Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Current Views About the Link between SARS-CoV-2 and the Liver: Friends or Foe?

Author(s): Roberto Lovero, Ioannis Alexandros Charitos*, Skender Topi, Francesca Castellaneta, Angela Pia Cazzolla and Marica Colella

Volume 24, Issue 6, 2024

Published on: 16 October, 2023

Page: [642 - 650] Pages: 9

DOI: 10.2174/0118715303251985231009050626

Price: $65

Abstract

The emergence of the novel coronavirus and the pandemic resulting from its spread have led to significant negative impacts on health, economy, relationships, and others. Particularly in the field of hospital care, the need for a greater number of patients has led to a breakdown of the system. Gastrointestinal manifestations are common in SARS-COV 2 patients, while 10% of those who are sick exhibit symptoms only from gastrointestinal without any manifestation on the part of the respiratory tract. The main manifestations are nausea, vomiting, diarrhoea, and anorexia. It is also interesting to note that biochemical liver disorder is a frequent finding and is associated with a worse prognosis and higher probability admission to intensive care. It was also observed that RNA from the virus was found in the stool several days after the tests came back negative pulmonary secretions, while rectal swab virus detection methods were used with a lower but comparable sensitivity to that of nasal swabs. Gastrointestinal symptoms in SARS-COV 2 infection are common and their search should be part of the initial diagnosis approach and have a connection with the gut microbiota dysbiosis and this can lead to an alteration of the gut/liver axis.

Keywords: Hepatology, liver biochemistry, pandemics, COVID-19, clinical microbiology, SARS-CoV 2, gut microbiota, gut/liver axis.

Graphical Abstract
[1]
Santacroce, L.; Charitos, I.A.; Carretta, D.M.; De Nitto, E.; Lovero, R. The human coronaviruses (HCoVs) and the molecular mechanisms of SARS-CoV-2 infection. J. Mol. Med. (Berl.), 2021, 99(1), 93-106.
[http://dx.doi.org/10.1007/s00109-020-02012-8] [PMID: 33269412]
[2]
Santacroce, L.; Charitos, I.A.; Carretta, D.M.; De Nitto, E.; Lovero, R. Liver injury in the era of COVID-19. World J. Gastroenterol., 2021, 27(5), 377-390.
[http://dx.doi.org/10.3748/wjg.v27.i5.377] [PMID: 33584070]
[3]
Haleem, A.; Javaid, M.; Vaishya, R. Effects of COVID-19 pandemic in daily life. Current Medicine Research and Practice, 2020, 10(2), 78-79.
[http://dx.doi.org/10.1016/j.cmrp.2020.03.011] [PMID: 32292804]
[4]
Santacroce, L.; Bottalico, L.; Charitos, I.A. The Impact of COVID-19 on Italy: A Lesson for the Future. Int. J. Occup. Environ. Med., 2020, 11(3), 151-152.
[http://dx.doi.org/10.34172/ijoem.2020.1984] [PMID: 32225178]
[6]
Carretta, D.M.; Silva, A.M.; D’Agostino, D.; Topi, S.; Lovero, R.; Charitos, I.A.; Wegierska, A.E.; Montagnani, M.; Santacroce, L. Cardiac involvement in COVID-19 patients: A contemporary review. Infect. Dis. Rep., 2021, 13(2), 494-517.
[http://dx.doi.org/10.3390/idr13020048] [PMID: 34206074]
[7]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[8]
Paraskevis, D.; Kostaki, E.G.; Magiorkinis, G.; Panayiotakopoulos, G.; Sourvinos, G.; Tsiodras, S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect. Genet. Evol., 2020, 79, 104212.
[http://dx.doi.org/10.1016/j.meegid.2020.104212] [PMID: 32004758]
[9]
Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; Smura, T.; Levanov, L.; Szirovicza, L.; Tobi, A.; Kallio-Kokko, H.; Österlund, P.; Joensuu, M.; Meunier, F.A.; Butcher, S.J.; Winkler, M.S.; Mollenhauer, B.; Helenius, A.; Gokce, O.; Teesalu, T.; Hepojoki, J.; Vapalahti, O.; Stadelmann, C.; Balistreri, G.; Simons, M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 2020, 370(6518), 856-860.
[http://dx.doi.org/10.1126/science.abd2985] [PMID: 33082293]
[10]
Wettstein, L.; Knaff, P.M.; Kersten, C.; Müller, P.; Weil, T.; Conzelmann, C.; Müller, J.A.; Brückner, M.; Hoffmann, M.; Pöhlmann, S.; Schirmeister, T.; Landfester, K.; Münch, J.; Mailänder, V. Peptidomimetic inhibitors of TMPRSS2 block SARS-CoV-2 infection in cell culture. Commun. Biol., 2022, 5(1), 681.
[http://dx.doi.org/10.1038/s42003-022-03613-4] [PMID: 35804152]
[11]
van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; Lloyd-Smith, J.O.; de Wit, E.; Munster, V.J. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med., 2020, 382(16), 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[12]
Jefferson, T.; Spencer, E.A.; Brassey, J.; Heneghan, C. Viral Cultures for Coronavirus Disease 2019 Infectivity Assessment: A Systematic Review. Clin. Infect. Dis., 2021, 73(11), e3884-e3899.
[http://dx.doi.org/10.1093/cid/ciaa1764] [PMID: 33270107]
[13]
Santacroce, L.; Pia Cazzolla, A.; Lovero, R. Brescia, V: Ciavarella, D: Spirito, F: Colella, M: Bilancia, M: Lo Muzio, L: Di Serio, F. Neurosensory alterations and interleukins cascade in SARS-CoV-2 infection - results from a retrospective cohort of COVID-19 inpatients. Endocr. Metab. Immune Disord. Drug Targets, 2023, 23(9), 1162-1172.
[http://dx.doi.org/10.2174/1871530323666230216145027]
[14]
Sule, W.F.; Oluwayelu, D.O. Real-time RT-PCR for COVID-19 diagnosis: challenges and prospects. Pan Afr. Med. J., 2020, 35(Suppl. 2), 121.
[http://dx.doi.org/10.11604/pamj.supp.2020.35.2.24258] [PMID: 33282076]
[15]
Di Serio, F.; Lovero, R.; D’Agostino, D.; Nisi, L.; Miragliotta, G.; Contino, R.; Man, A.; Ciccone, M.M.; Santacroce, L. Evaluation of procalcitonin, vitamin D and C-reactive protein levels in septic patients with positive emocoltures. Our preliminary experience. Acta Med. Mediter., 2016, 32, 1911-1914.
[http://dx.doi.org/10.19193/0393-6384_2016_6_182]
[16]
Di Paolo, M.; Iacovelli, A.; Olmati, F.; Menichini, I.; Oliva, A.; Carnevalini, M.; Graziani, E.; Mastroianni, C.M.; Palange, P. False-negative RT-PCR in SARS-CoV-2 disease: experience from an Italian COVID-19 unit. ERJ Open Res., 2020, 6(2), 00324-02020.
[http://dx.doi.org/10.1183/23120541.00324-2020] [PMID: 32685435]
[17]
Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S.; Bang, Y.J.; Dy, G.K.; Krauss, J.C.; Kuboki, Y.; Kuo, J.C.; Coveler, A.L.; Park, K.; Kim, T.W.; Barlesi, F.; Munster, P.N.; Ramalingam, S.S.; Burns, T.F.; Meric-Bernstam, F.; Henary, H.; Ngang, J.; Ngarmchamnanrith, G.; Kim, J.; Houk, B.E.; Canon, J.; Lipford, J.R.; Friberg, G.; Lito, P.; Govindan, R.; Li, B.T. KRAS G12C inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med., 2020, 383(13), 1207-1217.
[http://dx.doi.org/10.1056/NEJMoa1917239] [PMID: 32955176]
[18]
Pascarella, G.; Strumia, A.; Piliego, C.; Bruno, F.; Del Buono, R.; Costa, F.; Scarlata, S.; Agrò, F.E. COVID‐19 diagnosis and management: a comprehensive review. J. Intern. Med., 2020, 288(2), 192-206.
[http://dx.doi.org/10.1111/joim.13091] [PMID: 32348588]
[19]
Schirinzi, A.; Cazzolla, A.P.; Lovero, R.; Lo Muzio, L.; Testa, N.F.; Ciavarella, D.; Palmieri, G.; Pozzessere, P.; Procacci, V.; Di Serio, F.; Santacroce, L. New insights in laboratory testing for COVID-19 patients: looking for the role and predictive value of Human epididymis secretory protein 4 (HE4) and the innate immunity of the oral cavity and respiratory tract. Microorganisms, 2020, 8(11), 1718.
[http://dx.doi.org/10.3390/microorganisms8111718] [PMID: 33147871]
[20]
Van Loon, N.; Verbrugghe, M.; Cartuyvels, R.; Ramaekers, D. Diagnosis of COVID-19 based on symptomatic analysis of hospital healthcare workers in Belgium. J. Occup. Environ. Med., 2021, 63(1), 27-31.
[http://dx.doi.org/10.1097/JOM.0000000000002015] [PMID: 32858554]
[21]
Bader, S.M.; Cooney, J.P.; Pellegrini, M.; Doerflinger, M. Programmed cell death: the pathways to severe COVID-19? Biochem. J., 2022, 479(5), 609-628.
[http://dx.doi.org/10.1042/BCJ20210602] [PMID: 35244141]
[22]
Santacroce, L.; Charitos, I.A.; Del Prete, R. COVID-19 in Italy: An overview from the first case to date. Electronic J General Med, 2020, 17(6), em235.
[http://dx.doi.org/10.29333/ejgm/7926]
[23]
Misra, S.; Kolappa, K.; Prasad, M.; Radhakrishnan, D.; Thakur, K.T.; Solomon, T.; Michael, B.D.; Winkler, A.S.; Beghi, E.; Guekht, A.; Pardo, C.A.; Wood, G.K.; Hsiang-Yi Chou, S. Fink, E.L.; Schmutzhard, E.; Kheradmand, A.; Hoo, F.K.; Kumar, A.; Das, A.; Srivastava, A.K.; Agarwal, A.; Dua, T.; Prasad, K. Frequency of neurologic manifestations in COVID-19. Neurology, 2021, 97(23), e2269-e2281.
[http://dx.doi.org/10.1212/WNL.0000000000012930] [PMID: 34635561]
[24]
Veleri, S. Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients. Exp. Brain Res., 2022, 240(1), 9-25.
[http://dx.doi.org/10.1007/s00221-021-06244-z] [PMID: 34694467]
[25]
Hu, K.; Patel, J.; Swiston, C.; Patel, B.C. Ophthalmic manifestations of Coronavirus (COVID-19). In: StatPearls; Treasure Island, 2022.
[PMID: 32310553]
[26]
Aranda-Abreu, G.E.; Aranda-Martínez, J.D.; Araújo, R.; Hernández-Aguilar, M.E.; Herrera-Covarrubias, D.; Rojas-Durán, F. Observational study of people infected with SARS-Cov-2, treated with amantadine. Pharmacol. Rep., 2020, 72(6), 1538-1541.
[http://dx.doi.org/10.1007/s43440-020-00168-1] [PMID: 33040252]
[27]
Chen, Y.; Xu, Z.; Wang, P.; Li, X.M.; Shuai, Z.W.; Ye, D.Q.; Pan, H.F. New‐onset autoimmune phenomena post‐COVID‐19 vaccination. Immunology, 2022, 165(4), 386-401.
[http://dx.doi.org/10.1111/imm.13443] [PMID: 34957554]
[28]
Pandey, A.; Nikam, A.N.; Shreya, A.B.; Mutalik, S.P.; Gopalan, D.; Kulkarni, S.; Padya, B.S.; Fernandes, G.; Mutalik, S.; Prassl, R. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci., 2020, 256, 117883.
[http://dx.doi.org/10.1016/j.lfs.2020.117883] [PMID: 32497632]
[29]
Bartoli, A.; Gabrielli, F.; Alicandro, T.; Nascimbeni, F.; Andreone, P. COVID-19 treatment options: a difficult journey between failed attempts and experimental drugs. Intern. Emerg. Med., 2021, 16(2), 281-308.
[http://dx.doi.org/10.1007/s11739-020-02569-9] [PMID: 33398609]
[30]
Santacroce, L.; Inchingolo, F.; Topi, S.; Del Prete, R.; Di Cosola, M.; Charitos, I.A.; Montagnani, M. Potential beneficial role of probiotics on the outcome of COVID-19 patients: An evolving perspective. Diabetes Metab. Syndr., 2021, 15(1), 295-301.
[http://dx.doi.org/10.1016/j.dsx.2020.12.040] [PMID: 33484986]
[31]
CDC (Centers for Disease Control and Prevention), USA. Pfizer- BioNTech COVID-19 Vaccine. 2021. Available from: https://www.cdc.gov/vaccines/covid-19/info-by-product/pfizer/dow nloads/storage-summary.pdf
[33]
EMA (European Medicines Agency)., EMA recommends Valneva’s COVID-19 vaccine for authorisation in the EU. 2022. Available from: https://www.ema.europa.eu/en/news/ema-recommends-valnevas-co vid-19-vaccine-authorisation-eu
[34]
Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis., 2021, 40(5), 905-919.
[http://dx.doi.org/10.1007/s10096-020-04138-6] [PMID: 33389262]
[35]
Luedde, T. Schwabe, R.F. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(2), 108-118.
[http://dx.doi.org/10.1038/nrgastro.2010.213] [PMID: 21293511]
[36]
Boettler, T.; Marjot, T.; Newsome, P.N.; Mondelli, M.U.; Maticic, M.; Cordero, E.; Jalan, R.; Moreau, R.; Cornberg, M.; Berg, T. Impact of COVID-19 on the care of patients with liver disease: EASL-ESCMID position paper after 6 months of the pandemic. JHEP Reports, 2020, 2(5), 100169.
[http://dx.doi.org/10.1016/j.jhepr.2020.100169] [PMID: 32835190]
[37]
Saithanyamurthi, H.V.; Munirathinam, M.; Ananthavadivelu, M. Prevalence of liver injury in 445 patients with Corona Virus Disease-19-Single-centre experience from southern India. Indian J. Gastroenterol., 2021, 40(3), 303-308.
[http://dx.doi.org/10.1007/s12664-021-01147-x] [PMID: 33991309]
[38]
Gupta, N.; Ish, P.; Kumar, R.; Dev, N.; Yadav, S.R.; Malhotra, N.; Agrawal, S.; Gaind, R.; Sachdeva, H. Covid Working Group. O.M.O.T.S.H. Evaluation of the clinical profile, laboratory parameters and outcome of two hundred COVID-19 patients from a tertiary centre in India. Monaldi Arch. Chest Dis., 2020, 90(4)
[http://dx.doi.org/10.4081/monaldi.2020.1507] [PMID: 33169598]
[39]
Zhan, T.; Liu, M.; Tang, Y.; Han, Z.; Cheng, X.; Deng, J.; Chen, X.; Tian, X.; Huang, X. Retrospective analysis of clinical characteristics of 405 patients with COVID-19. J. Int. Med. Res., 2020, 48(8)
[http://dx.doi.org/10.1177/0300060520949039] [PMID: 32865077]
[40]
Wang, M.K.; Yue, H.Y.; Cai, J.; Zhai, Y.J.; Peng, J.H.; Hui, J.F.; Hou, D.Y.; Li, W.P.; Yang, J.S. COVID-19 and the digestive system: A comprehensive review. World J. Clin. Cases, 2021, 9(16), 3796-3813.
[http://dx.doi.org/10.12998/wjcc.v9.i16.3796] [PMID: 34141737]
[41]
Kumar, A.; Kumar, P.; Dungdung, A.; Kumar, G.A.; Anurag, A.; Kumar, A. Pattern of liver function and clinical profile in COVID-19: A cross-sectional study of 91 patients. Diabetes Metab. Syndr., 2020, 14(6), 1951-1954.
[http://dx.doi.org/10.1016/j.dsx.2020.10.001] [PMID: 33039937]
[42]
Lei, F.; Liu, Y.M.; Zhou, F.; Qin, J.J.; Zhang, P.; Zhu, L.; Zhang, X.J.; Cai, J.; Lin, L.; Ouyang, S.; Wang, X.; Yang, C.; Cheng, X.; Liu, W.; Li, H.; Xie, J.; Wu, B.; Luo, H.; Xiao, F.; Chen, J.; Tao, L.; Cheng, G.; She, Z.G.; Zhou, J.; Wang, H.; Lin, J.; Luo, P.; Fu, S.; Zhou, J.; Ye, P.; Xiao, B.; Mao, W.; Liu, L.; Yan, Y.; Liu, L.; Chen, G.; Li, H.; Huang, X.; Zhang, B.H.; Yuan, Y. Longitudinal association between markers of liver injury and mortality in COVID‐19 in China. Hepatology, 2020, 72(2), 389-398.
[http://dx.doi.org/10.1002/hep.31301] [PMID: 32359177]
[43]
Wang, Y.; Li, Y.; Zhang, Y.; Liu, Y.; Liu, Y. Are gastrointestinal symptoms associated with higher risk of Mortality in COVID-19 patients? A systematic review and meta-analysis. BMC Gastroenterol., 2022, 22(1), 106.
[http://dx.doi.org/10.1186/s12876-022-02132-0] [PMID: 35255816]
[44]
Zoghi, G.; Moosavy, S.H.; Yavarian, S. HasaniAzad, M.; Khorrami, F.; Sharegi Brojeni, M.; Kheirandish, M. Gastrointestinal implications in COVID-19. BMC Infect. Dis., 2021, 21(1), 1135.
[http://dx.doi.org/10.1186/s12879-021-06824-y] [PMID: 34736412]
[45]
Li, G.; Yang, Y.; Gao, D.; Xu, Y.; Gu, J.; Liu, P. Is liver involvement overestimated in COVID-19 patients? A meta-analysis. Int. J. Med. Sci., 2021, 18(5), 1285-1296.
[http://dx.doi.org/10.7150/ijms.51174] [PMID: 33526990]
[46]
Bloom, P.P.; Meyerowitz, E.A.; Reinus, Z.; Daidone, M.; Gustafson, J.; Kim, A.Y.; Schaefer, E.; Chung, R.T. Liver biochemistries in hospitalized patients with COVID‐19. Hepatology, 2021, 73(3), 890-900.
[http://dx.doi.org/10.1002/hep.31326] [PMID: 32415860]
[47]
Zhang, C.; Shi, L.; Wang, F.S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol. Hepatol., 2020, 5(5), 428-430.
[http://dx.doi.org/10.1016/S2468-1253(20)30057-1] [PMID: 32145190]
[48]
Charitos, I.A.; Ballini, A.; Lovero, R.; Castellaneta, F.; Colella, M.; Scacco, S.; Cantore, S.; Arrigoni, R.; Mastrangelo, F.; Dioguardi, M. Update on COVID-19 and effectiveness of a vaccination campaign in a global context. Int. J. Environ. Res. Public Health, 2022, 19(17), 10712.
[http://dx.doi.org/10.3390/ijerph191710712] [PMID: 36078427]
[49]
Kunutsor, S.K.; Laukkanen, J.A. Hepatic manifestations and complications of COVID-19: A systematic review and meta-analysis. J. Infect., 2020, 81(3), e72-e74.
[http://dx.doi.org/10.1016/j.jinf.2020.06.043] [PMID: 32579984]
[50]
Fu, Y.; Zhu, R.; Bai, T.; Han, P.; He, Q.; Jing, M.; Xiong, X.; Zhao, X.; Quan, R.; Chen, C.; Zhang, Y.; Tao, M.; Yi, J.; Tian, D.; Yan, W. Clinical features of patients infected with coronavirus disease 2019 with elevated liver biochemistries: A multicenter, retrospective study. Hepatology, 2021, 73(4), 1509-1520.
[http://dx.doi.org/10.1002/hep.31446] [PMID: 32602604]
[51]
Losser, M.R.; Payen, D. Mechanisms of liver damage. Semin. Liver Dis., 1996, 16(4), 357-367.
[http://dx.doi.org/10.1055/s-2007-1007249] [PMID: 9027949]
[52]
Jothimani, D.; Venugopal, R.; Abedin, M.F.; Kaliamoorthy, I.; Rela, M. COVID-19 and the liver. J. Hepatol., 2020, 73(5), 1231-1240.
[http://dx.doi.org/10.1016/j.jhep.2020.06.006] [PMID: 32553666]
[53]
Chen, S.; Liu, H.; Li, T.; Huang, R.; Gui, R.; Zhang, J. Correlation analysis of coagulation dysfunction and liver damage in patients with novel coronavirus pneumonia: a single-center, retrospective, observational study. Ups. J. Med. Sci., 2020, 125(4), 293-296.
[http://dx.doi.org/10.1080/03009734.2020.1822960] [PMID: 32990149]
[54]
Mantovani, A.; Beatrice, G.; Dalbeni, A. Coronavirus disease 2019 and prevalence of chronic liver disease: A meta‐analysis. Liver Int., 2020, 40(6), 1316-1320.
[http://dx.doi.org/10.1111/liv.14465] [PMID: 32329563]
[55]
Hartl, L.; Haslinger, K.; Angerer, M.; Jachs, M.; Simbrunner, B.; Bauer, D.J.M.; Semmler, G.; Scheiner, B.; Eigenbauer, E.; Strassl, R.; Breuer, M.; Kimberger, O.; Laxar, D.; Trauner, M.; Mandorfer, M.; Reiberger, T. Age‐adjusted mortality and predictive value of liver chemistries in a Viennese cohort of COVID ‐19 patients. Liver Int., 2022, 42(6), 1297-1307.
[http://dx.doi.org/10.1111/liv.15274] [PMID: 35412018]
[56]
Kovalic, A.J.; Huang, G.; Thuluvath, P.J.; Satapathy, S.K. Elevated liver biochemistries in hospitalized Chinese patients with severe COVID‐19: Systematic review and meta‐analysis. Hepatology, 2021, 73(4), 1521-1530.
[http://dx.doi.org/10.1002/hep.31472] [PMID: 32692464]
[57]
Ikewaki, N.; Rao, K.S.; Archibold, A.D.; Iwasaki, M.; Senthilkumar, R.; Preethy, S.; Katoh, S.; Abraham, S.J.K. Coagulopathy associated with COVID-19 – Perspectives & Preventive strategies using a biological response modifier Glucan. Thromb. J., 2020, 18(1), 27.
[http://dx.doi.org/10.1186/s12959-020-00239-6] [PMID: 33082714]
[58]
McConnell, M.J.; Kondo, R.; Kawaguchi, N.; Iwakiri, Y. Covid‐19 and liver injury: Role of inflammatory endotheliopathy, platelet dysfunction, and thrombosis. Hepatol. Commun., 2022, 6(2), 255-269.
[http://dx.doi.org/10.1002/hep4.1843] [PMID: 34658172]
[59]
Sodeifian, F.; Seyedalhosseini, Z.S.; Kian, N.; Eftekhari, M.; Najari, S.; Mirsaeidi, M.; Farsi, Y.; Nasiri, M.J. Drug-induced liver injury in COVID-19 patients: a systematic review. Front. Med. (Lausanne), 2021, 8, 731436.
[http://dx.doi.org/10.3389/fmed.2021.731436] [PMID: 34616757]
[60]
Merli, M.; Perricone, G.; Lauterio, A.; Prosperi, M.; Travi, G.; Roselli, E.; Petrò, L.; De Carlis, L.; Belli, L.; Puoti, M. Coronaviruses and immunosuppressed patients: The facts during the third epidemic. Liver Transpl., 2020, 26(11), 1543-1544.
[http://dx.doi.org/10.1002/lt.25806] [PMID: 32475054]
[61]
Freitas, A.F.; Pugliese, R.P.S.; Feier, F.; Miura, I.K.; Danesi, V.L.B.; Oliveira, E.N.; Hirschfeld, A.P.M.; Borges, C.B.V.; Lobato, J.V.; Porta, G.; Seda-Neto, J.; Fonseca, E.A. Impact of COVID-19 infection on children and adolescents after liver transplantation in a Latin American reference center. Microorganisms, 2022, 10(5), 1030.
[http://dx.doi.org/10.3390/microorganisms10051030] [PMID: 35630472]
[62]
Hu, X.; Sun, L.; Guo, Z.; Wu, C.; Yu, X.; Li, J. Management of COVID-19 patients with chronic liver diseases and liver transplants. Ann. Hepatol., 2022, 27(1), 100653.
[http://dx.doi.org/10.1016/j.aohep.2021.100653] [PMID: 34929350]
[63]
Auti, A.; Alessio, N.; Ballini, A.; Dioguardi, M.; Cantore, S.; Scacco, S.; Vitiello, A.; Quagliuolo, L.; Rinaldi, B.; Santacroce, L.; Di Domenico, M.; Boccellino, M. Protective effect of resveratrol against hypoxia-induced neural oxidative stress. J. Pers. Med., 2022, 12(8), 1202.
[http://dx.doi.org/10.3390/jpm12081202] [PMID: 35893296]
[64]
Hegyi, P.J.; Váncsa, S.; Ocskay, K.; Dembrovszky, F.; Kiss, S.; Farkas, N. Erőss, B.; Szakács, Z.; Hegyi, P.; Pár, G. Metabolic associated fatty liver disease is associated with an increased risk of severe COVID-19: A systematic review with meta-analysis. Front. Med. (Lausanne), 2021, 8, 626425.
[http://dx.doi.org/10.3389/fmed.2021.626425] [PMID: 33777974]
[65]
Chen, F.; Chen, W.; Chen, J.; Xu, D.; Xie, W.; Wang, X.; Xie, Y. Clinical features and risk factors of COVID-19-associated liver injury and function: A retrospective analysis of 830 cases. Ann. Hepatol., 2021, 21, 100267.
[http://dx.doi.org/10.1016/j.aohep.2020.09.011] [PMID: 33053426]
[66]
Wijarnpreecha, K.; Ungprasert, P.; Panjawatanan, P.; Harnois, D.M.; Zaver, H.B.; Ahmed, A.; Kim, D. COVID-19 and liver injury: a meta-analysis. Eur. J. Gastroenterol. Hepatol., 2021, 33(7), 990-995.
[http://dx.doi.org/10.1097/MEG.0000000000001817] [PMID: 32639420]
[67]
Du, M.; Yang, S.; Liu, M.; Liu, J. COVID-19 and liver dysfunction: Epidemiology, association and potential mechanisms. Clin. Res. Hepatol. Gastroenterol., 2022, 46(2), 101793.
[http://dx.doi.org/10.1016/j.clinre.2021.101793] [PMID: 34428501]
[68]
Doherty, D.G. Immunity, tolerance and autoimmunity in the liver: A comprehensive review. J. Autoimmun., 2016, 66, 60-75.
[http://dx.doi.org/10.1016/j.jaut.2015.08.020] [PMID: 26358406]
[69]
Yang, X.; Lu, D.; Zhuo, J.; Lin, Z.; Yang, M.; Xu, X. The gut-liver axis in immune remodeling: new insight into liver diseases. Int. J. Biol. Sci., 2020, 16(13), 2357-2366.
[http://dx.doi.org/10.7150/ijbs.46405] [PMID: 32760203]
[70]
Santacroce, L.; Man, A.; Charitos, I.A.; Haxhirexha, K.; Topi, S. Current knowledge about the connection between health status and gut microbiota from birth to elderly. A narrative review. Front. Biosci., 2021, 26(6), 135-148.
[http://dx.doi.org/10.52586/4930] [PMID: 34162042]
[71]
Derovs, A.; Laivacuma, S.; Krumina, A. Targeting microbiota: What do we know about it at present? Medicina (Kaunas), 2019, 55(8), 459.
[http://dx.doi.org/10.3390/medicina55080459] [PMID: 31405111]
[72]
Plaza-Díaz, J.; Solís-Urra, P.; Rodríguez-Rodríguez, F.; Olivares-Arancibia, J.; Navarro-Oliveros, M.; Abadía-Molina, F.; Álvarez-Mercado, A.I. The gut barrier, intestinal microbiota, and liver disease: molecular mechanisms and strategies to manage. Int. J. Mol. Sci., 2020, 21(21), 8351.
[http://dx.doi.org/10.3390/ijms21218351] [PMID: 33171747]
[73]
Ding, J.H.; Jin, Z.; Yang, X.X.; Lou, J.; Shan, W.X.; Hu, Y.X.; Du, Q.; Liao, Q.S.; Xie, R.; Xu, J.Y. Role of gut microbiota via the gut-liver-brain axis in digestive diseases. World J. Gastroenterol., 2020, 26(40), 6141-6162.
[http://dx.doi.org/10.3748/wjg.v26.i40.6141] [PMID: 33177790]
[74]
Youssef, M.; H Hussein, M.; Attia, A.S.; M Elshazli, R.; Omar, M.; Zora, G.; S Farhoud, A.; Elnahla, A.; Shihabi, A.; Toraih, E.A.; S Fawzy, M.; Kandil, E. COVID‐19 and liver dysfunction: A systematic review and meta‐analysis of retrospective studies. J. Med. Virol., 2020, 92(10), 1825-1833.
[http://dx.doi.org/10.1002/jmv.26055] [PMID: 32445489]
[75]
Maria Carretta, D.; Di Domenico, M.; Lovero, R.; Arrigoni, R.; Elzbieta Wegierska, A.; Boccellino, M.; Ballini, A.; Alexandros Charitos, I.; Santacroce, L. SARS-CoV-2 induced myocarditis: Current knowledge about its molecular and pathophysiological mechanisms. Biocell, 2022, 46(8), 1779-1788.
[http://dx.doi.org/10.32604/biocell.2022.020009]
[76]
Kaushal, A.; Noor, R. Association of gut microbiota with inflammatory bowel disease and covid-19 severity: A possible outcome of the altered immune response. Curr. Microbiol., 2022, 79(6), 184.
[http://dx.doi.org/10.1007/s00284-022-02877-7] [PMID: 35508737]
[77]
Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Dhama, K.; Lee, S.S. Altered gut microbiota patterns in COVID-19: Markers for inflammation and disease severity. World J. Gastroenterol., 2022, 28(25), 2802-2822.
[http://dx.doi.org/10.3748/wjg.v28.i25.2802] [PMID: 35978881]
[78]
Cooper, S.; Tobar, A.; Konen, O.; Orenstein, N.; Kropach Gilad, N.; Landau, Y.E.; Mozer-Glassberg, Y.; Bar-Lev, M.R.; Shaoul, R.; Shamir, R.; Waisbourd-Zinman, O. Long COVID-19 liver manifestation in children. J. Pediatr. Gastroenterol. Nutr., 2022, 75(3), 244-251.
[http://dx.doi.org/10.1097/MPG.0000000000003521] [PMID: 35687535]
[79]
Chen, J; Vitetta, L The gut-liver axis in chronic liver disease associated with severe COVID-19., 2021.
[http://dx.doi.org/10.1097/MEG.0000000000002290]
[80]
Zovi, A.; Ferrara, F.; Pasquinucci, R.; Nava, L.; Vitiello, A.; Arrigoni, R.; Ballini, A.; Cantore, S.; Palmirotta, R.; Di Domenico, M.; Santacroce, L.; Boccellino, M. Effects of vitamin D on the renin–angiotensin system and acute childhood pneumonia. Antibiotics (Basel), 2022, 11(11), 1545.
[http://dx.doi.org/10.3390/antibiotics11111545] [PMID: 36358201]
[81]
Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol., 2023, 21(3), 133-146.
[http://dx.doi.org/10.1038/s41579-022-00846-2] [PMID: 36639608]
[82]
Sasaki, T.; Toyama, Y.; Horiguchi, T.; Hibino, M.; Tsuzuki, S.I.; Hayashi, M.; Doi, Y.; Iwata, M.; Imaizumi, K.; Inaba, M. Post-discharge clinical, laboratory and radiographic features of coronavirus disease 2019 (COVID-19) patients at university hospitals in Japan. Fujian Med. J., 2023, 9(1), 30-34.
[http://dx.doi.org/10.20407/fmj.2021-024] [PMID: 36789126]
[83]
Scarpellini, E.; Tack, J. Post-Covid-19 gastro-intestinal disturbances. Rev. Recent Clin. Trials, 2023, 18(1), 34-40.
[http://dx.doi.org/10.2174/1574887118666221201104833] [PMID: 36464877]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy