Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Emodin Alcohols: Design, Synthesis, Biological Evaluation and Multitargeting Studies with DNA, RNA, and HSA

Author(s): Hai-Guang Wang and Hui-Zhen Zhang*

Volume 31, Issue 19, 2024

Published on: 19 June, 2023

Page: [2788 - 2808] Pages: 21

DOI: 10.2174/0929867330666230512161856

Price: $65

Abstract

Objective: A series of novel emodin alcohols were designed and prepared in an effort to overcome the increasing microorganism resistance.

Methods: Novel emodin alcohols were prepared from commercial emodin and different nitrogen-containing heterocycles via different synthetic strategies, such as O-alkylation and N-alkylation. The antimicrobial activity of synthesized emodin compounds was evaluated in vitro by a two-fold serial dilution technique. The interaction of emodin compound 3d with biomolecule was researched using UV-vis spectroscopic method and fluorescence spectroscopy.

Results: Emodin compound 3d containing 2-methyl-5-nitro imidazole ring showed relatively good antimicrobial activity. Notably, it exhibited equivalent activity against S. aureus in comparison to the reference drug norfloxacin (MIC = 4 μg/mL). The combination of strong active compound 3d with reference drugs showed better antimicrobial activity with less dosage and a broader antimicrobial spectrum than their separate use. Further research displayed that emodin compound 3d could intercalate into S. aureus DNA to form the 3d–DNA complex, which might correlate with the inhibitory activity. The hydrogen bonds were found between S. aureus DNA gyrase and strong active compound 3d during the docking research, which were in accordance with the spectral experiment results. The interaction with yeast RNA of compound 3d could also form a complex via hydrogen bonds. The hydrogen bonds were found to play a major role in the transportation of emodin compound 3d by human serum albumin (HSA), as confirmed by molecular simulation.

Conclusion: This work provides a promising starting point to optimize the structures of emodin derivatives as potent antimicrobial agents.

Keywords: Emodin, antibacterial, antifungal, Staphylococcus aureus DNA, yeast RNA, human serum albumin.

[1]
Zhong, C.; Zhang, F.; Zhu, N.; Zhu, Y.; Yao, J.; Gou, S.; Xie, J.; Ni, J. Ultra-short lipopeptides against gram-positive bacteria while alleviating antimicrobial resistance. Eur. J. Med. Chem., 2021, 212, 113138.
[http://dx.doi.org/10.1016/j.ejmech.2020.113138] [PMID: 33422980]
[2]
Dighe, S.N.; Collet, T.A. Recent advances in DNA gyrase-targeted antimicrobial agents. Eur. J. Med. Chem., 2020, 199, 112326.
[http://dx.doi.org/10.1016/j.ejmech.2020.112326] [PMID: 32460040]
[3]
Chalothorn, T.; Rukachaisirikul, V.; Phongpaichit, S.; Pannara, S.; Tansakul, C. Synthesis and antibacterial activity of emodin and its derivatives against methicillin-resistant Staphylococcus aureus. Tetrahedron Lett., 2019, 60(35), 151004.
[http://dx.doi.org/10.1016/j.tetlet.2019.151004]
[4]
Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A. Emodin - A natural anthraquinone derivative with diverse pharmacological activities. Phytochemistry, 2021, 190, 112854.
[http://dx.doi.org/10.1016/j.phytochem.2021.112854] [PMID: 34311280]
[5]
Kim, H.; Jang, J.H.; Kim, S.C.; Cho, J.H. Development of a novel hybrid antimicrobial peptide for targeted killing of Pseudomonas aeruginosa. Eur. J. Med. Chem., 2020, 185, 111814.
[http://dx.doi.org/10.1016/j.ejmech.2019.111814] [PMID: 31678742]
[6]
Luo, N.; Fang, J.; Wei, L.; Sahebkar, A.; Little, P.J.; Xu, S.; Luo, C.; Li, G. Emodin in atherosclerosis prevention: Pharmacological actions and therapeutic potential. Eur. J. Pharmacol., 2021, 890, 173617.
[http://dx.doi.org/10.1016/j.ejphar.2020.173617] [PMID: 33010303]
[7]
Duan, F.; Li, X.; Cai, S.; Xin, G.; Wang, Y.; Du, D.; He, S.; Huang, B.; Guo, X.; Zhao, H.; Zhang, R.; Ma, L.; Liu, Y.; Du, Q.; Wei, Z.; Xing, Z.; Liang, Y.; Wu, X.; Fan, C.; Ji, C.; Zeng, D.; Chen, Q.; He, Y.; Liu, X.; Huang, W. Haloemodin as novel antibacterial agent inhibiting DNA gyrase and bacterial topoisomerase I. J. Med. Chem., 2014, 57(9), 3707-3714.
[http://dx.doi.org/10.1021/jm401685f] [PMID: 24588790]
[8]
Lu, C.; Wang, H.; Lv, W.; Xu, P.; Zhu, J.; Xie, J.; Liu, B.; Lou, Z. Antibacterial properties of anthraquinones extracted from rhubarb against Aeromonas hydrophila. Fish. Sci., 2011, 77(3), 375-384.
[http://dx.doi.org/10.1007/s12562-011-0341-z]
[9]
Zhang, H.Z.; Damu, G.L.V.; Cai, G.X.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole type of Fluconazole analogues and their synergistic effects with Chloromycin, Norfloxacin and Fluconazole. Eur. J. Med. Chem., 2013, 64, 329-344.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.049] [PMID: 23644216]
[10]
Emami, S.; Ghobadi, E.; Saednia, S.; Hashemi, S.M. Current advances of triazole alcohols derived from fluconazole: Design, in vitro and in silico studies. Eur. J. Med. Chem., 2019, 170, 173-194.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.020] [PMID: 30897396]
[11]
Zhang, H.Z.; Gan, L.L.; Wang, H.; Zhou, C.H. New progress in azole compounds as antimicrobial agents. Mini Rev. Med. Chem., 2016, 17(2), 122-166.
[http://dx.doi.org/10.2174/1389557516666160630120725] [PMID: 27484625]
[12]
Zhang, H.Z.; Zhao, Z.L.; Zhou, C.H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem., 2018, 144, 444-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
[13]
Tan, J.H.; Zhang, Q.X.; Huang, Z.S.; Chen, Y.; Wang, X.D.; Gu, L.Q.; Wu, J.Y. Synthesis, DNA binding and cytotoxicity of new pyrazole emodin derivatives. Eur. J. Med. Chem., 2006, 41(9), 1041-1047.
[http://dx.doi.org/10.1016/j.ejmech.2006.04.006] [PMID: 16716458]
[14]
Zhang, H-Z.; Ning, Z-W.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole incorporated naphthalimide derivatives as Salmonella typhimurium DNA intercalators, and combination researches. Med. Chem., 2022, 18(5), 544-557.
[http://dx.doi.org/10.2174/1573406417666210712105922] [PMID: 34254924]
[15]
Zhang, H.Z.; He, S.C.; Peng, Y.J.; Zhang, H.J.; Gopala, L.; Tangadanchu, V.K.R.; Gan, L.L.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole-incorporated sulfonamide analogues. Eur. J. Med. Chem., 2017, 136, 165-183.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.077] [PMID: 28494254]
[16]
He, S.C.; Zhang, H.Z.; Zhang, H.J.; Sun, Q.; Zhou, C.H. Design and synthesis of novel sulfonamide-derived triazoles and bioactivity exploration. Med. Chem., 2020, 16(1), 104-118.
[http://dx.doi.org/10.2174/1573406414666181106124852] [PMID: 30398118]
[17]
Jeyakkumar, P.; Zhang, L.; Avula, S.R.; Zhou, C.H. Design, synthesis and biological evaluation of berberine-benzimidazole hybrids as new type of potentially DNA-targeting antimicrobial agents. Eur. J. Med. Chem., 2016, 122, 205-215.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.031] [PMID: 27371924]
[18]
Yin, B.T.; Yan, C.Y.; Peng, X.M.; Zhang, S.L.; Rasheed, S.; Geng, R.X.; Zhou, C.H. Synthesis and biological evaluation of α-triazolyl chalcones as a new type of potential antimicrobial agents and their interaction with calf thymus DNA and human serum albumin. Eur. J. Med. Chem., 2014, 71, 148-159.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.003] [PMID: 24291568]
[19]
Wang, X.P.; Xu, W.F. Chemical synthesis and antitumor activities of emodin derivatives. Zhongguo Yaowu Huaxue Zazhi, 2005, 15, 321-326.
[20]
National Committee for Clinical Laboratory Standards Approved standard Document; National Committee for Clinical Laboratory Standards: Wayne, PA, 2002, p. M27-A2.
[21]
Kitahara, T.; Aoyama, Y.; Hirakata, Y.; Kamihira, S.; Kohno, S.; Ichikawa, N.; Nakashima, M.; Sasaki, H.; Higuchi, S. In vitro activity of lauric acid or myristylamine in combination with six antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents, 2006, 27(1), 51-57.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.08.020] [PMID: 16318911]
[22]
Wang, L.L.; Battini, N.; Bheemanaboina, R.R.Y.; Ansari, M.F.; Chen, J.P.; Xie, Y.P.; Cai, G.X.; Zhang, S.L.; Zhou, C.H. A new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antibacterial agents: Design, synthesis and evaluation acting on microbes, DNA, HSA and topoisomerase IV. Eur. J. Med. Chem., 2019, 179, 166-181.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.046] [PMID: 31254919]
[23]
Zhang, Y.; Tangadanchu, V.K.R.; Cheng, Y.; Yang, R.G.; Lin, J.M.; Zhou, C.H. Potential antimicrobial isopropanol-conjugated carbazole azoles as dual targeting inhibitors of Enterococcus faecalis. ACS Med. Chem. Lett., 2018, 9(3), 244-249.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00514] [PMID: 29541368]
[24]
Cui, S.F.; Peng, L.P.; Zhang, H.Z.; Rasheed, S.; Vijaya Kumar, K.; Zhou, C.H. Novel hybrids of metronidazole and quinolones: Synthesis, bioactive evaluation, cytotoxicity, preliminary antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin. Eur. J. Med. Chem., 2014, 86, 318-334.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.063] [PMID: 25173851]
[25]
Li, X.L.; Hu, Y.J.; Wang, H.; Yu, B.Q.; Yue, H.L. Molecular spectroscopy evidence of berberine binding to DNA: Comparative binding and thermodynamic profile of intercalation. Biomacromolecules, 2012, 13(3), 873-880.
[http://dx.doi.org/10.1021/bm2017959] [PMID: 22316074]
[26]
Zhang, G.; Fu, P.; Wang, L.; Hu, M. Molecular spectroscopic studies of farrerol interaction with calf thymus DNA. J. Agric. Food Chem., 2011, 59(16), 8944-8952.
[http://dx.doi.org/10.1021/jf2019006] [PMID: 21761894]
[27]
Cui, S.F.; Addla, D.; Zhou, C.H. Novel 3-aminothiazolquinolones: Design, synthesis, bioactive evaluation, SARs, and preliminary antibacterial mechanism. J. Med. Chem., 2016, 59(10), 4488-4510.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01678] [PMID: 27115717]
[28]
Wang, L.L.; Battini, N.; Bheemanaboina, R.R.Y.; Zhang, S.L.; Zhou, C.H. Design and synthesis of aminothiazolyl norfloxacin analogues as potential antimicrobial agents and their biological evaluation. Eur. J. Med. Chem., 2019, 167, 105-123.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.072] [PMID: 30769240]
[29]
Xu, H.; Deng, H.; Zhang, Q.L.; Huang, Y.; Liu, J.Z.; Ji, L.N. Synthesis and spectroscopic RNA binding studies of [Ru(phen)2MHPIP]2+. Inorg. Chem. Commun., 2003, 6(6), 766-768.
[http://dx.doi.org/10.1016/S1387-7003(03)00079-0]
[30]
Suryawanshi, V.D.; Anbhule, P.V.; Gore, A.H.; Patil, S.R.; Kolekar, G.B. Spectroscopic investigation on the interaction of pyrimidine derivative, 2-amino-6-hydroxy-4- (3,4-dimethoxyphenyl)-pyrimidine-5-carbonitrile with human serum albumin: Mechanistic and conformational study. Ind. Eng. Chem. Res., 2012, 51(1), 95-102.
[http://dx.doi.org/10.1021/ie202005c]
[31]
Ibrahim, N.; Ibrahim, H.; Kim, S.; Nallet, J.P.; Nepveu, F. Interactions between antimalarial indolone-N-oxide derivatives and human serum albumin. Biomacromolecules, 2010, 11(12), 3341-3351.
[http://dx.doi.org/10.1021/bm100814n] [PMID: 21080702]
[32]
Hu, Y.J.; Liu, Y.; Xiao, X.H. Investigation of the interaction between Berberine and human serum albumin. Biomacromolecules, 2009, 10(3), 517-521.
[http://dx.doi.org/10.1021/bm801120k] [PMID: 19173654]
[33]
Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed; Springer: New York, 2006.
[http://dx.doi.org/10.1007/978-0-387-46312-4]
[34]
Zhang, S.L.; Damu, G.L.V.; Zhang, L.; Geng, R.X.; Zhou, C.H. Synthesis and biological evaluation of novel benzimidazole derivatives and their binding behavior with bovine serum albumin. Eur. J. Med. Chem., 2012, 55, 164-175.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.015] [PMID: 22863183]
[35]
Zhang, S.L.; Chang, J.J.; Damu, G.L.V.; Geng, R.X.; Zhou, C.H. Berberine azoles as antimicrobial agents: Synthesis, biological evaluation and their interactions with human serum albumin. Med. Chem. Comm., 2013, 4(5), 839-846.
[http://dx.doi.org/10.1039/c3md00032j]
[36]
Mote, U.S.; Patil, S.R.; Bhosale, S.H.; Han, S.H.; Kolekar, G.B. Fluorescence resonance energy transfer from tryptophan to folic acid in micellar media and deionised water. J. Photochem. Photobiol. B, 2011, 103(1), 16-21.
[http://dx.doi.org/10.1016/j.jphotobiol.2011.01.006] [PMID: 21288734]
[37]
Zhang, S.L.; Chang, J.J.; Damu, G.L.V.; Fang, B.; Zhou, X.D.; Geng, R.X.; Zhou, C.H. Novel berberine triazoles: Synthesis, antimicrobial evaluation and competitive interactions with metal ions to Human Serum Albumin. Bioorg. Med. Chem. Lett., 2013, 23(4), 1008-1012.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.036] [PMID: 23312473]
[38]
Lv, J.S.; Peng, X.M.; Kishore, B.; Zhou, C.H. 1,2,3-Triazole-derived naphthalimides as a novel type of potential antimicrobial agents: Synthesis, antimicrobial activity, interaction with calf thymus DNA and human serum albumin. Bioorg. Med. Chem. Lett., 2014, 24(1), 308-313.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.013] [PMID: 24295786]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy