[14]
Field AK, Biron KK. “The end of innocence” revisited: resistance of herpesviruses to antiviral drugs. Clin Microbiol Rev 1994; 7(1): 1-13.
[http://dx.doi.org/10.1128/CMR.7.1.1] [PMID: 8118786]
[15]
Severson JL, Tyring SK. Relation between herpes simplex viruses and human immunodeficiency virus infections. Arch Dermatol 1999; 135(11): 1393-7.
[http://dx.doi.org/10.1001/archderm.135.11.1393] [PMID: 10566840]
[16]
Khan MTH, Ather A, Thompson KD, Gambari R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res 2005; 67(2): 107-19.
[http://dx.doi.org/10.1016/j.antiviral.2005.05.002] [PMID: 16040137]
[17]
Elena SF, Miralles R, Cuevas JM, Turner PE, Moya A. The two faces of mutation: extinction and adaptation in RNA viruses. IUBMB Life 2000; 49(1): 5-9.
[http://dx.doi.org/10.1080/713803585] [PMID: 10772334]
[18]
Elena SF, Sanjuán R. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J Virol 2005; 79(18): 11555-8.
[http://dx.doi.org/10.1128/JVI.79.18.11555-11558.2005] [PMID: 16140732]
[19]
Mahapatra AD, Bhowmik P, Banerjee A, Das A, Ojha D, Chattopadhyay D. Ethnomedicinal Wisdom: An Approach for Antiviral Drug Development. In: New Look to Phytomedicine. Academic Press 2019; pp. 35-61.
[20]
Pan SY, Pan S, Yu ZL, et al. New perspectives on innovative drug discovery: An overview. J Pharm Pharm Sci 2010; 13(3): 450-71.
[http://dx.doi.org/10.18433/J39W2G] [PMID: 21092716]
[21]
Wu X, Valli A, García JA, Zhou X, Cheng X. The tug-of-war between plants and viruses: Great progress and many remaining questions. Viruses 2019; 11(3): 203.
[http://dx.doi.org/10.3390/v11030203] [PMID: 30823402]
[22]
Incarbone M, Dunoyer P. RNA silencing and its suppression: novel insights from in planta analyses. Trends Plant Sci 2013; 18(7): 382-92.
[http://dx.doi.org/10.1016/j.tplants.2013.04.001] [PMID: 23684690]
[23]
Ogbole OO, Akinleye TE, Segun PA, Faleye TC, Adeniji AJ. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. Virol J 2018; 15(1): 110.
[http://dx.doi.org/10.1186/s12985-018-1022-7] [PMID: 30021589]
[24]
García CC, Talarico L, Almeida N, Colombres S, Duschatzky C, Damonte EB. Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytother Res 2003; 17(9): 1073-5.
[http://dx.doi.org/10.1002/ptr.1305] [PMID: 14595590]
[25]
Brinda OP, Mathew D, Shylaja MR, Davis PS, Cherian KA, Valsala PA. Isovaleric acid and avicequinone-C are Chikungunya virus resistance principles in Glycosmis pentaphylla (Retz.) Correa. J Vector Borne Dis 2019; 56(2): 111-21.
[http://dx.doi.org/10.4103/0972-9062.263719] [PMID: 31397386]
[26]
Gaudry A, Bos S, Viranaicken W, et al. The flavonoid isoquercitrin precludes initiation of Zika virus infection in human cells. Int J Mol Sci 2018; 19(4): 1093.
[http://dx.doi.org/10.3390/ijms19041093] [PMID: 29621184]
[27]
Guo Q, Zhao L, You Q, et al. Anti-hepatitis B virus activity of wogonin in vitro and in vivo. Antiviral Res 2007; 74(1): 16-24.
[http://dx.doi.org/10.1016/j.antiviral.2007.01.002] [PMID: 17280723]
[28]
Lai WL, Chuang HS, Lee MH, Wei CL, Lin CF, Tsai YC. Inhibition of herpes simplex virus type 1 by thymol-related monoterpenoids. Planta Med 2012; 78(15): 1636-8.
[http://dx.doi.org/10.1055/s-0032-1315208] [PMID: 22890541]
[29]
Mathew D, Hsu WL. Antiviral potential of curcumin. J Funct Foods 2018; 40: 692-9.
[http://dx.doi.org/10.1016/j.jff.2017.12.017]
[30]
Mitrocotsa D, Mitaku S, Axarlis S, Harvala C, Malamas M. Evaluation of the antiviral activity of kaempferol and its glycosides against human cytomegalovirus. Planta Med 2000; 66(4): 377-9.
[http://dx.doi.org/10.1055/s-2000-8550] [PMID: 10865462]
[31]
Moghaddam E, Teoh BT, Sam SS, et al. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci Rep 2014; 4: 5452.
[http://dx.doi.org/10.1038/srep05452] [PMID: 24965553]
[32]
Pasetto S, Pardi V, Murata RM. Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model. PLoS One 2014; 9(12): e115323.
[http://dx.doi.org/10.1371/journal.pone.0115323] [PMID: 25546350]
[33]
Pilau MR, Alves SH, Weiblen R, Arenhart S, Cueto AP, Lovato LT. Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses. Braz J Microbiol 2011; 42(4): 1616-24.
[http://dx.doi.org/10.1590/S1517-83822011000400049] [PMID: 24031796]
[34]
Romero MR, Serrano MA, Vallejo M, Efferth T, Alvarez M, Marin JJ. Antiviral effect of artemisinin from Artemisia annua against a model member of the Flaviviridae family, the bovine viral diarrhoea virus (BVDV). Planta Med 2006; 72(13): 1169-74.
[http://dx.doi.org/10.1055/s-2006-947198] [PMID: 16902856]
[35]
Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother 2007; 51(9): 3367-70.
[http://dx.doi.org/10.1128/AAC.00041-07] [PMID: 17576830]
[36]
Chuanasa T, Phromjai J, Lipipun V, et al. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antiviral Res 2008; 80(1): 62-70.
[http://dx.doi.org/10.1016/j.antiviral.2008.05.002] [PMID: 18565600]
[37]
Varghese FS, Thaa B, Amrun SN, et al. The antiviral alkaloid berberine reduces chikungunya virus-induced mitogen-activated protein kinase signaling. J Virol 2016; 90(21): 9743-57.
[http://dx.doi.org/10.1128/JVI.01382-16] [PMID: 27535052]
[38]
Vázquez-Calvo Á, Jiménez de Oya N, Martín-Acebes MA, Garcia-Moruno E, Saiz JC. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and dengue virus. Front Microbiol 2017; 8: 1314.
[http://dx.doi.org/10.3389/fmicb.2017.01314] [PMID: 28744282]
[39]
Whitby K, Pierson TC, Geiss B, et al. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J Virol 2005; 79(14): 8698-706.
[http://dx.doi.org/10.1128/JVI.79.14.8698-8706.2005] [PMID: 15994763]
[40]
Ahmadi A, Hassandarvish P, Lani R, et al. Inhibition of chikungunya virus replication by hesperetin and naringenin. RSC Advances 2016; 6: 69421-30.
[http://dx.doi.org/10.1039/C6RA16640G]
[41]
Astani A, Reichling J, Schnitzler P. Screening for antiviral activities of isolated compounds from essential oils. Evid Based Complement Alternat Med 2011; 2011: 253643.
[http://dx.doi.org/10.1093/ecam/nep187] [PMID: 20008902]
[42]
Astani A, Schnitzler P. Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iran J Microbiol 2014; 6(3): 149-55.
[PMID: 25870747]
[43]
Lani R, Hassandarvish P, Chiam CW, et al. Antiviral activity of silymarin against chikungunya virus. Sci Rep 2015; 5: 11421.
[http://dx.doi.org/10.1038/srep11421] [PMID: 26078201]
[44]
Wu W, Li R, Li X, et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses 2015; 8(1): 6.
[http://dx.doi.org/10.3390/v8010006] [PMID: 26712783]
[45]
LeCher JC, Diep N, Krug PW, Hilliard JK. Genistein has antiviral activity against herpes B virus and acts synergistically with antiviral treatments to reduce effective dose. Viruses 2019; 11(6): 499.
[http://dx.doi.org/10.3390/v11060499] [PMID: 31159175]
[46]
Hussain W, Haleem KS, Khan I, et al. Medicinal plants: A repository of antiviral metabolites. Future Virol 2017; 12: 299-308.
[http://dx.doi.org/10.2217/fvl-2016-0110]
[47]
Kurokawa M, Shimizu T, Watanabe W, Shiraki K. Development of new antiviral agents from natural products. Open Antimicrob Agents J 2010; 2: 49-57.
[http://dx.doi.org/10.2174/18765181010020200049]
[48]
De Clercq E. Chemotherapy of viral infections. In: Baron S, Medical microbiology, 4th ed: Galveston (TX): University of Texas Medical Branch at Galveston; 1996.
[PMID: 21413298]
[49]
Sierra-Aragón S, Walter H. Targets for inhibition of HIV replication: entry, enzyme action, release and maturation. Intervirology 2012; 55(2): 84-97.
[http://dx.doi.org/10.1159/000331995] [PMID: 22286875]
[50]
Cheng Y, Bastow K, Frank K, Nutter L, Chiou JF, Grill S. Enzymes as antiviral targets. In: Paton W, Mitchell J, Turner P, Eds. International Congress of Pharmacology London 1984; 301-6.
[51]
Abu-Farha M, Thanaraj TA, Qaddoumi MG, Hashem A, Abubaker J, Al-Mulla F. The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int J Mol Sci 2020; 21(10): 3544.
[http://dx.doi.org/10.3390/ijms21103544] [PMID: 32429572]
[52]
McKnight KL, Heinz BA. RNA as a target for developing antivirals. Antivir Chem Chemother 2003; 14(2): 61-73.
[http://dx.doi.org/10.1177/095632020301400201] [PMID: 12856917]
[53]
Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z. Antiviral potentials of medicinal plants. Virus Res 2008; 131(2): 111-20.
[http://dx.doi.org/10.1016/j.virusres.2007.09.008] [PMID: 17981353]
[54]
Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 2014; 29(1): 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[55]
Bae S, Song YJ. Inhibition of varicella-zoster virus replication by an ethanol extract of Lysimachia mauritiana. Mol Med Rep 2017; 15(6): 3847-51.
[http://dx.doi.org/10.3892/mmr.2017.6444] [PMID: 28393250]
[56]
Wagoner J, Negash A, Kane OJ, et al. Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology 2010; 51(6): 1912-21.
[http://dx.doi.org/10.1002/hep.23587] [PMID: 20512985]
[57]
Calland N, Albecka A, Belouzard S, et al. (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 2012; 55(3): 720-9.
[http://dx.doi.org/10.1002/hep.24803] [PMID: 22105803]
[58]
Rebensburg S, Helfer M, Schneider M, et al. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins. Sci Rep 2016; 6: 20394.
[http://dx.doi.org/10.1038/srep20394] [PMID: 26833261]
[59]
Civitelli L, Panella S, Marcocci ME, et al. In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitenone oxide. Phytomedicine 2014; 21(6): 857-65.
[http://dx.doi.org/10.1016/j.phymed.2014.01.013] [PMID: 24629600]
[60]
Gilling DH, Kitajima M, Torrey JR, Bright KR. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J Appl Microbiol 2014; 116(5): 1149-63.
[http://dx.doi.org/10.1111/jam.12453] [PMID: 24779581]
[61]
Chen L, Dou J, Su Z, et al. Synergistic activity of baicalein with ribavirin against influenza A (H1N1) virus infections in cell culture and in mice. Antiviral Res 2011; 91(3): 314-20.
[http://dx.doi.org/10.1016/j.antiviral.2011.07.008] [PMID: 21782851]
[62]
Thébaud C, Warren BH, Strasberg D, Cheke A. Mascarene islands, biology. Atoll Res Bull 2009; 127: 1-216.
[63]
Gurib-Fakim A, Subratty H, Narod F, Govinden-Soulange J, Mahomoodally F. Biological activity from indigenous medicinal plants of Mauritius. Pure Appl Chem 2005; 77: 41-51.
[http://dx.doi.org/10.1351/pac200577010041]
[64]
Samoisy AK, Mahomoodally MF. Ethnopharmacological analysis of medicinal plants used against non-communicable diseases in Rodrigues Island, Indian Ocean. J Ethnopharmacol 2015; 173: 20-38.
[http://dx.doi.org/10.1016/j.jep.2015.06.036] [PMID: 26133061]
[65]
Samoisy AK, Mahomoodally F. Ethnopharmacological appraisal of culturally important medicinal plants and polyherbal formulas used against communicable diseases in Rodrigues Island. J Ethnopharmacol 2016; 194: 803-18.
[http://dx.doi.org/10.1016/j.jep.2016.10.041] [PMID: 27816659]
[66]
Suroowan S, Mahomoodally MF. A comparative ethnopharmacological analysis of traditional medicine used against respiratory tract diseases in Mauritius. J Ethnopharmacol 2016; 177: 61-80.
[http://dx.doi.org/10.1016/j.jep.2015.11.029] [PMID: 26593215]
[67]
Adsersen A, Adsersen H. Plants from Réunion Island with alleged antihypertensive and diuretic effects--an experimental and ethnobotanical evaluation. J Ethnopharmacol 1997; 58(3): 189-206.
[http://dx.doi.org/10.1016/S0378-8741(97)00100-1] [PMID: 9421255]
[68]
Suroowan S, Pynee KB, Mahomoodally MF. A comprehensive review of ethnopharmacologically important medicinal plant species from Mauritius. S Afr J Bot 2019; 122: 189-213.
[http://dx.doi.org/10.1016/j.sajb.2019.03.024]
[69]
Suroowan S, Jugreet BS, Mahomoodally MF. Endemic and indigenous plants from Mauritius as sources of novel antimicrobials. S Afr J Bot 2019; 126: 282-308.
[http://dx.doi.org/10.1016/j.sajb.2019.07.017]
[70]
Poullain C, Girard-Valenciennes E, Smadja J. Plants from reunion island: evaluation of their free radical scavenging and antioxidant activities. J Ethnopharmacol 2004; 95(1): 19-26.
[http://dx.doi.org/10.1016/j.jep.2004.05.023] [PMID: 15374602]
[71]
Neergheen VS, Bahorun T, Jen LS, Aruoma OI. Bioefficacy of Mauritian endemic medicinal plants: Assessment of their phenolic contents and antioxidant potential. Pharm Biol 2007; 45: 9-17.
[http://dx.doi.org/10.1080/13880200601026242]
[72]
Mahomoodally FM, Subratty AH, Gurib-Fakim A, Choudhary MI. Antioxidant, antiglycation and cytotoxicity evaluation of selected medicinal plants of the Mascarene Islands. BMC Complement Altern Med 2012; 12: 165.
[http://dx.doi.org/10.1186/1472-6882-12-165] [PMID: 23020844]
[73]
Marimoutou M, Le Sage F, Smadja J, Lefebvre d’Hellencourt C, Gonthier MP, Robert-Da Silva C. Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratoxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H2O2, TNFα and LPS inflammatory mediators by regulating the expression of superoxide dismutase and NF-κB genes. J Inflamm (Lond) 2015; 12: 10.
[http://dx.doi.org/10.1186/s12950-015-0055-6] [PMID: 25685071]
[74]
Picot CM, Subratty AH, Mahomoodally MF. Inhibitory potential of five traditionally used native antidiabetic medicinal plants on α-amylase, α-glucosidase, glucose entrapment, and amylolysis kinetics in vitro. Adv Pharmacol Sci 2014; 2014: 739834.
[http://dx.doi.org/10.1155/2014/739834] [PMID: 24723945]
[75]
Rummun N, Hughes RE, Beesoo R, et al. Mauritian endemic medicinal plant extracts induce G2/M phase cell cycle arrest and growth inhibition of oesophageal squamous cell carcinoma in vitro. Acta Nat (Engl Ed) 2019; 11(1): 81-90.
[http://dx.doi.org/10.32607/20758251-2019-11-1-81-90] [PMID: 31024752]
[76]
Vlietinck AJ, Vanden Berghe DA. Can ethnopharmacology contribute to the development of antiviral drugs? J Ethnopharmacol 1991; 32(1-3): 141-53.
[http://dx.doi.org/10.1016/0378-8741(91)90112-Q] [PMID: 1652667]
[77]
Ajaiyeoba EO, Ogbole OO. A phytotherapeutic approach to Nigerian anti-HIV and immunomodulatory drug discovery. Afr J Med Med Sci 2006; 35(Suppl.): 71-6.
[PMID: 18050777]
[78]
Ajaiyeoba EO, Ogbole OO, Ogundipe OO. Ethnobotanical survey of plants used in the traditional management of viral infections in Ogun State of Nigeria. Eur J Sci Res 2006; 13(1): 64-73.
[79]
Fortin H, Vigor C, Lohézic-Le Dévéhat F, et al. In vitro antiviral activity of thirty-six plants from La Réunion Island. Fitoterapia 2002; 73(4): 346-50.
[http://dx.doi.org/10.1016/S0367-326X(02)00080-1] [PMID: 12234582]
[80]
Adjanohoun EJ, Ake-Assi L, Eyme J, et al. Contributions aux Etudes ethnobotaniques et Floristiques a Maurice (Iles Maurice et Rodrigues). Paris, France: A.C.C.T. 1983.
[81]
Fook WWT. The medicinal plants of Mauritius. 1980.
[82]
Sussman LK. Herbal medicine on Mauritius. J Ethnopharmacol 1980; 2(3): 259-78.
[http://dx.doi.org/10.1016/S0378-8741(80)81005-1] [PMID: 7412334]
[83]
Dorla E, Grondin I, Hue T, et al. Traditional uses, antimicrobial and acaricidal activities of 20 plants selected among Reunion Island’s flora. S Afr J Bot 2019; 122: 447-56.
[http://dx.doi.org/10.1016/j.sajb.2018.04.014]
[84]
Gurib-Fakim A, Gueho J, Sewraj-Bissoondoyal M. The medicinal plants of Mauritius-part 1. Int J pharmacogn 1997; 35: 237-54.
[85]
Fakim AG. Medicinal plants of mauritius. Int J Crude Drug Res 1990; 28: 297-308.
[86]
Jelager L, Gurib-Fakim A, Adsersen A. Antibacterial and antifungal activity of medicinal plants of Mauritius. Pharm Biol 1998; 36: 153-61.
[87]
Kull CA, Alpers E, Tassin J. Marooned plants: vernacular naming practices in the Mascarene Islands. Environ Hist 2015; 21: 43-75.
[http://dx.doi.org/10.3197/096734015X14183179969746]
[88]
Gurib-Fakim A. Plantes d’hier, medicaments d’aujourd’hui. Neuilly-sur-Seine: Edition Pierre Lafon 2008.
[89]
Govinden-Soulange J. Healing aloes from the mascarenes islands. In: Novel plant bioresources: Applications in food. Gurib-Fakim A Ed, 2014; 205-14.
[http://dx.doi.org/10.1002/9781118460566.ch16]
[90]
Ledoux A, Cao M, Jansen O, et al. Antiplasmodial, anti-chikungunya virus and antioxidant activities of 64 endemic plants from the Mascarene Islands. Int J Antimicrob Agents 2018; 52(5): 622-8.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.07.017] [PMID: 30063998]
[91]
Schuffenecker I, Iteman I, Michault A, et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 2006; 3(7): e263.
[http://dx.doi.org/10.1371/journal.pmed.0030263] [PMID: 16700631]
[92]
Rashad AA, Mahalingam S, Keller PA. Chikungunya virus: emerging targets and new opportunities for medicinal chemistry. J Med Chem 2014; 57(4): 1147-66.
[http://dx.doi.org/10.1021/jm400460d] [PMID: 24079775]
[93]
Bhakat S, Soliman ME. Chikungunya virus (CHIKV) inhibitors from natural sources: A medicinal chemistry perspective. J Nat Med 2015; 69(4): 451-62.
[http://dx.doi.org/10.1007/s11418-015-0910-z] [PMID: 25921858]
[94]
Wahid B, Ali A, Rafique S, Idrees M. Global expansion of chikungunya virus: mapping the 64-year history. Int J Infect Dis 2017; 58: 69-76.
[http://dx.doi.org/10.1016/j.ijid.2017.03.006] [PMID: 28288924]
[95]
Madariaga M, Ticona E, Resurrecion C. Chikungunya: bending over the Americas and the rest of the world. Braz J Infect Dis 2016; 20(1): 91-8.
[http://dx.doi.org/10.1016/j.bjid.2015.10.004] [PMID: 26707971]
[96]
Lo Presti A, Cella E, Angeletti S, Ciccozzi M. Molecular epidemiology, evolution and phylogeny of Chikungunya virus: An updating review. Infect Genet Evol 2016; 41: 270-8.
[http://dx.doi.org/10.1016/j.meegid.2016.04.006] [PMID: 27085290]
[97]
Lucas-Hourani M, Lupan A, Desprès P, et al. A phenotypic assay to identify Chikungunya virus inhibitors targeting the nonstructural protein nsP2. J Biomol Screen 2013; 18(2): 172-9.
[http://dx.doi.org/10.1177/1087057112460091] [PMID: 22983165]
[98]
Olivon F, Palenzuela H, Girard-Valenciennes E, et al. Antiviral activity of flexibilane and tigliane diterpenoids from Stillingia lineata. J Nat Prod 2015; 78(5): 1119-28.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00116] [PMID: 25946116]
[99]
Techer S, Girard-Valenciennes E, Retailleau P, et al. Tonantzitlolones from Stillingia lineata ssp. lineata as potential inhibitors of chikungunya virus. Phytochem Lett 2015; 12: 313-9.
[http://dx.doi.org/10.1016/j.phytol.2015.04.023]
[100]
Techer S. Criblage d’activités biologiques de plantes endémiques ou indigènes de La Réunion-Recherche de molécules antivirales ciblant le virus du chikungunya. Doctoral dissertation 2013.
[101]
Corlay N, Delang L, Girard-Valenciennes E, et al. Tigliane diterpenes from Croton mauritianus as inhibitors of chikungunya virus replication. Fitoterapia 2014; 97: 87-91.
[http://dx.doi.org/10.1016/j.fitote.2014.05.015] [PMID: 24879904]
[102]
Bourjot M, Delang L, Nguyen VH, et al. Prostratin and 12-O-tetradecanoylphorbol 13-acetate are potent and selective inhibitors of Chikungunya virus replication. J Nat Prod 2012; 75(12): 2183-7.
[http://dx.doi.org/10.1021/np300637t] [PMID: 23215460]
[103]
Lévêque N, Semler BLA. A 21st century perspective of poliovirus replication. PLoS Pathog 2015; 11(6): e1004825.
[http://dx.doi.org/10.1371/journal.ppat.1004825] [PMID: 26042673]
[104]
Beuscher N, Bodinet C, Neumann-Haefelin D, Marston A, Hostettmann K. Antiviral activity of African medicinal plants. J Ethnopharmacol 1994; 42(2): 101-9.
[http://dx.doi.org/10.1016/0378-8741(94)90103-1] [PMID: 8072303]
[105]
Robin V, Boustie J, Amoros M, Girre L. In-vitro antiviral activity of seven Psiadia species, asteraceae: Isolation of two antipoliovirus flavonoids from Psiadia dentata. Pharm Pharmacol Commun 1998; 4: 61-4.
[106]
Robin V, Irurzun A, Amoros M, Boustie J, Carrasco L. Antipoliovirus flavonoids from Psiadia dentata. Antivir Chem Chemother 2001; 12(5): 283-91.
[http://dx.doi.org/10.1177/095632020101200503] [PMID: 11900347]
[107]
Fortin H, Tomasi S, Jaccard P, Robin V, Boustie J. A prenyloxycoumarin from Psiadia dentata. Chem Pharm Bull (Tokyo) 2001; 49(5): 619-21.
[http://dx.doi.org/10.1248/cpb.49.619] [PMID: 11383617]
[108]
Bertino JS. Cost burden of viral respiratory infections: issues for formulary decision makers. Am J Med 2002; 112(Suppl. 6A): 42S-9S.
[http://dx.doi.org/10.1016/S0002-9343(01)01063-4] [PMID: 11955459]
[109]
Fendrick AM, Monto AS, Nightengale B, Sarnes M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch Intern Med 2003; 163(4): 487-94.
[http://dx.doi.org/10.1001/archinte.163.4.487] [PMID: 12588210]
[110]
Nichol KL, D’Heilly S, Ehlinger E. Colds and influenza-like illnesses in university students: impact on health, academic and work performance, and health care use. Clin Infect Dis 2005; 40(9): 1263-70.
[http://dx.doi.org/10.1086/429237] [PMID: 15825028]
[111]
Roelen CA, Koopmans PC, Notenbomer A, Groothoff JW. Job satisfaction and short sickness absence due to the common cold. Work 2011; 39(3): 305-13.
[http://dx.doi.org/10.3233/WOR-2011-1178] [PMID: 21709366]
[112]
Greenberg SB. Respiratory consequences of rhinovirus infection. Arch Intern Med 2003; 163(3): 278-84.
[http://dx.doi.org/10.1001/archinte.163.3.278] [PMID: 12578507]
[113]
Glanville N, Johnston SL. Challenges in developing a cross-serotype rhinovirus vaccine. Curr Opin Virol 2015; 11: 83-8.
[http://dx.doi.org/10.1016/j.coviro.2015.03.004] [PMID: 25829255]
[114]
Park SW, Kwon MJ, Yoo JY, Choi HJ, Ahn YJ. Antiviral activity and possible mode of action of ellagic acid identified in Lagerstroemia speciosa leaves toward human rhinoviruses. BMC Complement Altern Med 2014; 14: 171.
[http://dx.doi.org/10.1186/1472-6882-14-171] [PMID: 24885569]
[115]
Ngan LTM, Jang MJ, Kwon MJ, Ahn YJ. Antiviral activity and possible mechanism of action of constituents identified in Paeonia lactiflora root toward human rhinoviruses. PLoS One 2015; 10(4): e0121629.
[http://dx.doi.org/10.1371/journal.pone.0121629] [PMID: 25860871]
[116]
Choi HJ. In vitro antiviral activity of sakuranetin against human rhinovirus 3. Osong Public Health Res Perspect 2017; 8(6): 415-20.
[http://dx.doi.org/10.24171/j.phrp.2017.8.6.09] [PMID: 29354400]
[117]
Koelle DM, Corey L. Herpes simplex: insights on pathogenesis and possible vaccines. Annu Rev Med 2008; 59: 381-95.
[http://dx.doi.org/10.1146/annurev.med.59.061606.095540] [PMID: 18186706]
[118]
Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet 2001; 357(9267): 1513-8.
[http://dx.doi.org/10.1016/S0140-6736(00)04638-9] [PMID: 11377626]
[119]
Fatahzadeh M, Schwartz RA. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol 2007; 57(5): 737-63.
[http://dx.doi.org/10.1016/j.jaad.2007.06.027] [PMID: 17939933]
[120]
Wald A, Link K. Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: A meta-analysis. J Infect Dis 2002; 185(1): 45-52.
[http://dx.doi.org/10.1086/338231] [PMID: 11756980]
[121]
Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 2006; 20(1): 73-83.
[http://dx.doi.org/10.1097/01.aids.0000198081.09337.a7] [PMID: 16327322]
[122]
Kapiga SH, Sam NE, Bang H, et al. The role of herpes simplex virus type 2 and other genital infections in the acquisition of HIV-1 among high-risk women in northern Tanzania. J Infect Dis 2007; 195(9): 1260-9.
[http://dx.doi.org/10.1086/513566] [PMID: 17396994]
[123]
Mbopi-Kéou FX, Grésenguet G, Mayaud P, et al. Interactions between herpes simplex virus type 2 and human immunodeficiency virus type 1 infection in African women: opportunities for intervention. J Infect Dis 2000; 182(4): 1090-6.
[http://dx.doi.org/10.1086/315836] [PMID: 10979904]
[124]
Wald A. Synergistic interactions between herpes simplex virus type-2 and human immunodeficiency virus epidemics. Herpes 2004; 11(3): 70-6.
[PMID: 15960904]
[125]
White MK, Gorrill TS, Khalili K. Reciprocal transactivation between HIV-1 and other human viruses. Virology 2006; 352(1): 1-13.
[http://dx.doi.org/10.1016/j.virol.2006.04.006] [PMID: 16725168]
[126]
Villarreal EC. Current and potential therapies for the treatment of herpesvirus infections. Progress in drug research. Basel: Birkhäuser 2003; pp. 263-307.
[http://dx.doi.org/10.1007/978-3-0348-8012-1_8]
[127]
Elion GB. Acyclovir: discovery, mechanism of action, and selectivity. J Med Virol 1993; 41(S1)(Suppl. 1): 2-6.
[http://dx.doi.org/10.1002/jmv.1890410503] [PMID: 8245887]
[128]
Hill C, McKinney E, Lowndes CM, et al. Epidemiology of herpes simplex virus types 2 and 1 amongst men who have sex with men attending sexual health clinics in England and Wales: implications for HIV prevention and management. Euro Surveill 2009; 14(47): 19418.
[http://dx.doi.org/10.2807/ese.14.47.19418-en] [PMID: 19941804]
[129]
Cheng HY, Lin TC, Yang CM, Wang KC, Lin CC. Mechanism of action of the suppression of herpes simplex virus type 2 replication by pterocarnin A. Microbes Infect 2004; 6(8): 738-44.
[http://dx.doi.org/10.1016/j.micinf.2004.03.009] [PMID: 15207820]
[130]
Zhang Y, But PPH, Ooi VEC, et al. Chemical properties, mode of action, and in vivo anti-herpes activities of a lignin-carbohydrate complex from Prunella vulgaris. Antiviral Res 2007; 75(3): 242-9.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.010] [PMID: 17475343]
[131]
Álvarez ÁL, Habtemariam S, Abdel Moneim AE, Melón S, Dalton KP, Parra F. A spiroketal-enol ether derivative from Tanacetum vulgare selectively inhibits HSV-1 and HSV-2 glycoprotein accumulation in Vero cells. Antiviral Res 2015; 119: 8-18.
[http://dx.doi.org/10.1016/j.antiviral.2015.04.004] [PMID: 25882624]
[132]
Lohezic F, Amoros M, Boustie J, Girre L. In-vitro Antiherpetic Activity of Erythroxylon laurifolium (Erythroxylaceae). Pharm Pharmacol Commun 1999; 5: 249-53.
[http://dx.doi.org/10.1211/146080899128734695]
[133]
Pang T, Mak TK, Gubler DJ. Prevention and control of dengue-the light at the end of the tunnel. Lancet Infect Dis 2017; 17(3): e79-87.
[http://dx.doi.org/10.1016/S1473-3099(16)30471-6] [PMID: 28185870]
[134]
Talarico LB, Duarte ME, Zibetti RG, Noseda MD, Damonte EB. An algal-derived DL-galactan hybrid is an efficient preventing agent for in vitro dengue virus infection. Planta Med 2007; 73(14): 1464-8.
[http://dx.doi.org/10.1055/s-2007-990241] [PMID: 17948168]
[135]
Yung CF, Lee KS, Thein TL, et al. Dengue serotype-specific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, singapore. Am J Trop Med Hyg 2015; 92(5): 999-1005.
[http://dx.doi.org/10.4269/ajtmh.14-0628] [PMID: 25825386]
[136]
Bos S, Gadea G, Despres P. Dengue: A growing threat requiring vaccine development for disease prevention. Pathog Glob Health 2018; 112(6): 294-305.
[http://dx.doi.org/10.1080/20477724.2018.1514136] [PMID: 30213255]
[137]
Ono L, Wollinger W, Rocco IM, Coimbra TL, Gorin PA, Sierakowski MR. In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain). Antiviral Res 2003; 60(3): 201-8.
[http://dx.doi.org/10.1016/S0166-3542(03)00175-X] [PMID: 14638396]
[138]
Gubler DJ. Dengue/dengue haemorrhagic fever: history and current status. In: Novartis foundation symposium. Chichester; New York: John Wiley 1999; 2006: p. 277.
[139]
Chan JF, Choi GK, Yip CC, Cheng VC, Yuen KY. Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. J Infect 2016; 72(5): 507-24.
[http://dx.doi.org/10.1016/j.jinf.2016.02.011] [PMID: 26940504]
[140]
Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L. Flavivirus receptors: diversity, identity, and cell entry. Front Immunol 2018; 9: 2180.
[http://dx.doi.org/10.3389/fimmu.2018.02180] [PMID: 30319635]
[141]
Parra B, Lizarazo J, Jiménez-Arango JA, et al. Guillain-Barré syndrome associated with Zika virus infection in Colombia. N Engl J Med 2016; 375(16): 1513-23.
[http://dx.doi.org/10.1056/NEJMoa1605564] [PMID: 27705091]
[142]
Duggal NK, Ritter JM, Pestorius SE, et al. Frequent Zika virus sexual transmission and prolonged viral RNA shedding in an immunodeficient mouse model. Cell Rep 2017; 18(7): 1751-60.
[http://dx.doi.org/10.1016/j.celrep.2017.01.056] [PMID: 28199846]
[143]
Paz-Bailey G, Rosenberg ES, Doyle K, et al. Persistence of Zika virus in body fluids. N Engl J Med 2017; 379(13): 1234-43.
[http://dx.doi.org/10.1056/NEJMoa1613108] [PMID: 28195756]
[144]
Saiz JC, Martín-Acebes MA. The race to find antivirals for Zika virus. Antimicrob Agents. Antimicrob Agents Chemother 2017; 61(6): e00411-7.
[http://dx.doi.org/10.1128/AAC.00411-17] [PMID: 28348160]
[145]
Clain E, Haddad JG, Koishi AC, et al. The polyphenol-rich extract from Psiloxylon mauritianum, an endemic medicinal plant from reunion island, inhibits the early stages of dengue and zika virus infection. Int J Mol Sci 2019; 20(8): 1860.
[http://dx.doi.org/10.3390/ijms20081860] [PMID: 30991717]
[146]
Clain E, Sinigaglia L, Koishi AC, et al. Extract from Aphloia theiformis, an edible indigenous plant from Reunion Island, impairs Zika virus attachment to the host cell surface. Sci Rep 2018; 8(1): 10856.
[http://dx.doi.org/10.1038/s41598-018-29183-2] [PMID: 30022045]
[147]
Clain ME. Valorisation des éco-extraits de plantes médicinales réunionnaises dans la lutte contre les maladies virales émergentes de l'océan Indien (Doctoral dissertation) 2018.
[148]
Haddad JG, Koishi AC, Gaudry A, et al. Doratoxylon apetalum, an indigenous medicinal plant from Mascarene Islands, is a potent inhibitor of Zika and dengue virus infection in human cells. Int J Mol Sci 2019; 20(10): 2382.
[http://dx.doi.org/10.3390/ijms20102382] [PMID: 31091703]
[149]
Haddad JG, Grauzdytė D, Koishi AC, et al. The geraniin-rich extract from reunion island endemic medicinal plant Phyllanthus phillyreifolius inhibits zika and dengue virus infection at non-toxic effect doses in zebrafish. Molecules 2020; 25(10): 2316.
[http://dx.doi.org/10.3390/molecules25102316] [PMID: 32429073]
[150]
Gadea G, Bos S, Krejbich-Trotot P, et al. A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene. Virology 2016; 497: 157-62.
[http://dx.doi.org/10.1016/j.virol.2016.07.015] [PMID: 27471954]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy