Клеточные и молекулярные механизмы патогенеза COVID-19, системная дизрегуляция и мишени терапии


DOI: https://dx.doi.org/10.18565/therapy.2022.10.98-105

О.А. Гомазков

ФГБНУ «Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича», г. Москва
Аннотация. Накопленный клинический опыт свидетельствует о том, что патогенез респираторного дистресс-синдрома у пациентов с COVID-19 имеет огромный диапазон проявлений. Ключевой составляющей этого патогенеза служит дисфункция эндотелия и дизрегуляция множественных молекулярных и клеточных систем контроля свертывания крови, микрогемодинамики, диффузии, гипервоспаления, иммунотромбоза, которая обозначается в представленном обзоре как «шторм- 2». С точки зрения патофизиологии COVID-19 есть диссонанс большого числа клеточных и молекулярных компонентов, функциональных деталей, составляющих гомеостаз, которые в условиях вирусной агрессии работают как последовательная система уничтожения. Процессы биохимических и клеточных дезорганизаций, вызываемых коронавирусом SARS-CoV-2, отражают ключевые звенья патогенеза новой коронавирусной инфекции. Выявление этих звеньев определяет поиск эффективных подходов к терапии COVID-19 с использованием как традиционных, так и инновационных средств.

Литература


1. da Rosa Mesquita R., Francelino Silva Junior L.C., Santos Santana F.M. et al. Clinical manifestations of COVID-19 in the general population: Systematic review. Wien Klin Wochenschr. 2021; 133(7–8): 377–82. https://dx.doi.org/10.1007/s00508-020-01760-4.


2. Методические рекомендации «Особенности течения Long-COVID-инфекции. Терапевтические и реабилитационные мероприятия». Терапия. 2022; 8(1S): 1–147.


3. Lu R., Zhao X., Li J. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020; 395(10224): 565–74. https://dx.doi.org/10.1016/ S0140-6736(20)30251-8.


4. Tai W., He L., Zhang X. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020; 17(6): 613–20. https://dx.doi.org/10.1038/s41423-020-0400-4.


5. Гомазков О.А. Нейропилин – новый игрок в патогенезе COVID-19. Нейрохимия. 2022; 39(2): 124–130.


6. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the «cytokine storm» in COVID-19. J Infect. 2020; 80(6): 607–13. https://dx.doi.org/10.1016/j.jinf.2020.03.037.


7. Гомазков О.А. Эндотелий – эндокринное древо. Природа. 2000; 5: 38–46.


8. Иванов А.Н., Пучиньян Д.М., Норкин И.А. Барьерная функция эндотелия, механизмы ее регуляции и нарушения. Успехи физиологических наук. 2015; 46(2): 72–96.


9. Путилина М.В. Эндотелий – мишень для новых терапевтических стратегий при сосудистых заболеваниях. Журнал неврологии и психиатрии им. C.C. Корсакова. 2017; 117(10): 122–130.


10. Степанова Т.В., Иванов А.Н., Попыхова Э.Б., Лагутина Д.Д. Молекулярные маркеры эндотелиальной дисфункции. Современные проблемы науки и образования. 2019; 1: 37.


11. Sardu C., Gambardella J., Morelli M.B. et al. Hypertension, thrombosis, kidney failure, and diabetes: Is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J Clin Med. 2020; 9(5): 1417. https://dx.doi.org/10.3390/jcm9051417.


12. Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417–18. https://dx.doi.org/10.1016/S0140-6736(20)30937-5.


13. Marchandot B., Sattler L., Jesel L. et al. COVID-19 related coagulopathy: A distinct entity? J Clin Med. 2020; 9(6): 1651. https://dx.doi.org/10.3390/jcm9061651.


14. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4): 844–47. https://dx.doi.org/10.1111/jth.14768.


15. Ciceri F., Luigi Beretta L., Anna Mara Scandroglio A-M. et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome: An atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020; 22(2): 95–97. Online ahead of print.


16. Cure E., Cure M.C. COVID-19 may predispose to trombosis by affecting both vascular endothelium and platelets. Clin Appl Thromb Hemost. 2020; 26: 1076029620933945. https://dx.doi.org/10.1177/1076029620933945.


17. Kangussu L.M., Marzano L.A.S., Souza C.F. et al. The renin-angiotensin system and the cerebrovascular diseases: experimental and clinical evidence. Protein Pept Lett. 2020; 27(6): 463–75. https://dx.doi.org/10.2174/0929866527666191218091823.


18. Mahmudpour M., Roozbeh J., Keshavarz M. et al. COVID-19 cytokine storm: The anger of inflammation. Cytokine. 2020; 133: 155151. https://dx.doi.org/10.1016/j.cyto.2020.155151.


19. Nagele M.P., Haubner B., Tanner F.C. et al. Endothelial dysfunction in COVID-19: Current findings and therapeutic implications. Atherosclerosis. 2020; 314: 58–62. https://dx.doi.org/10.1016/j.atherosclerosis.2020.10.014.


20. Fang C., Schmaier A.H. Novel antithrombotic mechanisms mediated by Mas receptor as result of balanced activities between the kallikrein/kinin and the renin-angiotensin systems. Pharmacol Res. 2020; 160: 105096. https://dx.doi.org/10.1016/j.phrs.2020.105096.


21. van de Veerdonk F.L., Netea M.G., van Deuren M. et al. Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. Elife. 2020; 9: e57555. https://dx.doi.org/10.7554/eLife.57555.


22. Kreutz R., Algharably E., Ganten D. et al.


23. Гомазков О.А. COVID-19. Патогенез сосудистых поражений, или дьявол кроется в деталях. М.: ИКАР. 2021; 72 с.


24. Gomazkov O.A. Damage of the vascular endothelium as a leading mechanism of COVID-19 systemic pathology. Biology Bull Reviews. 2021; 11(6): 559–66. https://dx.doi.org/10.1134/S2079086421060049.


25. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 16 (18.08.2022). Минздрав России. Доступ: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/060/193/original/BMP_COVID-19_V16.pdf (дата обращения – 01.12.2022).


26. Choudhary S., Sharma K., Silakari O. The interplay between inflammatory pathways and COVID-19: A critical review on pathogenesis and therapeutic options. Microb Pathog. 2021; 150: 104673. https://dx.doi.org/10.1016/j.micpath.2020.104673.


27. O’Sullivan J., Mc Gonagle D., Ward S.E. et al. Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol. 2020; 7(8): e553–e555. https://dx.doi.org/10.1016/S2352-3026(20)30215-5.


28. Fox S.E., Akmatbekov A., Harber J.L. et al. Pulmonary and cardiac pathology in African American patients with COVID-19: An autopsy series. Lancet Respir Med. 2020; 8(7): 681–86. https://dx.doi.org/10.1016/S2213-2600(20)30243-5.


29. Levi M. COVID-19 coagulopathy vs disseminated intravascular coagulation. Blood Adv. 2020; 4(12): 2850. https://dx.doi.org/10.1182/bloodadvances.2020002197.


30. Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013; 13(1): 34–45. https://dx.doi.org/10.1038/nri3345.


31. Jayarangaiah A., Kariyanna P.T., Chen X. et al. COVID-19-associated coagulopathy: An exacerbated immunothrombosis response. Clin Appl Thromb Hemost. 2020; 26: 1076029620943293. https://dx.doi.org/10.1177/1076029620943293.


32. Leppkes M., Knopf J., Naschberger E. et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 2020; 58: 102925. https://dx.doi.org/10.1016/j.ebiom.2020.102925.


33. Бицадзе В.О., Слуханчук Е.В., Хизроева Д.Х. с соавт. Внеклеточные ловушки нейтрофилов (NETs) в патогенезе тромбоза и тромбовоспалительных заболеваний. Вестник Российской академии медицинских наук. 2021; 76(1): 75–85.


34. Кассина Д.В., Василенко И.А., Гурьев А.С. с соавт. Нейтрофильные внеклеточные ловушки: значение для диагностики и прогноза COVID-19. Альманах клинической медицины. 2020; 48(S1): 43–50.


35. Han F., Liu Y., Mo M. et al. Current treatment strategies for COVID‑19 (Review). Mol Med Rep. 2021; 24(6): 858. https://dx.doi.org/10.3892/mmr.2021.12498.


36. Niknam Z., Jafari A., Golchin A. et al. Potential therapeutic options for COVID-19: An update on current evidence. Eur J Med Res. 2022; 27(1): 6. https://dx.doi.org/10.1186/s40001-021-00626-3.


37. Первый медицинский канал. «Репозиционирование лекарств». Гость: Поройков В.В. Доступ: https://www.youtube.com/watch?v=O9BHh1tp1pI (дата обращения – 01.12.2022).


38. Савосина П.И., Дружиловский Д.С., Поройков В.В. COVID-19: анализ практики репозиционирования лекарственных препаратов. Химико-фармацевтический журнал. 2020; 54(10): 7–14.


Об авторах / Для корреспонденции


Олег Александрович Гомазков, д.б.н., профессор, главный научный сотрудник ФГБНУ «Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича». Адрес: 119121, г. Москва, Погодинская ул., д. 10/8. E-mail: oleg-gomazkov@yandex.ru. ORCID: http://orcid.org/0000-0002-4600-4424


Похожие статьи


Бионика Медиа