Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Rapid Identification of Commercial Frankincense Products by MALDITOF Mass Spectrometry

Author(s): Shang-Chih Lai, Ren-In You, Tz-Ting Chen, Yu Chang, Chao-Zong Liu, Hao-Ping Chen* and Chunhung Wu*

Volume 25, Issue 5, 2022

Published on: 01 March, 2021

Page: [895 - 905] Pages: 11

DOI: 10.2174/1386207324666210301092111

Price: $65

Abstract

Background: Frankincense is a resin secreted by the Boswellia tree. It is used in perfumery, aromatherapy, skincare, and traditional Chinese medicine. However, all Boswellia species are under threat owing to habitat loss and overexploitation. As a result, the market is getting flooded with counterfeit frankincense products.

Objective: This study aims to establish a high-throughput method to screen and identify the authenticity of commercial frankincense products. We report, for the first time, a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based method for rapid and high-throughput screening of frankincense samples.

Methods: MALDI-TOF MS, HPLC, thin-layer chromatography (TLC), and in vitro antiinflammatory activity assay were used to examine the frankincense samples.

Results: Well-resolved peaks of frankincense triterpenoids in the spectra were observed in the crude extract of commercial samples, including α-boswellic acids (αBAs), β-boswellic acids (βBAs), 11-keto-β-boswellic acids (KBAs), acetyl-11-keto-β-boswellic acids (AKBAs), and their esters. These compounds can be used as indicators for determining the authenticity of frankincense.

Conclusion: Unlike LC–MS, which is a time-consuming and expensive method, and TLC, which requires a reference sample, our inexpensive, rapid high-throughput identification method based on MALDI-TOF MS is ideal for large-scale screening of frankincense samples sold in the market.

Keywords: Acetyl-11-keto-β-boswellic acid, anti-inflammatory, frankincense, HPLC, MALDI-TOF MS, IUCN.

Graphical Abstract
[1]
Atta-ur-Rahman. Naz, H.; Fadimatou; Makhmoor, T.; Yasin, A.; Fatima, N.; Ngounou, F.N.; Kimbu, S.F.; Sondengam, B.L.; Choudhary, M.I. Bioactive constituents from Boswellia papyrifera. J. Nat. Prod., 2005, 68(2), 189-193.
[http://dx.doi.org/10.1021/np040142x] [PMID: 15730241]
[2]
Bongers, F.; Groenendijk, P.; Bekele, T.; Birhane, E.; Birhane, E.; Damtew, A.; Decuyper, M.; Eshete, A.; Gezahgne, A.; Girma, A.; Khamis, M.A.; Lemenih, M.; Mengistu, T.; Ogbazghi, W.; Sass-Klaassen, U.; Tadesse, W.; Teshome, M.; Tolera, M.; Sterck, F.J.; Zuidema, P.A. Frankincense in peril. Nat. Sustain., 2019, 2, 602-610.
[http://dx.doi.org/10.1038/s41893-019-0322-2]
[3]
Siddiqui, M.Z. Boswellia serrata, a potential antiinflammatory agent: an overview. Indian J. Pharm. Sci., 2011, 73(3), 255-261.
[PMID: 22457547]
[4]
Marogna, M.; Braidi, C.; Colombo, C.; Colombo, F.; Palumbo, L. A randomized controlled trial of a phytotherapic compound containing Boswellia serrata and bromeline for seasonal allergic rhinitis complicated by upper airways recurrent respiratory infections. J. Allergy Clin. Immunol., 2015, 135, AB271.
[http://dx.doi.org/10.1016/j.jaci.2014.12.1825]
[5]
Soni, K.K.; Lawal, T.; Wicks, S.; Patel, U.; Mahady, G.B. Boswellia serrata and Ocimum sanctum extracts reduce inflammation in an ova-induced asthma model of BALB/c mice. Planta Med., 2015, 81, PB4.
[http://dx.doi.org/10.1055/s-0035-1556201]
[6]
Negahdari, S.; Galehdari, H.; Kesmati, M.; Rezaie, A.; Shariati, G. Wound healing activity of extracts and formulations of Aloe vera, henna, Adiantum capillusveneris, and myrrh on mouse dermal fibroblast cells. Int. J. Prev. Med., 2017, 8, 18.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_338_16] [PMID: 28382194]
[7]
Gebrehiwot, M.; Asres, K.; Bisrat, D.; Mazumder, A.; Lindemann, P.; Bucar, F. Evaluation of the wound healing property of Commiphora guidottii Chiov. ex. Guid. BMC Complement. Altern. Med., 2015, 15, 282.
[http://dx.doi.org/10.1186/s12906-015-0813-2] [PMID: 26283230]
[8]
Singh, B.; Kumar, R.; Bhandari, S.; Pathania, S.; Lal, B. Volatile constituents of natural Boswellia serrata oleo-gum-resin and commercial samples. Flavour Fragrance J., 2007, 22, 145-147.
[http://dx.doi.org/10.1002/ffj.1772]
[9]
Pollastro, F.; Golin, S.; Chianese, G.; Putra, M.Y.; Schiano Moriello, A.; De Petrocellis, L.; García, V.; Munoz, E.; Taglialatela-Scafati, O.; Appendino, G. Neuroactive and anti-inflammatory Frankincense cembranes: a structure-activity study. J. Nat. Prod., 2016, 79(7), 1762-1768.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00141] [PMID: 27352042]
[10]
Herrmann, A.; Lechtenberg, M.; Hensel, A. Comparative isolation and structural investigations of polysaccharides from Boswellia serrata ROXB and Boswellia carteri BIRDW. Planta Med, 2007, 73 YRW_003.
[http://dx.doi.org/10.1055/s-2007-986755]
[11]
Wang, H.; Zhang, C.; Wu, Y.; Ai, Y.; Lee, D.Y.W.; Dai, R. Comparative pharmacokinetic study of two boswellic acids in normal and arthritic rat plasma after oral administration of Boswellia serrata extract or Huo Luo Xiao Ling Dan by LC-MS. Biomed. Chromatogr., 2014, 28(10), 1402-1408.
[http://dx.doi.org/10.1002/bmc.3182] [PMID: 24806456]
[12]
Krohn, K.; Rao, M.S.; Raman, N.V.; Khalilullah, M. High-performance thin layer chromatographic analysis of anti-inflammatory triterpenoids from Boswellia serrata Roxb. Phytochem. Anal., 2001, 12(6), 374-376.
[http://dx.doi.org/10.1002/pca.606] [PMID: 11793815]
[13]
Büchele, B.; Zugmaier, W.; Simmet, T. Analysis of pentacyclic triterpenic acids from frankincense gum resins and related phytopharmaceuticals by high-performance liquid chromatography. Identification of lupeolic acid, a novel pentacyclic triterpene. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 791(1-2), 21-30.
[http://dx.doi.org/10.1016/S1570-0232(03)00160-0] [PMID: 12798161]
[14]
Frank, A.; Unger, M. Analysis of frankincense from various Boswellia species with inhibitory activity on human drug metabolising cytochrome P450 enzymes using liquid chromatography mass spectrometry after automated on-line extraction. J. Chromatogr. A, 2006, 1112(1-2), 255-262.
[http://dx.doi.org/10.1016/j.chroma.2005.11.116] [PMID: 16364338]
[15]
Li, Y.; Hoskins, J.N.; Sreerama, S.G.; Grayson, S.M. MALDI-TOF mass spectral characterization of polymers containing an azide group: evidence of metastable ions. Macromolecules, 2010, 43(14), 6225-6228.
[http://dx.doi.org/10.1021/ma100599n] [PMID: 21552377]
[16]
Mauger, F.; Tabet, J.C.; Gut, I.G. A revisit of high collision energy effects on collision-induced dissociation spectra using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-LIFT-TOF/TOF): application to the sequencing of RNA/DNA chimeras. Rapid Commun. Mass Spectrom., 2014, 28(13), 1433-1443.
[http://dx.doi.org/10.1002/rcm.6913] [PMID: 24861592]
[17]
Wu, C.; Cai, X.Q.; Chang, Y.; Chen, C.H.; Ho, T.J.; Lai, S.C.; Chen, H.P. Rapid identification of dragon blood samples from Daemonorops draco, Dracaena cinnabari and Dracaena cochinchinensis by MALDI-TOF mass spectrometry. Phytochem. Anal., 2019, 30(6), 720-726.
[http://dx.doi.org/10.1002/pca.2852] [PMID: 31313432]
[18]
Ho, T.J.; Jiang, S.J.; Lin, G.H.; Li, T.S.; Yiin, L.M.; Yang, J.S.; Hsieh, M.C.; Wu, C.C.; Lin, J.G.; Chen, H.P. The in vitro and in vivo wound healing properties of the Chinese herbal medicine “Jinchuang ointment.”. Evid. Based Complement. Alternat. Med., 2016, 2016, 1654056.
[http://dx.doi.org/10.1155/2016/1654056] [PMID: 27200097]
[19]
Wallace, W.E.; Arnould, M.A.; Knochenmuss, R. 2,5-Dihydroxybenzoic acid: laser desorption/ionization as a function of elevated temperature. Int. J. Mass Spectrom., 2005, 242, 13-22.
[http://dx.doi.org/10.1016/j.ijms.2004.11.011]
[20]
Mannino, G.; Occhipinti, A.; Maffei, M.E. Quantitative determination of 3-O-acetyl-11-keto-β-boswellic acid (AKBA) and other boswellic acids in Boswellia sacra Flueck (syn. B. carteri Birdw) and Boswellia serrata Roxb. Molecules, 2016, 21(10), 1329.
[http://dx.doi.org/10.3390/molecules21101329] [PMID: 27782055]
[21]
Taiwan Herbal Pharmacopeia Editorial Panel CommitteeTaiwan Herbal Pharmacopeia. Version 3; Ministry of Health and Welfare: Taipei, 2018. (in Chinese)
[22]
Chiu, H.F.; Wang, H.M.; Shen, Y.C.; Venkatakrishnan, K.; Wang, C.K. Anti-inflammatory properties of fermented pine (Pinus morrisonicola Hay.) needle on lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J. Food Biochem., 2019, 43(11), e12994.
[http://dx.doi.org/10.1111/jfbc.12994] [PMID: 31659812]
[23]
Ji, K.Y.; Kim, K.M.; Kim, Y.H.; Im, A.R.; Lee, J.Y.; Park, B.; Na, M.; Chae, S. The enhancing immune response and anti-inflammatory effects of Anemarrhena asphodeloides extract in RAW 264.7 cells. Phytomedicine, 2019, 59, 152789.
[http://dx.doi.org/10.1016/j.phymed.2018.12.012] [PMID: 31009851]
[24]
Lenon, G.B.; Xue, C.C.; Story, D.F.; Thien, F.C.; Li, C.G. Inhibition of release of inflammatory mediators in rat peritoneal mast cells and murine macrophages by a Chinese herbal medicine formula (RCM-102). Phytother. Res., 2009, 23(9), 1270-1275.
[http://dx.doi.org/10.1002/ptr.2608] [PMID: 19173280]
[25]
Wu, S.J.; Liu, P.L.; Ng, L.T. Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells. Mol. Nutr. Food Res., 2008, 52(8), 921-929.
[http://dx.doi.org/10.1002/mnfr.200700418] [PMID: 18481320]
[26]
Henkel, A.; Tausch, L.; Pillong, M.; Jauch, J.; Karas, M.; Schneider, G.; Werz, O. Boswellic acids target the human immune system-modulating antimicrobial peptide LL-37. Pharmacol. Res., 2015, 102, 53-60.
[http://dx.doi.org/10.1016/j.phrs.2015.09.002] [PMID: 26361729]
[27]
Tausch, L.; Henkel, A.; Siemoneit, U.; Poeckel, D.; Kather, N.; Franke, L.; Hofmann, B.; Schneider, G.; Angioni, C.; Geisslinger, G.; Skarke, C.; Holtmeier, W.; Beckhaus, T.; Karas, M.; Jauch, J.; Werz, O. Identification of human cathepsin G as a functional target of boswellic acids from the anti-inflammatory remedy frankincense. J. Immunol., 2009, 183(5), 3433-3442.
[http://dx.doi.org/10.4049/jimmunol.0803574] [PMID: 19648270]
[28]
Rockwood, A.L.; Palmblad, M. Isotopic distributions. Methods Mol. Biol., 2020, 2051, 79-114.
[http://dx.doi.org/10.1007/978-1-4939-9744-2_3] [PMID: 31552625]
[29]
Nicolardi, S.; Palmblad, M.; Dalebout, H.; Bladergroen, M.; Tollenaar, R.A.E.M.; Deelder, A.M.; van der Burgt, Y.E.M. Quality control based on isotopic distributions for high-throughput MALDI-TOF and MALDI-FTICR serum peptide profiling. J. Am. Soc. Mass Spectrom., 2010, 21(9), 1515-1525.
[http://dx.doi.org/10.1016/j.jasms.2010.05.004] [PMID: 20541438]
[30]
Satoh, T.; Kubo, A.; Hazama, H.; Awazu, K.; Toyoda, M. Separation of isobaric compounds using a spiral orbit type time-of-flight mass spectrometer, MALDI-SpiralTOF. Mass Spectrom. (Tokyo), 2014, 3(Spec Iss), S0027.
[http://dx.doi.org/10.5702/massspectrometry.S0027] [PMID: 26819897]
[31]
Yan, Y.; Ubukata, M.; Cody, R.B.; Holy, T.E.; Gross, M.L. High-energy collision-induced dissociation by MALDI TOF/TOF causes charge-remote fragmentation of steroid sulfates. J. Am. Soc. Mass Spectrom., 2014, 25(8), 1404-1411.
[http://dx.doi.org/10.1007/s13361-014-0901-4] [PMID: 24781458]
[32]
Gogichaeva, N.V.; Williams, T.; Alterman, M.A. MALDI TOF/TOF tandem mass spectrometry as a new tool for amino acid analysis. J. Am. Soc. Mass Spectrom., 2007, 18(2), 279-284.
[http://dx.doi.org/10.1016/j.jasms.2006.09.013] [PMID: 17074506]
[33]
Narouz, M.R.; Soliman, S.E.; Fridgen, T.D.; Nashed, M.A.; Banoub, J.H. High-energy collision-induced dissociation tandem mass spectrometry of regioisomeric lactose palmitic acid monoesters using matrix-assisted laser desorption/ionization. Rapid Commun. Mass Spectrom., 2014, 28(2), 169-177.
[http://dx.doi.org/10.1002/rcm.6770] [PMID: 24338964]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy