留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干合成中多抖动相位锁定算法

高恒 李炳霖 杨依枫 何兵

高恒, 李炳霖, 杨依枫, 等. 相干合成中多抖动相位锁定算法[J]. 强激光与粒子束, 2023, 35: 041009. doi: 10.11884/HPLPB202335.220285
引用本文: 高恒, 李炳霖, 杨依枫, 等. 相干合成中多抖动相位锁定算法[J]. 强激光与粒子束, 2023, 35: 041009. doi: 10.11884/HPLPB202335.220285
Gao Heng, Li Binglin, Yang Yifeng, et al. Performance of multi-frequency dithering algorithm in coherent beam combination[J]. High Power Laser and Particle Beams, 2023, 35: 041009. doi: 10.11884/HPLPB202335.220285
Citation: Gao Heng, Li Binglin, Yang Yifeng, et al. Performance of multi-frequency dithering algorithm in coherent beam combination[J]. High Power Laser and Particle Beams, 2023, 35: 041009. doi: 10.11884/HPLPB202335.220285

相干合成中多抖动相位锁定算法

doi: 10.11884/HPLPB202335.220285
基金项目: 国家重点研发计划项目(2018YFB0504500); 中国科学院青年创新促进会项目(2020252)
详细信息
    作者简介:

    高 恒,m202072514@hust.edu.cn

    通讯作者:

    杨依枫,yfyang@siom.ac.cn

    何 兵,bryanho@siom.ac.cn

  • 中图分类号: O436

Performance of multi-frequency dithering algorithm in coherent beam combination

  • 摘要: 分析了多抖动算法的工作原理,通过波动光学原理以2-11路相干合成系统作为数学模型进行仿真模拟,引入了动态噪声模型,以总合成光束的均方根相位误差作为评价函数,分析了不同阵列规模下的相干合成系统中噪声频率以及噪声振幅对系统相位锁定效果的影响,当噪声频率或噪声振幅过大,超出算法补偿相位噪声的能力时,便会锁相失败。证明了增益系数与调制振幅存在一个最优区间且只有处于该区间内时,才能快速完成锁相。引入有效控制带宽概念,用以直观评价多抖动算法的锁相性能,研究表明,有效控制带宽与采样频率、第一路调制频率成正比例,与噪声振幅成反比例,且随着阵列规模增大,有效控制带宽降低。
  • 图  1  基于多抖动法锁相控制相干合成原理图

    Figure  1.  Schematic diagram of phase-locked control coherent beam combining system based on multi-frequency dithering

    图  2  相位噪声强度时域和频域下的分布

    Figure  2.  Intensity of noise in time and frequency domain

    图  3  不同噪声频率下的相位锁定情况

    Figure  3.  Phase locking with different noise frequency

    图  4  噪声频率对均方根相位误差的影响

    Figure  4.  Effect of noise frequency on RMS residual phase error

    图  5  有效控制带宽与阵列规模的关系

    Figure  5.  The relationship between the control bandwidth and the number of channels

    图  6  不同噪声振幅下的算法锁相情况

    Figure  6.  Algorithm phase locking at different noise amplitudes

    图  7  不同阵列规模下增益系数与平均归一化平均光电流和均方根相位误差的关系

    Figure  7.  Gain coefficient versus mean normalized photocurrent and RMS residual phase error under different channel numbers

    图  8  最优增益系数与阵列规模的关系

    Figure  8.  Relationship between the gain coefficient and the number of channels

    图  9  不同阵列规模下调制振幅与平均归一化光电流和均方根相位误差的关系

    Figure  9.  Mean normalized photocurrent and RMS residual phase error versus dithering amplitude under different channel numbers

    图  10  不同采样频率下的噪声振幅与控制带宽的关系

    Figure  10.  The relationship between the noise amplitudes and the control bandwidth at different sampling frequency

    图  11  不同第一路正弦调制信号频率和频率间隔下的控制带宽

    Figure  11.  Control bandwidth under different first modulated optical frequencies and frequency intervals

  • [1] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577. doi: 10.1109/JSTQE.2005.850241
    [2] 周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011—2020[J]. 中国激光, 2021, 48:0401003 doi: 10.3788/CJL202148.0401003

    Zhou Pu, Su Rongtao, Ma Yanxing, et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 2021, 48: 0401003 doi: 10.3788/CJL202148.0401003
    [3] Huo Yanming, Cheo P K, King G G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier[J]. Optics Express, 2004, 12(25): 6230-6239. doi: 10.1364/OPEX.12.006230
    [4] Yang Yifeng, Liu Houkang, Zheng Ye, et al. Dammann-grating-based passive phase locking by an all-optical feedback loop[J]. Optics Letters, 2014, 39(3): 708-710. doi: 10.1364/OL.39.000708
    [5] Goodno G D, Asman C P, Anderegg J, et al. Brightness-scaling potential of actively phase-locked solid-state laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 460-472. doi: 10.1109/JSTQE.2007.896618
    [6] 宋纪坤. 光纤激光相干合成主动相位控制算法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020: 52-56

    Song Jikun. Research on active phase control algorithm for fiber laser coherent combining[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020: 52-56
    [7] Shay T M. Theory of electronically phased coherent beam combination without a reference beam[J]. Optics Express, 2006, 14(25): 12188-12195. doi: 10.1364/OE.14.012188
    [8] Shay T M, Benham V, Baker J T, et al. First experimental demonstration of self-synchronous phase locking of an optical array[J]. Optics Express, 2006, 14(25): 12015-12021. doi: 10.1364/OE.14.012015
    [9] 刘泽金, 周朴, 侯静, 等. 主动相位控制光纤激光相干合成的研究[J]. 中国激光, 2009, 36(3):518-524 doi: 10.3788/CJL20093603.0518

    Liu Zejin, Zhou Pu, Hou Jing, et al. Research on coherent beam combining using active phase-controlling[J]. Chinese Journal of Lasers, 2009, 36(3): 518-524 doi: 10.3788/CJL20093603.0518
    [10] 刘泽金, 王小林, 周朴, 等. 9路光纤激光相干合成实现1.56kW高功率输出[J]. 中国激光, 2011, 38:0705008

    Liu Zejin, Wang Xiaolin, Zhou Pu, et al. Coherent synthesis of 9-channel fiber lasers to achieve high power output of 1.56kW[J]. Chinese Journal of Lasers, 2011, 38: 0705008
    [11] McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 174-181. doi: 10.1109/JSTQE.2013.2296771
    [12] Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications. 2016: 97281Y.
    [13] Müller M, Klenke A, Steinkopff A, et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2018, 43(24): 6037-6040. doi: 10.1364/OL.43.006037
    [14] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
    [15] Ma Yanxing, Zhou Pu, Wang Xiaolin, et al. Coherent beam combination with single frequency dithering technique[J]. Optics Letters, 2010, 35(9): 1308-1310. doi: 10.1364/OL.35.001308
    [16] Shay T M, Baker J T, Sanchez A D, et al. High-power phase locking of a fiber amplifier array[C]//Proceedings of SPIE. 2009: 7195M.
    [17] 宋昭远, 姚桂彬, 张磊磊, 等. 单频光纤激光器相位噪声的影响因素[J]. 红外与激光工程, 2017, 46:0305005

    Song Zhaoyuan, Yao Guibin, Zhang Leilei, et al. Influencing factors of phase noise of single frequency fiber laser[J]. Infrared and Laser Engineering, 2017, 46: 0305005
    [18] 张天松. 基于多抖动法锁相的超短脉冲时域相干合成技术研究[D]. 北京: 北京工业大学, 2019: 25-26

    Zhang Tiansong. Study on time-domain coherent beam combination of ultra-short pulse based on multi-dithering technology[D]. Beijing: Beijing University of Technology, 2019: 25-26
    [19] 马阎星. 多抖动法光纤MOPA链的相干合成[D]. 长沙: 国防科学技术大学, 2008: 20-22

    Ma Yanxing. Coherent combining of MOPA with multi-dithering technique[D]. Changsha: National University of Defense Technology, 2008: 20-22
  • 加载中
图(11)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  196
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 修回日期:  2023-01-11
  • 录用日期:  2023-01-06
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回