Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Cubosomes: An Emerging and Promising Drug Delivery System for Enhancing Cancer Therapy

Author(s): Smita Singh, Kapil Sachan, Suryakant Verma, Nidhi Singh and Pranjal Kumar Singh*

Volume 25, Issue 6, 2024

Published on: 27 October, 2023

Page: [757 - 771] Pages: 15

DOI: 10.2174/0113892010257937231025065352

Price: $65

Abstract

Cancer and other diseases can be treated with cubosomes, which are lyotropic nonlamellar liquid crystalline nanoparticles (LCNs). These cubosomes can potentially be a highly versatile carrier with theranostic efficacy, as they can be ingested, applied topically, or injected intravenously. Recent years have seen substantial progress in the synthesis, characterization, regulation of drug release patterns, and target selectivity of loaded anticancer bioactive compounds. However, its use in clinical settings has been slow and necessitates additional proof. Recent progress and roadblocks in using cubosomes as a nanotechnological intervention against various cancers are highlighted. In the last few decades, advances in biomedical nanotechnology have allowed for the development of "smart" drug delivery devices that can adapt to external stimuli. By improving therapeutic targeting efficacy and lowering the negative effects of payloads, these well-defined nanoplatforms can potentially promote patient compliance in response to specific stimuli. Liposomes and niosomes, two other well-known vesicular systems, share a lipid basis with cubosomes. Possible applications include a novel medication delivery system for hydrophilic, lipophilic, and amphiphilic drugs. We evaluate the literature on cubosomes, emphasizing their potential use in tumor-targeted drug delivery applications and critiquing existing explanations for cubosome self-assembly, composition, and production. As cubosome dispersion has bioadhesive and compatible features, numerous drug delivery applications, including oral, ocular, and transdermal, are also discussed in this review.

Keywords: Cubosomes, drug delivery, stimuli, vesicular system, anticancer, liquid crystalline nanoparticles.

Graphical Abstract
[1]
Umar, H.; Wahab, H.A.; Gazzali, A.M.; Tahir, H.; Ahmad, W. Cubosomes: Design, development, and tumor-targeted drug delivery applications. Polymers, 2022, 14(15), 3118.
[http://dx.doi.org/10.3390/polym14153118] [PMID: 35956633]
[2]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[3]
Torchilin, V.P. Passive and active drug targeting: Drug delivery to tumors as an example. Handb. Exp. Pharmacol., 2010, 197(197), 3-53.
[http://dx.doi.org/10.1007/978-3-642-00477-3_1] [PMID: 20217525]
[4]
Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[5]
Mills, J.K.; Needham, D. Targeted drug delivery. Expert Opin. Ther. Pat., 1999, 9, 1499-1513.
[http://dx.doi.org/10.1517/13543776.9.11.1499]
[6]
Theek, B.; Gremse, F.; Kunjachan, S.; Fokong, S.; Pola, R.; Pechar, M.; Deckers, R.; Storm, G.; Ehling, J.; Kiessling, F.; Lammers, T. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging. J. Control. Release, 2014, 182, 83-89.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.007] [PMID: 24631862]
[7]
Béduneau, A.; Saulnier, P.; Hindré, F.; Clavreul, A.; Leroux, J.C.; Benoit, J.P. Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab’ fragments. Biomaterials, 2007, 28(33), 4978-4990.
[http://dx.doi.org/10.1016/j.biomaterials.2007.05.014] [PMID: 17716725]
[8]
Hong, M.; Zhu, S.; Jiang, Y.; Tang, G.; Pei, Y. Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. J. Control. Release, 2009, 133(2), 96-102.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.005] [PMID: 18840485]
[9]
Canal, F.; Vicent, M.J.; Pasut, G.; Schiavon, O. Relevance of folic acid/polymer ratio in targeted PEG–epirubicin conjugates. J. Control. Release, 2010, 146(3), 388-399.
[http://dx.doi.org/10.1016/j.jconrel.2010.05.027] [PMID: 20621587]
[10]
Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res., 2006, 66(13), 6732-6740.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4199] [PMID: 16818648]
[11]
Mikhail, A.S.; Allen, C. Block copolymer micelles for delivery of cancer therapy: Transport at the whole body, tissue and cellular levels. J. Control. Release, 2009, 138(3), 214-223.
[http://dx.doi.org/10.1016/j.jconrel.2009.04.010] [PMID: 19376167]
[12]
Alavi, M.; Nokhodchi, A. Micro- and nanoformulations of paclitaxel based on micelles, liposomes, cubosomes, and lipid nanoparticles: Recent advances and challenges. Drug Discov. Today, 2022, 27(2), 576-584.
[http://dx.doi.org/10.1016/j.drudis.2021.10.007] [PMID: 34688912]
[13]
Faria, A.R.; Silvestre, O.F.; Maibohm, C.; Adão, R.M.R.; Silva, B.F.B.; Nieder, J.B. Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD(P)H multi-photon fluorescence lifetime imaging. Nano Res., 2019, 12(5), 991-998.
[http://dx.doi.org/10.1007/s12274-018-2231-5]
[14]
Chaudhary, K.; Sharma, D. Cubosomes: A potential drug delivery system. Asian J Pharm Res Develop., 2021, 9(5), 93-101.
[http://dx.doi.org/10.22270/ajprd.v9i5.981]
[15]
Lee, K.; Nguyen, T.; Hanley, T.; Boyd, B. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs. Int. J. Pharm., 2009, 365(1-2), 190-199.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.022] [PMID: 18790030]
[16]
Wörle, G.; Siekmann, B.; Koch, M.H.J.; Bunjes, H. Transformation of vesicular into cubic nanoparticles by autoclaving of aqueous monoolein/poloxamer dispersions. Eur. J. Pharm. Sci., 2006, 27(1), 44-53.
[http://dx.doi.org/10.1016/j.ejps.2005.08.004] [PMID: 16157479]
[17]
Fong, W.K.; Negrini, R.; Vallooran, J.J.; Mezzenga, R.; Boyd, B.J. Responsive self-assembled nanostructured lipid systems for drug delivery and diagnostics. J. Colloid Interface Sci., 2016, 484, 320-339.
[http://dx.doi.org/10.1016/j.jcis.2016.08.077] [PMID: 27623190]
[18]
Barauskas, J.; Johnsson, M.; Joabsson, F.; Tiberg, F. Cubic phase nanoparticles (Cubosome): principles for controlling size, structure, and stability. Langmuir, 2005, 21(6), 2569-2577.
[http://dx.doi.org/10.1021/la047590p] [PMID: 15752054]
[19]
Caboi, F.; Amico, G.S.; Pitzalis, P.; Monduzzi, M.; Nylander, T.; Larsson, K. Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior. Chem. Phys. Lipids, 2001, 109(1), 47-62.
[http://dx.doi.org/10.1016/S0009-3084(00)00200-0] [PMID: 11163344]
[20]
Garg, G.; Saraf, S.; Saraf, S. Cubosomes: An overview. Biol. Pharm. Bull., 2007, 30(2), 350-353.
[http://dx.doi.org/10.1248/bpb.30.350] [PMID: 17268078]
[21]
Esposito, E.; Cortesi, R.; Drechsler, M.; Paccamiccio, L.; Mariani, P.; Contado, C.; Stellin, E.; Menegatti, E.; Bonina, F.; Puglia, C. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm. Res., 2005, 22(12), 2163-2173.
[http://dx.doi.org/10.1007/s11095-005-8176-x] [PMID: 16267633]
[22]
Yang, C.; Merlin, D. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomaterials, 2020, 10(7), 1424.
[http://dx.doi.org/10.3390/nano10071424] [PMID: 32708193]
[23]
Higuchi, W.I. Diffusional models useful in biopharmaceutics: Drug release rate processes. J. Pharm. Sci., 1967, 56(3), 315-324.
[http://dx.doi.org/10.1002/jps.2600560302]
[24]
Allen, T.M.; Mehra, T.; Hansen, C.; Chin, Y.C. Stealth liposomes: An improved sustained release system for 1-β-D-arabinofuranosylcytosine. Cancer Res., 1992, 52(9), 2431-2439.
[PMID: 1568213]
[25]
Andersson, S.; Jacob, M.; Ladin, S.; Larsson, K. Structure of the cubosome-a closed lipid bilayer aggregate. Z. Kristallogr. Cryst. Mater., 1995, 210(5), 315-318.
[http://dx.doi.org/10.1524/zkri.1995.210.5.315]
[26]
Esposito, E.; Eblovi, N.; Rasi, S.; Drechsler, M.; Di Gregorio, G.M.; Menegatti, E.; Cortesi, R. Lipid-based supramolecular systems for topical application: A preformulatory study. AAPS PharmSci, 2003, 5(4), 62-76.
[http://dx.doi.org/10.1208/ps050430] [PMID: 15198518]
[27]
Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today, 2016, 21(5), 789-801.
[http://dx.doi.org/10.1016/j.drudis.2016.01.004] [PMID: 26780385]
[28]
Spicer, P.T.; Hayden, K.L.; Lynch, M.L.; Ofori-Boateng, A.; Burns, J.L. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir, 2001, 17(19), 5748-5756.
[http://dx.doi.org/10.1021/la010161w]
[29]
Um, J.Y.; Chung, H.; Kim, K.S.; Kwon, I.C.; Jeong, S.Y. In vitro cellular interaction and absorption of dispersed cubic particles. Int. J. Pharm., 2003, 253(1-2), 71-80.
[http://dx.doi.org/10.1016/S0378-5173(02)00673-7] [PMID: 12593938]
[30]
Mezzenga, R.; Meyer, C.; Servais, C.; Romoscanu, A.I.; Sagalowicz, L.; Hayward, R.C. Shear rheology of lyotropic liquid crystals: a case study. Langmuir, 2005, 21(8), 3322-3333.
[http://dx.doi.org/10.1021/la046964b] [PMID: 15807570]
[31]
Maheshwari, R.K.; Chaturvedi, S.C.; Jain, N.K. Novel application of hydrotropic solubilization in the analysis of some NSAIDs and their solid dosage forms. Indian J. Pharm. Sci., 2007, 69(1), 101.
[http://dx.doi.org/10.4103/0250-474X.32117]
[32]
Dandekar, D.V.; Gaikar, V.G. Hydrotropic extraction of curcuminoids from turmeric. Sep. Sci. Technol., 2003, 38(5), 1185-1215.
[http://dx.doi.org/10.1081/SS-120018130]
[33]
Bessone, C.D.V.; Akhlaghi, S.P.; Tártara, L.I.; Quinteros, D.A.; Loh, W.; Allemandi, D.A. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma. Eur. J. Pharm. Sci., 2021, 160, 105748.
[http://dx.doi.org/10.1016/j.ejps.2021.105748] [PMID: 33567324]
[34]
Boge, L.; Hallstensson, K.; Ringstad, L.; Johansson, J.; Andersson, T.; Davoudi, M.; Larsson, P.T.; Mahlapuu, M.; Håkansson, J.; Andersson, M. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur. J. Pharm. Biopharm., 2019, 134, 60-67.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.009] [PMID: 30445164]
[35]
Al-mahallawi, A.M.; Abdelbary, A.A.; El-Zahaby, S.A. Norfloxacin loaded nano-cubosomes for enhanced management of otitis externa: in vitro and in vivo evaluation. Int. J. Pharm., 2021, 600, 120490.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120490] [PMID: 33744451]
[36]
Elsenosy, F.M.; Abdelbary, G.A.; Elshafeey, A.H.; Elsayed, I.; Fares, A.R. Brain targeting of duloxetine HCL via intranasal delivery of loaded cubosomal gel: in vitro Characterization, ex vivo permeation, and in vivo biodistribution studies. Int. J. Nanomedicine, 2020, 15, 9517-9537.
[http://dx.doi.org/10.2147/IJN.S277352] [PMID: 33324051]
[37]
Qiu, T.; Gu, P.; Wusiman, A.; Ni, H.; Xu, S.; Zhang, Y.; Zhu, T.; He, J.; Liu, Z.; Hu, Y.; Liu, J.; Wang, D. Immunoenhancement effects of chitosan-modified ginseng stem-leaf saponins-encapsulated cubosomes as an ajuvant. Colloids Surf. B Biointerfaces, 2021, 204, 111799.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111799] [PMID: 33971614]
[38]
Rapalli, V.K.; Banerjee, S.; Khan, S.; Jha, P.N.; Gupta, G.; Dua, K.; Hasnain, M.S.; Nayak, A.K.; Dubey, S.K.; Singhvi, G. QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes. Mater. Sci. Eng. C, 2021, 119, 111548.
[http://dx.doi.org/10.1016/j.msec.2020.111548] [PMID: 33321612]
[39]
Patil, S.M.; Sawant, S.S.; Kunda, N.K. Inhalable bedaquiline-loaded cubosomes for the treatment of non-small cell lung cancer (NSCLC). Int. J. Pharm., 2021, 607, 121046.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121046] [PMID: 34450225]
[40]
Sanjana, A.; Ahmed, M.G.; Gowda BH, J. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo. Mater. Today Proc., 2022, 50, 197-205.
[http://dx.doi.org/10.1016/j.matpr.2021.04.120]
[41]
Fan, C.; Gao, W.; Chen, Z.; Fan, H.; Li, M.; Deng, F.; Chen, Z. Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int. J. Pharm., 2011, 404(1-2), 180-190.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.038] [PMID: 21087660]
[42]
Veiseh, O.; Gunn, J.W.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev., 2010, 62(3), 284-304.
[http://dx.doi.org/10.1016/j.addr.2009.11.002] [PMID: 19909778]
[43]
Miller, M.J.; Foy, K.C.; Kaumaya, P.T. Cancer immunotherapy: Present status, future perspective, and a new paradigm of peptide immunotherapeutics. Discov. Med., 2013, 15(82), 166-176.
[PMID: 23545045]
[44]
Zhai, J.; Tan, F.H.; Luwor, R.B.; Srinivasa Reddy, T.; Ahmed, N.; Drummond, C.J.; Tran, N. In vitro and in vivo toxicity and biodistribution of paclitaxel-loaded cubosomes as a drug delivery nanocarrier: A case study using an A431 skin cancer xenograft model. ACS Appl. Bio Mater., 2020, 3(7), 4198-4207.
[http://dx.doi.org/10.1021/acsabm.0c00269] [PMID: 35025421]
[45]
Aleandri, S.; Bandera, D.; Mezzenga, R.; Landau, E.M. Biotinylated cubosomes: A versatile tool for active targeting and codelivery of paclitaxel and a fluorescein-based lipid dye. Langmuir, 2015, 31(46), 12770-12776.
[http://dx.doi.org/10.1021/acs.langmuir.5b03469] [PMID: 26513646]
[46]
Flak, D.K.; Adamski, V.; Nowaczyk, G.; Szutkowski, K.; Synowitz, M.; Jurga, S.; Held-Feindt, J. AT101-loaded cubosomes as an alternative for improved glioblastoma therapy. Int. J. Nanomedicine, 2020, 15, 7415-7431.
[http://dx.doi.org/10.2147/IJN.S265061] [PMID: 33116479]
[47]
Rao, S.V.; Sravya, B.N.; Padmalatha, K. A review on cubosome: The novel drug delivery system. GSC Biol. Pharm. Sci., 2018, 5, 076-081.
[48]
Saber, M.M.; Al-Mahallawi, A.M.; Nassar, N.N.; Stork, N.N.; Shouman, S.A. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer, 2018, 18, 822.
[49]
Nasr, M.; Ghorab, M.K.; Abdelazem, A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm. Sin. B, 2015, 5(1), 79-88.
[http://dx.doi.org/10.1016/j.apsb.2014.12.001] [PMID: 26579429]
[50]
Fahmy, U.A.; Fahmy, O.; Alhakamy, N.A. Optimized icariin cubosomes exhibit augmented cytotoxicity against SKOV-3 ovarian cancer cells. Pharmaceutics, 2020, 13(1), 20.
[http://dx.doi.org/10.3390/pharmaceutics13010020] [PMID: 33374293]
[51]
Gajda, E.; Godlewska, M.; Mariak, Z.; Nazaruk, E.; Gawel, D. Combinatory treatment with miR-7-5p and drug-loaded cubosomes effectively impairs cancer cells. Int. J. Mol. Sci., 2020, 21(14), 5039.
[http://dx.doi.org/10.3390/ijms21145039] [PMID: 32708846]
[52]
Saber, S.; Nasr, M.; Saad, A.S.; Mourad, A.A.E.; Gobba, N.A.; Shata, A.; Hafez, A.M.; Elsergany, R.N.; Elagamy, H.I.; El-Ahwany, E.; Amin, N.A.; Girgis, S.; Elewa, Y.H.A.; Mahmoud, M.H.; Batiha, G.E.S.; El-Rous, M.A.; Kamal, I.; Kaddah, M.M.Y.; Khodir, A.E. Albendazole-loaded cubosomes interrupt the ERK1/2-HIF-1α-p300/CREB axis in mice intoxicated with diethylnitrosamine: A new paradigm in drug repurposing for the inhibition of hepatocellular carcinoma progression. Biomed. Pharmacother., 2021, 142, 112029.
[http://dx.doi.org/10.1016/j.biopha.2021.112029] [PMID: 34416629]
[53]
Nazaruk, E.; Majkowska-Pilip, A.; Bilewicz, R. Lipidic cubic-phase nanoparticles—cubosomes for efficient drug delivery to cancer cells. ChemPlusChem, 2017, 82(4), 570-575.
[http://dx.doi.org/10.1002/cplu.201600534] [PMID: 31961592]
[54]
Tian, Y.; Li, J.; Zhu, J.; Zhu, N.; Zhang, H.; Liang, L.; Sun, L. Folic acid-targeted etoposide cubosomes for theranostic application of cancer cell imaging and therapy. Med. Sci. Monit., 2017, 23, 2426-2435.
[http://dx.doi.org/10.12659/MSM.904683] [PMID: 28529305]
[55]
Yaghmur, A.; Mu, H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm. Sin. B, 2021, 11(4), 871-885.
[http://dx.doi.org/10.1016/j.apsb.2021.02.013] [PMID: 33996404]
[56]
Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine, 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[57]
Chang, A.Y.; Kim, K.; Glick, J.; Anderson, T.; Karp, D.; Johnson, D. Phase II study of taxol, merbarone, and piroxantrone in stage IV non-small-cell lung cancer: The Eastern Cooperative Oncology Group Results. J. Natl. Cancer Inst., 1993, 85(5), 388-394.
[http://dx.doi.org/10.1093/jnci/85.5.388] [PMID: 8094467]
[58]
Murphy, W.K.; Fossella, F.V.; Winn, R.J.; Shin, D.M.; Hynes, H.E.; Gross, H.M.; Davilla, E.; Leimert, J.; Dhingra, H.; Raber, M.N.; Krakoff, I.H.; Hong, W.K. Phase II study of taxol in patients with untreated advanced non-small-cell lung cancer. J. Natl. Cancer Inst., 1993, 85(5), 384-388.
[http://dx.doi.org/10.1093/jnci/85.5.384] [PMID: 8094466]
[59]
Zhang, L.; Li, J.; Tian, D.; Sun, L.; Wang, X.; Tian, M. Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells. Cell Death Dis., 2020, 11(1), 1.
[http://dx.doi.org/10.1038/s41419-019-2182-0] [PMID: 31911576]
[60]
Cytryniak, A.; Nazaruk, E.; Bilewicz, R.; Górzyńska, E.; Żelechowska-Matysiak, K.; Walczak, R.; Mames, A.; Bilewicz, A.; Majkowska-Pilip, A. Lipidic cubic-phase nanoparticles (cubosomes) loaded with doxorubicin and labeled with 177Lu as a potential tool for combined chemo and internal radiotherapy for cancers. Nanomaterials, 2020, 10(11), 2272.
[http://dx.doi.org/10.3390/nano10112272] [PMID: 33207760]
[61]
Ali, M.A.; Noguchi, S.; Iwao, Y.; Oka, T.; Itai, S. Preparation and characterization of SN-38-encapsulated phytantriol cubosomes containing α-monoglyceride additives. Chem. Pharm. Bull., 2016, 64(6), 577-584.
[http://dx.doi.org/10.1248/cpb.c15-00984] [PMID: 27250792]
[62]
Archana, A.; Vijayasri, K.; Madhurim, M.; Kumar, C. Curcumin loaded nano cubosomal hydrogel: preparation, in vitro characterization and antibacterial activity. Chem. Sci. Trans., 2015, 4, 75-80.
[63]
Tu, Y.S.; Fu, J.W.; Sun, D.M.; Zhang, J.J.; Yao, N.; Huang, D.E.; Shi, Z.Q. Preparation, characterisation and evaluation of curcumin with piperine-loaded cubosome nanoparticles. J. Microencapsul., 2014, 31(6), 551-559.
[http://dx.doi.org/10.3109/02652048.2014.885607] [PMID: 24641575]
[64]
Chang, C.; Meikle, T.G.; Drummond, C.J.; Yang, Y.; Conn, C.E. Comparison of cubosomes and liposomes for the encapsulation and delivery of curcumin. Soft Matter, 2021, 17(12), 3306-3313.
[http://dx.doi.org/10.1039/D0SM01655A] [PMID: 33623948]
[65]
Manivannan, S.; Nagaraj, S.; Narayan, S. A reflection on the mechanism of the role of nanoparticles in increasing the efficacy of anti-tumour properties of docetaxel. Curr. Pathobiol. Rep., 2021, 9(3), 79-91.
[http://dx.doi.org/10.1007/s40139-021-00223-3]
[66]
Rarokar, N.R.; Saoji, S.D.; Raut, N.A.; Taksande, J.B.; Khedekar, P.B.; Dave, V.S. Nanostructured cubosomes in a thermoresponsive depot system: an alternative approach for the controlled delivery of docetaxel. AAPS PharmSciTech, 2016, 17(2), 436-445.
[http://dx.doi.org/10.1208/s12249-015-0369-y] [PMID: 26208439]
[67]
Janakiraman, K.; Krishnaswami, V.; Sethuraman, V.; Rajendran, V.; Kandasamy, R. Development of methotrexate-loaded cubosomes with improved skin permeation for the topical treatment of rheumatoid arthritis. Appl. Nanosci., 2019, 9(8), 1781-1796.
[http://dx.doi.org/10.1007/s13204-019-00976-9]
[68]
Parvathaneni, V.; Elbatanony, R.S.; Goyal, M.; Chavan, T.; Vega, N.; Kolluru, S.; Muth, A.; Gupta, V.; Kunda, N.K. Repurposing bedaquiline for effective non-small cell lung cancer (NSCLC) therapy as inhalable cyclodextrin-based molecular inclusion complexes. Int. J. Mol. Sci., 2021, 22(9), 4783.
[http://dx.doi.org/10.3390/ijms22094783] [PMID: 33946414]
[69]
Chen, X.; Wong, S.T.C. Cancer theranostics; Cancer Theranos, 2014, pp. 3-8.
[http://dx.doi.org/10.1016/B978-0-12-407722-5.00001-3]
[70]
Meli, V.; Caltagirone, C.; Sinico, C.; Lai, F.; Falchi, A.M.; Monduzzi, M.; Obiols-Rabasa, M.; Picci, G.; Rosa, A.; Schmidt, J.; Talmon, Y.; Murgia, S. Theranostic hexosomes for cancer treatments: An in vitro study. New J. Chem., 2017, 41(4), 1558-1565.
[http://dx.doi.org/10.1039/C6NJ03232J]
[71]
Meli, V.; Caltagirone, C.; Falchi, A.M.; Hyde, S.T.; Lippolis, V.; Monduzzi, M.; Obiols-Rabasa, M.; Rosa, A.; Schmidt, J.; Talmon, Y.; Murgia, S. Docetaxel-loaded fluorescent liquid-crystalline nanoparticles for cancer theranostics. Langmuir, 2015, 31(35), 9566-9575.
[http://dx.doi.org/10.1021/acs.langmuir.5b02101] [PMID: 26293620]
[72]
Anbarasan, B.; Grace, X.F.; Shanmuganathan, S. An overview of cubosomes-Smart drug delivery system. Sri. Ramachandra J. Med., 2015, 8, 1-4.
[73]
Gan, L.; Han, S.; Shen, J.; Zhu, J.; Zhu, C.; Zhang, X.; Gan, Y. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability. Int. J. Pharm., 2010, 396(1-2), 179-187.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.015] [PMID: 20558263]
[74]
Rattanapak, T.; Birchall, J.; Young, K.; Ishii, M.; Meglinski, I.; Rades, T.; Hook, S. Transcutaneous immunization using microneedles and cubosomes: Mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy. J. Control. Release, 2013, 172(3), 894-903.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.018] [PMID: 23978683]
[75]
Thadanki, M.; Kumari, P.S.; Prabha, K.S. Overview of cubosomes: A nano particle. Int. J. Res. Pharm. Chem., 2011, 1, 535-541.
[76]
Chung, H.; Kim, J.; Um, J.Y.; Kwon, I.C.; Jeong, S.Y. Self-assembled “nanocubicle” as a carrier for peroral insulin delivery. Diabetologia, 2002, 45(3), 448-451.
[http://dx.doi.org/10.1007/s00125-001-0751-z] [PMID: 11914752]
[77]
Ali, Z.; Sharma, P.; Warsi, M. Fabrication and evaluation of ketorolac loaded cubosome for ocular drug delivery. J. Appl. Pharm. Sci., 2016, 6, 204-208.
[http://dx.doi.org/10.7324/JAPS.2016.60930]
[78]
Morsi, N.M.; Abdelbary, G.A.; Ahmed, M.A. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: Development and in vitro/in vivo characterization. Eur. J. Pharm. Biopharm., 2014, 86(2), 178-189.
[http://dx.doi.org/10.1016/j.ejpb.2013.04.018] [PMID: 23688805]
[79]
Boyd, B.; Khoo, S.; Whittaker, D.; Davey, G.; Porter, C. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int. J. Pharm., 2007, 340(1-2), 52-60.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.020] [PMID: 17467935]
[80]
Elnaggar, Y.; Etman, S.; Abdelmonsif, D.; Abdallah, O. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int. J. Nanomedicine, 2015, 10, 5459-5473.
[http://dx.doi.org/10.2147/IJN.S87336] [PMID: 26346130]
[81]
Cheng, M.R.; Li, Q.; Wan, T.; He, B.; Han, J.; Chen, H-X.; Yang, F-X.; Wang, W.; Xu, H-Z.; Ye, T.; Zha, B.B. Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects. World J. Gastroenterol., 2012, 18(42), 6076-6087.
[http://dx.doi.org/10.3748/wjg.v18.i42.6076] [PMID: 23155336]
[82]
Alavi, M.; Webster, T.J. Nano liposomal and cubosomal formulations with platinum-based anticancer agents: therapeutic advances and challenges. Nanomedicine, 2020, 15(24), 2399-2410.
[http://dx.doi.org/10.2217/nnm-2020-0199] [PMID: 32945246]
[83]
Angelova, A.; Angelov, B.; Drechsler, M.; Garamus, V.M.; Lesieur, S. Protein entrapment in PEGylated lipid nanoparticles. Int. J. Pharm., 2013, 454(2), 625-632.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.006] [PMID: 23791734]
[84]
Wibroe, P.P.; Mat Azmi, I.D.; Nilsson, C.; Yaghmur, A.; Moghimi, S.M. Citrem modulates internal nanostructure of glyceryl monooleate dispersions and bypasses complement activation: Towards development of safe tunable intravenous lipid nanocarriers. Nanomedicine, 2015, 11(8), 1909-1914.
[http://dx.doi.org/10.1016/j.nano.2015.08.003] [PMID: 26348655]
[85]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[86]
Murgia, S.; Biffi, S.; Mezzenga, R. Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Curr. Opin. Colloid Interface Sci., 2020, 48, 28-39.
[http://dx.doi.org/10.1016/j.cocis.2020.03.006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy