Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Multivariate Statistical 2D QSAR Analysis of Indenoisoquinoline-based Topoisomerase- I Inhibitors as Anti-lung Cancer Agents

Author(s): Supriya Singh, Bharti Mangla*, Shamama Javed, Pankaj Kumar and Waquar Ahsan*

Volume 23, Issue 20, 2023

Published on: 03 October, 2023

Page: [2237 - 2247] Pages: 11

DOI: 10.2174/0118715206262897230924011648

Price: $65

Abstract

Background: Indenoisoquinoline-based compounds have shown promise as topoisomerase-I inhibitors, presenting an attractive avenue for rational anticancer drug design. However, a detailed QSAR study on these derivatives has not been performed till date.

Objective: This study aimed to identify crucial molecular features and structural requirements for potent topoisomerase- 1 inhibition.

Methods: A comprehensive two-dimensional (2D) QSAR analysis was performed on a series of 49 indenoisoquinoline derivatives using TSAR3.3 software. A robust QSAR model based on a training set of 33 compounds was developed achieving favorable statistical values: r2 = 0.790, r2CV = 0.722, f = 36.461, and s = 0.461. Validation was conducted using a test set of nine compounds, confirming the predictive capability of the model (r2 = 0.624). Additionally, artificial neural network (ANN) analysis was employed to further validate the significance of the derived descriptors.

Results: The optimized QSAR model revealed the importance of specific descriptors, including molecular volume, Verloop B2, and Weiner topological index, providing essential insights into effective topoisomerase-1 inhibition. We also obtained a robust partial least-square (PLS) analysis model with high predictive ability (r2 = 0.788, r2CV = 0.743). The ANN results further reinforced the significance of the derived descriptors, with strong r2 values for both the training set (r2 = 0.798) and the test set (r2 = 0.669).

Conclusion: The present 2D QSAR analysis offered valuable molecular insights into indenoisoquinoline-based topoisomerase- I inhibitors, supporting their potential as anti-lung cancer agents. These findings contribute to the rational design of more effective derivatives, advancing the development of targeted therapies for lung cancer treatment.

Keywords: Indenoisoquinoline, lung cancer, QSAR, multiple linear regression, partial least-square, artificial neural network.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[2]
Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[3]
Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol., 2010, 17(5), 421-433.
[http://dx.doi.org/10.1016/j.chembiol.2010.04.012] [PMID: 20534341]
[4]
Ling-hua, M.; Zhi-yong, L.; Pommier, Y. Non-camptothecin DNA topoisomerase I inhibitors in cancer therapy. Curr. Top. Med. Chem., 2003, 3(3), 305-320.
[http://dx.doi.org/10.2174/1568026033452546] [PMID: 12570765]
[5]
Nagarajan, M.; Morrell, A.; Fort, B.C.; Meckley, M.R.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M. Synthesis and anticancer activity of simplified indenoisoquinoline topoisomerase I inhibitors lacking substituents on the aromatic rings. J. Med. Chem., 2004, 47(23), 5651-5661.
[http://dx.doi.org/10.1021/jm040025z] [PMID: 15509164]
[6]
Nagarajan, M.; Morrell, A.; Ioanoviciu, A.; Antony, S.; Kohlhagen, G.; Agama, K.; Hollingshead, M.; Pommier, Y.; Cushman, M. Synthesis and evaluation of indenoisoquinoline topoisomerase I inhibitors substituted with nitrogen heterocycles. J. Med. Chem., 2006, 49(21), 6283-6289.
[http://dx.doi.org/10.1021/jm060564z] [PMID: 17034134]
[7]
Soren, B.C.; Babu Dasari, J.; Ottaviani, A.; Messina, B.; Andreotti, G.; Romeo, A.; Iacovelli, F.; Falconi, M.; Desideri, A.; Fiorani, P. In vitro and in silico characterization of an antimalarial compound with antitumor activity targeting human DNA topoisomerase IB. Int. J. Mol. Sci., 2021, 22(14), 7455.
[http://dx.doi.org/10.3390/ijms22147455] [PMID: 34299074]
[8]
Afantitis, A.; Melagraki, G.; Sarimveis, H.; Koutentis, P.A.; Markopoulos, J.; Igglessi-Markopoulou, O. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis. Mol. Divers., 2006, 10(3), 405-414.
[http://dx.doi.org/10.1007/s11030-005-9012-2] [PMID: 16896545]
[9]
Morrell, A.; Placzek, M.; Parmley, S.; Grella, B.; Antony, S.; Pommier, Y.; Cushman, M. Optimization of the indenone ring of indenoisoquinoline topoisomerase I inhibitors. J. Med. Chem., 2007, 50(18), 4388-4404.
[http://dx.doi.org/10.1021/jm070307+] [PMID: 17676830]
[10]
Dalby, A.; Nourse, J.G.; Hounshell, W.D.; Gushurst, A.K.I.; Grier, D.L.; Leland, B.A.; Laufer, J. Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inf. Comput. Sci., 1992, 32(3), 244-255.
[http://dx.doi.org/10.1021/ci00007a012]
[11]
Sadowski, J.; Gasteiger, J. From atoms and bonds to three-dimensional atomic coordinates: Automatic model builders. Chem. Rev., 1993, 93(7), 2567-2581.
[http://dx.doi.org/10.1021/cr00023a012]
[12]
Baskin, I.I.; Palyulin, V.A.; Zefirov, N.S. Neural networks in building QSAR models. Methods Mol. Biol., 2008, 458, 137-158.
[PMID: 19065809]
[13]
Goodenough, A.E.; Hart, A.G.; Stafford, R. Regression with empirical variable selection: Description of a new method and application to ecological datasets. PLoS One, 2012, 7(3), e34338.
[http://dx.doi.org/10.1371/journal.pone.0034338] [PMID: 22479605]
[14]
Singh, S.; Das, S.; Pandey, A.; Paliwal, S.; Singh, R. Quantitative structure activity relationship studies of topoisomerase I inhibitors as potent antibreast cancer agents. J. Chem., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/849793]
[15]
Kesar, S.; Paliwal, S.K.; Mishra, P.; Chauhan, M. Quantitative structure-activity relationship analysis of selective Rho kinase inhibitors as neuro-regenerator agents. Turk. J. Pharmac.Sci., 2019, 16(2), 141-154.
[http://dx.doi.org/10.4274/tjps.galenos.2018.70288] [PMID: 32454707]
[16]
Shahlaei, M.; Fassihi, A.; Saghaie, L.; Zare, A. Prediction of partition coefficient of some 3-hydroxy pyridine-4-one derivatives using combined partial least square regression and genetic algorithm. Res. Pharm. Sci., 2014, 9(2), 143-153.
[PMID: 25657783]
[17]
Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst., 2001, 58(2), 109-130.
[http://dx.doi.org/10.1016/S0169-7439(01)00155-1]
[18]
Kubinyi, H. Evolutionary variable selection in regression and PLS analyses. J. Chemometr., 1996, 10(2), 119-133.
[http://dx.doi.org/10.1002/(SICI)1099-128X(199603)10:2<119:AID-CEM409>3.0.CO;2-4]
[19]
Livingstone, D.J.; Salt, D.W. Regression analysis for QSAR using neural networks. Bioorg. Med. Chem. Lett., 1992, 2(3), 213-218.
[http://dx.doi.org/10.1016/S0960-894X(01)81067-2]
[20]
Himmelblau, D.M. Accounts of experiences in the application of artificial neural networks in chemical engineering. Ind. Eng. Chem. Res., 2008, 47(16), 5782-5796.
[http://dx.doi.org/10.1021/ie800076s]
[21]
Paliwal, S.; Yadav, D.; Yadav, R.; Kaushik, V.; Paliwal, S. Common binding requirements of PPAR-α/δ/γ pan agonists: Quantitative structure–activity relationship analysis of indanylacetic acid derivatives carrying 4-thiazolyl-phenoxy tail group. Med. Chem. Res., 2012, 21(6), 891-907.
[http://dx.doi.org/10.1007/s00044-011-9599-z]
[22]
Taillandier, G.; Domard, M.; Boucherle, A. Application des paramètres de Verloop. Comparaison avec les autres paramétres steriques, problemes de leur choix. Farmaco, Sci., 1980, 35(2), 89-109.
[PMID: 7450026]
[23]
Brethomé, A.V.; Fletcher, S.P.; Paton, R.S. Conformational effects on physical-organic descriptors: The case of Sterimol steric parameters. ACS Catal., 2019, 9(3), 2313-2323.
[http://dx.doi.org/10.1021/acscatal.8b04043]
[24]
Ibrahim, H.; Sharafdini, R.; Réti, T.; Akwu, A. Wiener–Hosoya matrix of connected graphs. Mathematics, 2021, 9(4), 359.
[http://dx.doi.org/10.3390/math9040359]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy