留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜金属氦损伤的分子动力学模拟

闫鹏辉 张宝玲 时永兴 马一怡

闫鹏辉, 张宝玲, 时永兴, 等. 铜金属氦损伤的分子动力学模拟[J]. 强激光与粒子束, 2023, 35: 076001. doi: 10.11884/HPLPB202335.220302
引用本文: 闫鹏辉, 张宝玲, 时永兴, 等. 铜金属氦损伤的分子动力学模拟[J]. 强激光与粒子束, 2023, 35: 076001. doi: 10.11884/HPLPB202335.220302
Yan Penghui, Zhang Baoling, Shi Yongxing, et al. Molecular dynamics simulation of helium damage in copper[J]. High Power Laser and Particle Beams, 2023, 35: 076001. doi: 10.11884/HPLPB202335.220302
Citation: Yan Penghui, Zhang Baoling, Shi Yongxing, et al. Molecular dynamics simulation of helium damage in copper[J]. High Power Laser and Particle Beams, 2023, 35: 076001. doi: 10.11884/HPLPB202335.220302

铜金属氦损伤的分子动力学模拟

doi: 10.11884/HPLPB202335.220302
基金项目: 2023年河南省科技攻关专项(232102320215)与河南省高等学校重点科研项目(20A490001);河南省大学生创新创业训练计划项目(202210078051)
详细信息
    作者简介:

    闫鹏辉,15893704441@163.com

    通讯作者:

    张宝玲, zbaoling1234@163.com

  • 中图分类号: TL62+7

Molecular dynamics simulation of helium damage in copper

  • 摘要: 采用分子动力学方法模拟了金属铜的氦辐照损伤,在原子尺度上观察氦辐照下铜金属微结构的变化过程,分析并对比了单晶铜与多晶铜的微结构和力学性能随氦原子数增加的变化情况。结果表明,随原子数增加,单晶铜的缺陷对数目呈规律性地先增加后减少,且峰值不断增高;多晶铜的缺陷对数目呈上升趋势,但波动规律不明显。拉伸性能测试显示,氦辐照会导致铜的屈服强度降低,当氦原子分数达0.54%时,单晶铜和多晶铜的屈服强度分别下降46.94%和49.2%。
  • 图  1  单晶铜和多晶铜基底

    Figure  1.  Single crystal copper and polycrystalline copper substrates

    图  2  单晶铜中缺陷对数目与氦原子数的关系

    Figure  2.  Dependence of the defect pairs number in single crystal copper on the number of helium atoms

    图  3  单晶铜中氦原子数为150时缺陷的演化

    Figure  3.  Defects evolution in single crystal copper with 150 helium atoms

    图  4  多晶铜中缺陷对数目与氦原子数的关系

    Figure  4.  Dependence of the defect pairs number in polycrystalline copper on the number of helium atoms

    图  5  氦数目对铜的拉伸力学性能影响

    Figure  5.  Effect of helium atoms on the tensile mechanical properties of copper

    图  6  单晶铜拉伸性能测试过程中位错的变化(氦原子数为275)

    Figure  6.  Dislocation variation of single crystal copper during tensile property test(275 helium atoms)

    图  7  不同氦原子数时铜中位错线总长度随应变的变化

    Figure  7.  Dependence of the total dislocation length on the strain in copper at different helium atoms

  • [1] Pitcher C S, Stangeby P C. Experimental divertor physics[J]. Plasma Physics and Controlled Fusion, 1997, 39(6): 779-930. doi: 10.1088/0741-3335/39/6/001
    [2] 陶余强. EAST辐射偏滤器与高约束的兼容性研究[D]. 合肥: 中国科学技术大学, 2022

    Tao Yuqiang. Study on the compatibility of radiative divertor with high confinement in EAST tokamak[D]. Hefei: University of Science and Technology of China, 2022
    [3] 郝嘉琨. 聚变堆材料[M]. 北京: 化学工业出版社, 2007

    Hao Jiakun. Fusion reactor materials[M]. Beijing: Chemical Industry Press, 2007
    [4] Khiara N, Onimus F, Jublot-Leclerc S, et al. In-situ TEM irradiation creep experiment revealing radiation induced dislocation glide in pure copper[J]. Acta Materialia, 2021, 216: 117096. doi: 10.1016/j.actamat.2021.117096
    [5] Li Min, Hou Qing, Cui Jiechao, et al. Comparative studies of helium behavior in copper and tungsten using molecular dynamics simulations[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2020, 463: 30-39.
    [6] Yang Yun, Frazer D, Balooch M, et al. Irradiation damage investigation of helium implanted polycrystalline copper[J]. Journal of Nuclear Materials, 2018, 512: 137-143. doi: 10.1016/j.jnucmat.2018.09.022
    [7] 李博. 金属铜中辐照损伤的分子动力学模拟[D]. 合肥: 中国科学技术大学, 2016

    Li Bo. Molecular dynamics simulation of irradiation damage in Cu[D]. Hefei: University of Science and Technology of China, 2016
    [8] 王建国. 铜辐照碰撞级联过程的分子动力学仿真[D]. 合肥: 合肥工业大学, 2003

    Wang Jianguo. Molecular dynamics modeling of radiation collision cascades course in copper[D]. Hefei: Hefei University of Technology, 2003
    [9] Rowcliffe A F, Garrison L M, Yamamoto Y, et al. Materials challenges for the fusion nuclear science facility[J]. Fusion Engineering and Design, 2018, 135: 290-301. doi: 10.1016/j.fusengdes.2017.07.012
    [10] Cottrell G A. A survey of plasma facing materials for fusion power plants[J]. Materials Science and Technology, 2006, 22(8): 869-880. doi: 10.1179/174328406X111110
    [11] 张崇宏. 聚变堆候选金属材料的惰性气体离子辐照损伤的研究[J]. 原子核物理评论, 2006, 23(2):167-169 doi: 10.3969/j.issn.1007-4627.2006.02.019

    Zhang Chonghong. Damage production by inert-gas-ion irradiation in some candidate materials to fusion reactors[J]. Nuclear Physics Review, 2006, 23(2): 167-169 doi: 10.3969/j.issn.1007-4627.2006.02.019
    [12] Harrison R W, Greaves G, Hinks J A, et al. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten[J]. Journal of Nuclear Materials, 2017, 495: 492-503. doi: 10.1016/j.jnucmat.2017.08.033
    [13] Kittel C. Introduction to solid state physics[M]. 8th ed. New York: John Wiley & Sons, 2004.
    [14] Zhou X W, Johnson R A, Wadley H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B, 2004, 69: 144113. doi: 10.1103/PhysRevB.69.144113
    [15] Chizmeshya A, Zaremba E. The interaction of rare gas atoms with metal surfaces: a scattering theory approach[J]. Surface Science, 1992, 268(1/3): 432-456.
    [16] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18: 015012. doi: 10.1088/0965-0393/18/1/015012
    [17] Zhang Baoling, Fang Shuoyang, Wang Jun, et al. Study on helium bubble coalescence in the slip plane of titanium[J]. Fusion Science and Technology, 2021, 77(6): 437-445. doi: 10.1080/15361055.2021.1927583
  • 加载中
图(7)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  131
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-28
  • 修回日期:  2023-03-28
  • 录用日期:  2023-04-14
  • 网络出版日期:  2023-04-18
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回