Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Nano-combination for Reviving the Activity of Fluconazole against Rhizopus delemar

Author(s): Mutasem Rawas-Qalaji, Jayalakshmi Jagal, Bahgat Fayed, Rania Hamdy and Sameh S.M. Soliman*

Volume 24, Issue 12, 2023

Published on: 02 March, 2023

Page: [1568 - 1575] Pages: 8

DOI: 10.2174/1389201024666230210114632

Price: $65

Abstract

Background: Rhizopus delemar, the main causative pathogen for the lethal mucormycosis and a severe threat during the COVID-19 pandemic, is resistant to most antifungals, including fluconazole, a known selective antifungal drug. On the other hand, antifungals are known to enhance fungal melanin synthesis. Rhizopus melanin plays an important role in fungal pathogenesis and in escaping the human defense mechanism, thus complicating the use of current antifungal drugs and fungal eradication. Because of drug resistance and the slow discovery of effective antifungals, sensitizing the activity of older ones seems a more promising strategy.

Methods: In this study, a strategy was employed to revive the use and enhance the effectiveness of fluconazole against R. delemar. UOSC-13, a compound synthesized in-house to target the Rhizopus melanin, was combined with fluconazole either as is or after encapsulation in poly (lactic-coglycolic acid) nanoparticles (PLG-NPs). Both combinations were tested for the growth of R. delemar, and the MIC50 values were calculated and compared.

Results: The activity of fluconazole was found to be enhanced several folds following the use of both combined treatment and nanoencapsulation. The combination of fluconazole with UOSC-13 caused a 5-fold reduction in the MIC50 value of fluconazole. Furthermore, encapsulating UOSC-13 in PLG-NPs enhanced the activity of fluconazole by an additional 10 folds while providing a wide safety profile.

Conclusion: Consistent with previous reports, the encapsulation of fluconazole without sensitization showed no significant difference in activity. Collectively, sensitization of fluconazole represents a promising strategy to revive the use of outdated antifungal drugs back in the market.

Keywords: Antifungal, fluconazole, mucormycosis, nanoparticles, Rhizopus delemar, melanin.

Graphical Abstract
[1]
Soare, A.Y.; Watkins, T.N.; Bruno, V. Understanding mucormycoses in the age of “omics”. 2020, 11, 699.
[http://dx.doi.org/10.3389/fgene.2020.00699]
[2]
Sipsas, N.V.; Gamaletsou, M.N.; Anastasopoulou, A.; Kontoyiannis, D. Therapy of mucormycosis. J. Fungi, 2018, 4(3), 90.
[http://dx.doi.org/10.3390/jof4030090]
[3]
Gebremariam, T.; Alkhazraji, S.; Soliman, S.S.M.; Gu, Y.; Jeon, H.H.; Zhang, L.; French, S.W.; Stevens, D.A.; Edwards, J.E., Jr; Filler, S.G.; Uppuluri, P.; Ibrahim, A.S. Anti-CotH3 antibodies protect mice from mucormycosis by prevention of invasion and augmenting opsonophagocytosis. Sci. Adv., 2019, 5(6), eaaw1327.
[http://dx.doi.org/10.1126/sciadv.aaw1327] [PMID: 31206021]
[4]
Chibucos, M.C.; Soliman, S.; Gebremariam, T.; Lee, H.; Daugherty, S.; Orvis, J.; Shetty, A.C.; Crabtree, J.; Hazen, T.H.; Etienne, K.A.J.N.c. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. 2016, 7(1), 1-11.
[http://dx.doi.org/10.1038/ncomms12218]
[5]
Spellberg, B.; Ibrahim, A. Recent advances in the treatment of mucormycosis. 2010, 12(6), 423-429.
[http://dx.doi.org/10.1007/s11908-010-0129-9]
[6]
Andrianaki, A.M.; Kyrmizi, I.; Thanopoulou, K.; Baldin, C.; Drakos, E.; Soliman, S.S.M.; Shetty, A.C.; McCracken, C.; Akoumianaki, T.; Stylianou, K.; Ioannou, P.; Pontikoglou, C.; Papadaki, H.A.; Tzardi, M.; Belle, V.; Etienne, E.; Beauvais, A.; Samonis, G.; Kontoyiannis, D.P.; Andreakos, E.; Bruno, V.M.; Ibrahim, A.S.; Chamilos, G. Iron restriction inside macrophages regulates pulmonary host defense against Rhizopus species. Nat. Commun., 2018, 9(1), 3333.
[http://dx.doi.org/10.1038/s41467-018-05820-2] [PMID: 30127354]
[7]
Andrianaki, A.M.; Kyrmizi, I.; Thanopoulou, K.; Baldin, C.; Drakos, E.; Soliman, S.S.; Shetty, A.C.; McCracken, C.; Akoumianaki, T.; Stylianou, K. Iron restriction inside macrophages regulates pulmonary host defense against Rhizopus species. Nat. Commun., 2018, 9(1), 1-17.
[http://dx.doi.org/10.1038/s41467-017-02088-w] [PMID: 29317637]
[8]
Fernandes, C.; Prados-Rosales, R.; Silva, B.M.A.; Nakouzi-Naranjo, A.; Zuzarte, M.; Chatterjee, S.; Stark, R.E.; Casadevall, A.; Gonçalves, T. Activation of melanin synthesis in Alternaria Infectoria by antifungal drugs. Antimicrob. Agents Chemother., 2016, 60(3), 1646-1655.
[http://dx.doi.org/10.1128/AAC.02190-15] [PMID: 26711773]
[9]
Perea, S.; Patterson, T.F.; Patterson, T.F. Antifungal resistance in pathogenic fungi. Clin. Infect. Dis., 2002, 35(9), 1073-1080.
[http://dx.doi.org/10.1086/344058] [PMID: 12384841]
[10]
Soliman, S.S.M.; Hamdy, R.; Elseginy, S.A.; Gebremariam, T.; Hamoda, A.M.; Madkour, M.; Venkatachalam, T.; Ershaid, M.N.; Mohammad, M.G.; Chamilos, G.; Ibrahim, A.S. Selective inhibition of Rhizopus eumelanin biosynthesis by novel natural product scaffold-based designs caused significant inhibition of fungal pathogenesis. Biochem. J., 2020, 477(13), 2489-2507.
[http://dx.doi.org/10.1042/BCJ20200310] [PMID: 32538426]
[11]
Soliman, S.S.M.; Alsaadi, A.I.; Youssef, E.G.; Khitrov, G.; Noreddin, A.M.; Husseiny, M.I.; Ibrahim, A.S. Calli essential oils synergize with lawsone against multidrug resistant pathogens. Molecules, 2017, 22(12), 2223.
[http://dx.doi.org/10.3390/molecules22122223]
[12]
Fayed, B.E.; Tawfik, A.F.; Yassin, A. Novel erythropoietin-loaded nanoparticles with prolonged in vivo response. J. Microencapsul., 2012, 29(7), 650-656.
[13]
Hamdy, R.; Fayed, B.; Hamoda, A.M.; Rawas-Qalaji, M.; Haider, M.; Soliman, S.S.J.M. Essential oil-based design and development of novel anti-Candida azoles formulation. Molecules, 2020, 25(6), 1463.
[http://dx.doi.org/10.3390/molecules25061463]
[14]
Ismail, S.A.; El-Sayed, H.S.; Fayed, B. Production of prebiotic chitooligosaccharide and its nano/microencapsulation for the production of functional yoghurt. Carbohydrate Polymers, 2020, 234115941
[15]
Fayed, B.; El-Sayed, H.S.; Abood, A.; Hashem, A.M.; Mehanna, N.S.J.B. The application of multi-particulate microcapsule containing probiotic bacteria and inulin nanoparticles in enhancing the probiotic survivability in yoghurt. Biocatal. Agricul. Biotechnol., 2019, 22101391
[http://dx.doi.org/10.1016/j.bcab.2019.101391]
[16]
Pamujula, S.; Hazari, S.; Bolden, G.; Graves, R.A.; Chinta, D.D.; Dash, S.; Kishore, V.; Mandal, T.K.J.J.o.P. Cellular delivery of PEGylated PLGA nanoparticles. Pharmacology, 2012, 64(1), 61-67.
[17]
Clinical and Laboratory Standards Institute In: Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; Wayne, PA, 2008.
[18]
Soliman, S.S.M.; Alhamidi, T.B.; Abdin, S.; Almehdi, A.M.; Semreen, M.H.; Alhumaidi, R.B.; Shakartalla, S.B.; Haider, M.; Husseiny, M.I.; Omar, H.A. Effective targeting of breast cancer cells (MCF7) via novel biogenic synthesis of gold nanoparticles using cancer-derived metabolites. PLoS ONE, 2020, 15(10)e0240156
[19]
Soliman, S.S.M.; Saeed, B.Q.; Elseginy, S.A.; Al-Marzooq, F.; Ahmady, I.M.; El-Keblawy, A.A.; Hamdy, R. Critical discovery and synthesis of novel antibacterial and resistance-modifying agents inspired by plant phytochemical defense mechanisms. Chem. Biol. Interact., 2021, 333109318
[PMID: 33186599]
[20]
Rodrigues, M.L.; Albuquerque, P.C. Searching for a change: The need for increased support for public health and research on fungal diseases. PLoS Negl. Trop. Dis., 2018, 12(6)e0006479
[http://dx.doi.org/10.1371/journal.pntd.0006479] [PMID: 29902170]
[21]
Rackimuthu, S.; Khan, H.; Mohan, A.; Hunain, R.; Ghazi, B.K.; Hasan, M.M.; Costa, A.C.S.; Ahmad, S.; Essar, M.Y. Emergence of a medley of invasive fungal infections amidst the coronavirus disease 2019 (COVID-19) pandemic in India. Antimicrob. Stewardship Healthcare Epidemiol., 2021, 1(1)e40
[http://dx.doi.org/10.1017/ash.2021.198] [PMID: 36168496]
[22]
Kontoyiannis, D.P.; Lewis, R.E. Principles and Practice of Infectious Diseases; Saunders: Philadelphia, 2015, pp. 2909-2919.
[23]
Skiada, A.; Pavleas, I.; Drogari-Apiranthitou, M. Epidemiology and diagnosis of mucormycosis: An update. J. Fungi, 2020, 6(4), 265.
[http://dx.doi.org/10.3390/jof6040265] [PMID: 33147877]
[24]
Chamilos, G.; Lewis, R.E.; Kontoyiannis, D.P. Delaying amphotericin B-based frontline therapy significantly increases mortality among patients with hematologic malignancy who have zygomycosis. Clin. Infect. Dis., 2008, 47(4), 503-509.
[http://dx.doi.org/10.1086/590004] [PMID: 18611163]
[25]
Sun, Q.N.; Fothergill, A.W.; McCarthy, D.I.; Rinaldi, M.G.; Graybill, J.R. In vitro activities of posaconazole, itraconazole, voriconazole, amphotericin B, and fluconazole against 37 clinical isolates of zygomycetes. 2002, 46(5), 1581-1582.
[26]
León-Buitimea, A.; Garza-Cervantes, J.A.; Gallegos-Alvarado, D.Y.; Osorio-Concepción, M.; Morones-Ramírez, J.R. Nanomaterial-based antifungal therapies to combat fungal diseases aspergillosis, coccidioidomycosis, mucormycosis, and candidiasis. Pathogens, 2021, 10(10), 1303.
[http://dx.doi.org/10.3390/pathogens10101303] [PMID: 34684252]
[27]
Kim, J.H.; Chang, P-K.; Chan, K.L.; Faria, N.C.G.; Mahoney, N.; Kim, Y.K.; Martins, M.D.L.; Campbell, B.C. Enhancement of commercial antifungal agents by kojic acid. 2012, 13(11), 13867-13880.
[28]
Abdifetah, O.; Na-Bangchang, K. Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: A systematic review. Int. J. Nanomedicine, 2019, 14, 5659.
[http://dx.doi.org/10.2147/IJN.S213229]
[29]
Alhowyan, A.A.; Altamimi, M.A.; Kalam, M.A.; Khan, A.A.; Badran, M.; Binkhathlan, Z.; Alkholief, M.; Alshamsan, A. Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: In vitro and ex vivo studies. J. Microbiol. Methods, 2019, 161, 87-95.
[30]
Tang, X.; Jiao, R.; Xie, C.; Xu, L.; Huo, Z.; Dai, J.; Qian, Y.; Xu, W.; Hou, W.; Wang, J. Improved antifungal activity of amphotericin B-loaded TPGS-b-(PCL-ran-PGA) nanoparticles. Int. J. Clin. Exp. Med., 2015, 8(4), 5150.
[31]
Iadnut, A.; Mamoon, K.; Thammasit, P.; Pawichai, S.; Tima, S.; Preechasuth, K.; Kaewkod, T.; Tragoolpua, Y.; Tragoolpua, K.J.E.-B.C.; Medicine, A. In vitro antifungal and antivirulence activities of biologically synthesized ethanolic extract of propolis-loaded PLGA nanoparticles against Candida albicans. Evid Based Complement Alternat Med., 2019, 2019
[http://dx.doi.org/10.1155/2019/3715481]
[32]
Jiang, L.; Greene, M.K.; Insua, J.L.; Pessoa, J.S.; Small, D.M.; Smyth, P.; McCann, A.P.; Cogo, F.; Bengoechea, J.A.; Taggart, C. Clearance of intracellular Klebsiella pneumoniae infection using gentamicin-loaded nanoparticles. J. Control. Release, 2018, 279, 316-325.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.040]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy