环境内分泌干扰物对女性青春期性成熟的干扰作用研究进展

陆可安, 叶小青. 环境内分泌干扰物对女性青春期性成熟的干扰作用研究进展[J]. 环境化学, 2023, 42(2): 358-369. doi: 10.7524/j.issn.0254-6108.2021102802
引用本文: 陆可安, 叶小青. 环境内分泌干扰物对女性青春期性成熟的干扰作用研究进展[J]. 环境化学, 2023, 42(2): 358-369. doi: 10.7524/j.issn.0254-6108.2021102802
LU Kean, YE Xiaoqing. The effects and mechanisms of environmental endocrine disruptors exposure on pubertal development in females[J]. Environmental Chemistry, 2023, 42(2): 358-369. doi: 10.7524/j.issn.0254-6108.2021102802
Citation: LU Kean, YE Xiaoqing. The effects and mechanisms of environmental endocrine disruptors exposure on pubertal development in females[J]. Environmental Chemistry, 2023, 42(2): 358-369. doi: 10.7524/j.issn.0254-6108.2021102802

环境内分泌干扰物对女性青春期性成熟的干扰作用研究进展

    通讯作者: Tel:0571-86633307,E-mail:yexq@zcmu.edu.cn
  • 基金项目:
    浙江省自然科学基金(LQ20B070005)和浙江中医药优秀青年人才基金项目(2020ZQ013)资助.

The effects and mechanisms of environmental endocrine disruptors exposure on pubertal development in females

    Corresponding author: YE Xiaoqing, yexq@zcmu.edu.cn
  • Fund Project: the Zhejiang Provincial Natural Science of Foundation of China (LQ20B070005) and Zhejiang Provincial Fund for Outstanding Young Talents of Traditional Chinese Medicine(2020ZQ013).
  • 摘要: 青春期是人一生中生长发育的关键窗口期,易受到外界环境信号的干扰。环境内分泌干扰物能通过干扰人体内天然激素的正常运作,影响青春期发动时相。目前,各种环境内分泌干扰物对女性青春期性成熟的影响均未得到一致结论,且具体诱发机制不明确。本文综述了有机污染物和重金属这两类环境内分泌干扰物对女性青春期性成熟的影响及其造成女性青春期性成熟异常的可能机制,以期为深入研究环境内分泌干扰物对青春期性成熟的影响和分子机制提供思路,为加强环境内分泌干扰物的风险管理提供科学依据,对保障女性健康具有重要的科学意义和社会意义。
  • 加载中
  • 表 1  有机污染物暴露对女性青春期性成熟时间相关的人群流行病学研究

    Table 1.  Human studies investigating the relationship of organic pollutants with pubertal development in females

    环境内分泌
    干扰物
    EEDs
    样本(量)
    Sample
    (size)
    研究人群
    Study
    population
    研究方法
    Study
    design
    与青春期性
    成熟的相关性
    Correlation
    with puberty
    主要结果
    Results
    参考文献
    Reference
    有机氯杀虫剂血清
    (524)
    哈萨克斯坦10—17岁女性横断面研究,通过临床检查评估Tanner分级是(延迟)有机氯暴露与乳房及生殖器毛发发育延迟有关(P<0.05)[18]
    有机氯农药、多溴联苯醚、多氯联苯血清
    (654)
    不同种族6—8岁女性队列研究(每年多达7次检查),通过检查评估Tanner分级是(延迟)较高浓度的血清化合物使女性乳房Tanner分级达到第二阶段及以上时的年龄偏大[TR for B2+ and Q4 for ∑PBDE=1.05(95%CI:1.02—1.08),P<0.05;for ∑PCB=1.05(95%CI:1.01—1.08),P<0.05;for ∑OCP=1.10(95%CI:1.06—1.14),P<0.05][19]
    血清
    (1257)
    美国6—8岁女性队列研究(每年随访一次,持续10年),通过Tanner分级评估青春期状态、父母及自我报告确定初潮时间是(延迟)月经初潮延迟与较高水平的有机氯农药、多溴联苯醚、多氯联苯暴露相关(Q4 versus Q1 aHRs:PBDEs 0.75[95% CI:0.58—0.97];PCBs 0.67[95% CI:0.5—0.89];OCPs 0.66 [95% CI:0.50—0.89],P<0.01)[20]
    多溴二苯醚血清
    (31名特发性中枢性性早熟患者)
    罗马平均年龄8岁女性病例对照研究是(提前)特发性中枢性性早熟女性血清中多溴二苯醚浓度较其他文献中正常女性浓度高(P<0.05)[21]
    血清
    (314)
    美国9岁女性队列研究(9—13岁之间每9个月评估一次青春期开始时间,持续14年),通过Tanner分级和自我报告确定初潮时间是(延迟)母亲产前多溴二苯醚暴露与女性月经初潮延迟有关[RR=0.5(95%CI:0.3—0.9),P<0.05],与女性乳房或生殖器毛发发育程度无关(P>0.05)[16]
    多环芳烃尿液
    (404)
    美国6—8岁女性队列研究,通过检查评估Tanner分级是(超重人群,提前)/否(正常人群)在超重的女性中,多环芳烃暴露与乳房发育提前有关,而在体重正常的女性中与乳房发育无关(P>0.05)[22]
    尿液
    (209早发育+528对照)
    中国1—4年级女性病例对照研究是(提前)早发育女性尿液中多环芳烃浓度较正常组高(P<0.05)[23]
    2,3,7,8-TCDD血清
    (316)
    意大利8—39岁女性队列研究,通过访谈、检查确定初潮时间是(延迟)将爆炸发生时母亲当时青春期性成熟发育情况作为影响因素进行修正后发现,母亲产前TCDD暴露与其女儿月经初潮年龄延迟有关[HR=0.71(95%CI:0.52—0.97),P<0.05][17]
    BPA尿液
    (655)
    中国9—18岁女性横断面研究,通过 Tanner分级和自我报告月经初潮评估青春期发育状态是(生殖器毛发,提前;月经初潮,延迟)中[PRs=0.73(95%CI:0.56—0.95)]、高中[PRs=0.72(95%CI:0.52—0.99)]剂量BPA暴露与月经初潮延迟有关[32]
    尿液
    (28中枢性性早熟+28早发育+22对照)
    土耳其5—8岁女性病例对照研究病例组尿液中BPA浓度较对照组无显著性差异(P>0.05)[34]
    BPA尿液
    (42中枢性性早熟+40外周行性早熟+37对照)
    韩国7—9岁女性病例对照研究病例组尿液中BPA浓度较对照组无显著性差异(P>0.05)[35]
    尿液
    (41性早熟+47对照)
    泰国6—8岁女性病例对照研究是(超重人群,提前)/否(正常人群)超重且早发育女性尿液中BPA浓度较对照组高(P<0.05)[9]
    BPA尿液
    (25早发育+25对照)
    土耳其4—8岁女性病例对照研究是(提前)早发育女性尿液中BPA浓度较正常对照组高(P<0.05)[30]
    尿液
    (136特发性中枢性性早熟+136对照)
    中国6—9岁女性病例对照研究是(提前)特发性中枢性性早熟女性尿液中BPA浓度较高(P<0.001)[31]
    BPA/PAEs
    产妇尿液
    (120)
    墨西哥8—13岁女性队列研究(妊娠前、中、晚期),通过检查评估Tanner分析是(妊娠中期BPA及DEHP,提前/整个妊娠期DEHP,延迟)妊娠中期BPA、MEHP暴露与乳房Tanner第二阶段及以上分别为[OR=2.2(95%CI:1.0—4.5),P<0.05]、生殖器毛发发育程度[OR=0.32(95%CI:0.11—0.95),P<0.05]提前有关;妊娠晚期MEHP暴露与乳房Tanner第一阶段发育程度延迟有关[OR=3.76(95%CI:1.1—12.8),P<0.05][28]
    产妇尿液
    (179)
    美国9—13岁女性队列研究(每9个月检查一次,9岁时就诊,直到13岁结束),通过访谈、问卷调查和检查评估Tanner分级是(延迟)正常体重的女性中,MCNP、MCOP、MCPP、ΣDEHP、BPA浓度与月经初潮延迟有关;只有MCOP、BPA与生殖器毛发发育程度延迟有关,MCPP、BPA与乳房延迟有关;在超重人群中只有ΣDEHP浓度与初潮延迟有关;而MBzP和ΣDEHP浓度与两类体重的人群乳房发育延迟都有关(P<0.05)[29]
    尿液
    (437)
    美国12—16岁女性(NHANES2003-2010)横断面研究,问卷和检查评估青春期发育状态并确定月经初潮时间BPA、DEHP暴露与月经初潮无关(P>0.05)[36]
    尿液
    (222)
    德国8—10岁女性队列研究(每年随访一次,持续3年),根据PD表评估青春期阶段、父母及自我报告确定初潮时间是(DEHP,延迟)/否(BPA)DEHP、MEP、MnBP水平与女性的PD评分呈负相关(P<0.1)[33]
    尿液
    (47中枢性性早熟+47对照)
    韩国5—12岁女性病例对照研究病例组尿液中BPA、邻苯二甲酸酯代谢物浓度较对照组无显著性差异(P>0.05)[37]
    血浆(DEHP)、尿液(BPA)(42特发性中枢性早熟+42外周性性早熟+50对照)土耳其6—8岁女性病例对照研究是(DEHP,提前)/否(BPA)
    病例组尿液中BPA浓度较对照组无显著性差异(P>0.05);外周性性早熟患者血浆中ΣDEHP浓度较正常对照组高(P<0.05);特发性性早熟患者血浆中ΣDEHP、MEHP浓度较正常对照组高(P<0.05)
    [38]
    壬基酚血浆
    (150性早熟+90对照)
    韩国6—12岁女性病例对照研究性早熟女性血浆中n-壬基酚浓度较高,但无统计学意义(P>0.05)[40]
    壬基酚/PAEs尿液
    (118)
    中国台湾6.5—15岁女性横断面研究,问卷和检查评估青春期发育状态壬基酚、DEHP暴露与月经初潮、乳房及生殖器毛发发育程度无关(P>0.05)[41]
    PAEs尿液
    (200)
    智利6—9岁女性队列研究(每6个月随访一次),通过检查和触诊Tanner分级和自我报告确定初潮时间是(延迟)DEHP与月经初潮的延迟有关[HR=0.77(95%CI:0.60—0.98),P<0.05];MMP浓度的升高同样与初潮提前有关[HR=1.30(95%CI:1.10—1.53),P<0.01][44]
    PAEs尿液
    (251)
    中国7—14岁女性横断面研究,通过临床检查评估Tanner分级并询问月经初潮时间是(提前)MEHP[OR=1.29(95%CI:1.01—1.64),P<0.05]、MEHHP[OR=1.45(95%CI:1.06—1.98),P<0.05]和MEOHP[OR=1.46(95%CI:1.09—1.95),P<0.05]暴露与乳房Tanner分级呈显著正相关[45]
    产妇尿液
    (179)
    美国9—13岁女性队列研究(9岁时就诊,每9个月进行一次,直到13岁),通过访谈、问卷调查和检查评估Tanner分级是(提前)母亲产前尿液MEP浓度与生殖器毛发发育程度提前有关[mean shift=-1.3 months(95%CI:-2.5—-0.1),P<0.05][43]
    拟除虫菊酯尿液
    (305)
    中国9—15岁女性横断面研究,Tanner分级和初潮情况评估青春期发育程度是(延迟)女性尿液中3-PBA对数浓度每增加1个单位,以初潮为标志的青春期启动的OR值减少49%[OR=0.51(95%CI:0.28—0.93),P<0.05][10]
      注:TR,时间比;aHRs,调整后的风险比;RR,相对危险度;BMI,身体质量指数;TCDD,2,3,7,8-四氯二苯并对二恶英;HR,风险比;OR,比值比;BPA,双酚A;PAEs,邻苯二甲酸酯类;MEHP,邻苯二甲酸单(2-乙基己基)酯;MCNP,邻苯二甲酸单羧基壬基酯;MCOP,邻苯二甲酸单羧基辛基酯;MCPP,邻苯二甲酸单3-羧基丙基;ΣDEHP,所有邻苯二甲酸二(2-乙基己基)酯代谢物;MBzP,邻苯二甲酸单苄酯;MEP,邻苯二甲酸单乙基;MnBP,二甲酸正丁酯;MMP,邻苯二甲酸甲酯;MEHHP,邻苯二甲酸单2-乙基-5-羟基己基酯;MEOHP,邻苯二甲酸单2-乙基-5-羟基己基酯;3-PBA,3-苯氧基苯甲酸;NHANES,美国健康和营养检查调查.
      Note: TR,time ratios;aHRs,adjusted hazard ratios;RR,relative risk;BMI,body mass index;TCDD,2,3,7,8-tetrachlorodibenzo-p-dioxin;HR,hazard ratio;OR,odds ratio;BPA,bisphenol A;PAEs,phthalate;MEHP,mono-2-ethylhexyl phthalate;MCNP,monocarboxynonyl phthalate;MCOP,mono-carboxyoctyl-phthalate;MCPP,mono-3-carboxypropyl phthalate;ΣDEHP,the sum of urinary metabolites of di(2-ethylhexyl) phthalate;MBzP,mono-benzyl phthalate;MEP,mono-ethyl phthalate;MnBP,mono-n-butyl phthalate;MMP,monomethyl phthalate;MEHHP,mono-(2-ethyl-5-hydroxyhexyl) phthalate;MEOHP,mono-(2-ethyl-5-oxohexyl) phthalate;3-PBA,3-phenoxybenzoic acid;NHANES,national health and nutrition examination survey.
    环境内分泌
    干扰物
    EEDs
    样本(量)
    Sample
    (size)
    研究人群
    Study
    population
    研究方法
    Study
    design
    与青春期性
    成熟的相关性
    Correlation
    with puberty
    主要结果
    Results
    参考文献
    Reference
    有机氯杀虫剂血清
    (524)
    哈萨克斯坦10—17岁女性横断面研究,通过临床检查评估Tanner分级是(延迟)有机氯暴露与乳房及生殖器毛发发育延迟有关(P<0.05)[18]
    有机氯农药、多溴联苯醚、多氯联苯血清
    (654)
    不同种族6—8岁女性队列研究(每年多达7次检查),通过检查评估Tanner分级是(延迟)较高浓度的血清化合物使女性乳房Tanner分级达到第二阶段及以上时的年龄偏大[TR for B2+ and Q4 for ∑PBDE=1.05(95%CI:1.02—1.08),P<0.05;for ∑PCB=1.05(95%CI:1.01—1.08),P<0.05;for ∑OCP=1.10(95%CI:1.06—1.14),P<0.05][19]
    血清
    (1257)
    美国6—8岁女性队列研究(每年随访一次,持续10年),通过Tanner分级评估青春期状态、父母及自我报告确定初潮时间是(延迟)月经初潮延迟与较高水平的有机氯农药、多溴联苯醚、多氯联苯暴露相关(Q4 versus Q1 aHRs:PBDEs 0.75[95% CI:0.58—0.97];PCBs 0.67[95% CI:0.5—0.89];OCPs 0.66 [95% CI:0.50—0.89],P<0.01)[20]
    多溴二苯醚血清
    (31名特发性中枢性性早熟患者)
    罗马平均年龄8岁女性病例对照研究是(提前)特发性中枢性性早熟女性血清中多溴二苯醚浓度较其他文献中正常女性浓度高(P<0.05)[21]
    血清
    (314)
    美国9岁女性队列研究(9—13岁之间每9个月评估一次青春期开始时间,持续14年),通过Tanner分级和自我报告确定初潮时间是(延迟)母亲产前多溴二苯醚暴露与女性月经初潮延迟有关[RR=0.5(95%CI:0.3—0.9),P<0.05],与女性乳房或生殖器毛发发育程度无关(P>0.05)[16]
    多环芳烃尿液
    (404)
    美国6—8岁女性队列研究,通过检查评估Tanner分级是(超重人群,提前)/否(正常人群)在超重的女性中,多环芳烃暴露与乳房发育提前有关,而在体重正常的女性中与乳房发育无关(P>0.05)[22]
    尿液
    (209早发育+528对照)
    中国1—4年级女性病例对照研究是(提前)早发育女性尿液中多环芳烃浓度较正常组高(P<0.05)[23]
    2,3,7,8-TCDD血清
    (316)
    意大利8—39岁女性队列研究,通过访谈、检查确定初潮时间是(延迟)将爆炸发生时母亲当时青春期性成熟发育情况作为影响因素进行修正后发现,母亲产前TCDD暴露与其女儿月经初潮年龄延迟有关[HR=0.71(95%CI:0.52—0.97),P<0.05][17]
    BPA尿液
    (655)
    中国9—18岁女性横断面研究,通过 Tanner分级和自我报告月经初潮评估青春期发育状态是(生殖器毛发,提前;月经初潮,延迟)中[PRs=0.73(95%CI:0.56—0.95)]、高中[PRs=0.72(95%CI:0.52—0.99)]剂量BPA暴露与月经初潮延迟有关[32]
    尿液
    (28中枢性性早熟+28早发育+22对照)
    土耳其5—8岁女性病例对照研究病例组尿液中BPA浓度较对照组无显著性差异(P>0.05)[34]
    BPA尿液
    (42中枢性性早熟+40外周行性早熟+37对照)
    韩国7—9岁女性病例对照研究病例组尿液中BPA浓度较对照组无显著性差异(P>0.05)[35]
    尿液
    (41性早熟+47对照)
    泰国6—8岁女性病例对照研究是(超重人群,提前)/否(正常人群)超重且早发育女性尿液中BPA浓度较对照组高(P<0.05)[9]
    BPA尿液
    (25早发育+25对照)
    土耳其4—8岁女性病例对照研究是(提前)早发育女性尿液中BPA浓度较正常对照组高(P<0.05)[30]
    尿液
    (136特发性中枢性性早熟+136对照)
    中国6—9岁女性病例对照研究是(提前)特发性中枢性性早熟女性尿液中BPA浓度较高(P<0.001)[31]
    BPA/PAEs
    产妇尿液
    (120)
    墨西哥8—13岁女性队列研究(妊娠前、中、晚期),通过检查评估Tanner分析是(妊娠中期BPA及DEHP,提前/整个妊娠期DEHP,延迟)妊娠中期BPA、MEHP暴露与乳房Tanner第二阶段及以上分别为[OR=2.2(95%CI:1.0—4.5),P<0.05]、生殖器毛发发育程度[OR=0.32(95%CI:0.11—0.95),P<0.05]提前有关;妊娠晚期MEHP暴露与乳房Tanner第一阶段发育程度延迟有关[OR=3.76(95%CI:1.1—12.8),P<0.05][28]
    产妇尿液
    (179)
    美国9—13岁女性队列研究(每9个月检查一次,9岁时就诊,直到13岁结束),通过访谈、问卷调查和检查评估Tanner分级是(延迟)正常体重的女性中,MCNP、MCOP、MCPP、ΣDEHP、BPA浓度与月经初潮延迟有关;只有MCOP、BPA与生殖器毛发发育程度延迟有关,MCPP、BPA与乳房延迟有关;在超重人群中只有ΣDEHP浓度与初潮延迟有关;而MBzP和ΣDEHP浓度与两类体重的人群乳房发育延迟都有关(P<0.05)[29]
    尿液
    (437)
    美国12—16岁女性(NHANES2003-2010)横断面研究,问卷和检查评估青春期发育状态并确定月经初潮时间BPA、DEHP暴露与月经初潮无关(P>0.05)[36]
    尿液
    (222)
    德国8—10岁女性队列研究(每年随访一次,持续3年),根据PD表评估青春期阶段、父母及自我报告确定初潮时间是(DEHP,延迟)/否(BPA)DEHP、MEP、MnBP水平与女性的PD评分呈负相关(P<0.1)[33]
    尿液
    (47中枢性性早熟+47对照)
    韩国5—12岁女性病例对照研究病例组尿液中BPA、邻苯二甲酸酯代谢物浓度较对照组无显著性差异(P>0.05)[37]
    血浆(DEHP)、尿液(BPA)(42特发性中枢性早熟+42外周性性早熟+50对照)土耳其6—8岁女性病例对照研究是(DEHP,提前)/否(BPA)
    病例组尿液中BPA浓度较对照组无显著性差异(P>0.05);外周性性早熟患者血浆中ΣDEHP浓度较正常对照组高(P<0.05);特发性性早熟患者血浆中ΣDEHP、MEHP浓度较正常对照组高(P<0.05)
    [38]
    壬基酚血浆
    (150性早熟+90对照)
    韩国6—12岁女性病例对照研究性早熟女性血浆中n-壬基酚浓度较高,但无统计学意义(P>0.05)[40]
    壬基酚/PAEs尿液
    (118)
    中国台湾6.5—15岁女性横断面研究,问卷和检查评估青春期发育状态壬基酚、DEHP暴露与月经初潮、乳房及生殖器毛发发育程度无关(P>0.05)[41]
    PAEs尿液
    (200)
    智利6—9岁女性队列研究(每6个月随访一次),通过检查和触诊Tanner分级和自我报告确定初潮时间是(延迟)DEHP与月经初潮的延迟有关[HR=0.77(95%CI:0.60—0.98),P<0.05];MMP浓度的升高同样与初潮提前有关[HR=1.30(95%CI:1.10—1.53),P<0.01][44]
    PAEs尿液
    (251)
    中国7—14岁女性横断面研究,通过临床检查评估Tanner分级并询问月经初潮时间是(提前)MEHP[OR=1.29(95%CI:1.01—1.64),P<0.05]、MEHHP[OR=1.45(95%CI:1.06—1.98),P<0.05]和MEOHP[OR=1.46(95%CI:1.09—1.95),P<0.05]暴露与乳房Tanner分级呈显著正相关[45]
    产妇尿液
    (179)
    美国9—13岁女性队列研究(9岁时就诊,每9个月进行一次,直到13岁),通过访谈、问卷调查和检查评估Tanner分级是(提前)母亲产前尿液MEP浓度与生殖器毛发发育程度提前有关[mean shift=-1.3 months(95%CI:-2.5—-0.1),P<0.05][43]
    拟除虫菊酯尿液
    (305)
    中国9—15岁女性横断面研究,Tanner分级和初潮情况评估青春期发育程度是(延迟)女性尿液中3-PBA对数浓度每增加1个单位,以初潮为标志的青春期启动的OR值减少49%[OR=0.51(95%CI:0.28—0.93),P<0.05][10]
      注:TR,时间比;aHRs,调整后的风险比;RR,相对危险度;BMI,身体质量指数;TCDD,2,3,7,8-四氯二苯并对二恶英;HR,风险比;OR,比值比;BPA,双酚A;PAEs,邻苯二甲酸酯类;MEHP,邻苯二甲酸单(2-乙基己基)酯;MCNP,邻苯二甲酸单羧基壬基酯;MCOP,邻苯二甲酸单羧基辛基酯;MCPP,邻苯二甲酸单3-羧基丙基;ΣDEHP,所有邻苯二甲酸二(2-乙基己基)酯代谢物;MBzP,邻苯二甲酸单苄酯;MEP,邻苯二甲酸单乙基;MnBP,二甲酸正丁酯;MMP,邻苯二甲酸甲酯;MEHHP,邻苯二甲酸单2-乙基-5-羟基己基酯;MEOHP,邻苯二甲酸单2-乙基-5-羟基己基酯;3-PBA,3-苯氧基苯甲酸;NHANES,美国健康和营养检查调查.
      Note: TR,time ratios;aHRs,adjusted hazard ratios;RR,relative risk;BMI,body mass index;TCDD,2,3,7,8-tetrachlorodibenzo-p-dioxin;HR,hazard ratio;OR,odds ratio;BPA,bisphenol A;PAEs,phthalate;MEHP,mono-2-ethylhexyl phthalate;MCNP,monocarboxynonyl phthalate;MCOP,mono-carboxyoctyl-phthalate;MCPP,mono-3-carboxypropyl phthalate;ΣDEHP,the sum of urinary metabolites of di(2-ethylhexyl) phthalate;MBzP,mono-benzyl phthalate;MEP,mono-ethyl phthalate;MnBP,mono-n-butyl phthalate;MMP,monomethyl phthalate;MEHHP,mono-(2-ethyl-5-hydroxyhexyl) phthalate;MEOHP,mono-(2-ethyl-5-oxohexyl) phthalate;3-PBA,3-phenoxybenzoic acid;NHANES,national health and nutrition examination survey.
    下载: 导出CSV

    表 2  重金属暴露对女性青春期性成熟时间相关的人群流行病学研究

    Table 2.  Human studies investigating the relationship of heavy metals with pubertal development in females

    环境内分泌
    干扰物
    EEDs
    样本(量)
    Sample
    (size)
    研究人群
    Study
    population
    研究方法
    Study
    design
    与青春期性成
    熟的相关性
    Correlation
    with puberty
    主要结果
    Results
    参考文献
    Reference
    饮用水
    (809)
    孟加拉国横断面研究,通过访谈评估初潮年龄是(延迟)产前砷暴露与月经初潮延迟有关[aHR=0.77(95% CI:0.63—0.95),P<0.05)][53]
    产妇血清
    (月经初潮n=918,Tanner分级n=765)
    英国8—17岁
    女性
    队列研究(10年随访),通过Tanner分级和自我报告确定初潮时间母亲产前铅暴露与月经初潮、乳房及生殖器毛发发育程度无关(P>0.05)[54]
    产妇血清
    (200)
    墨西哥9—18岁
    女性
    队列研究(妊娠期每3个月一次血铅分析、访谈评估初潮年龄)是(延迟)妊娠中期高水平铅暴露女性较低水平铅暴露月经初潮OR值减小41%[HR=0.59(95%CI:10—72),P<0.05][55]
    铝/砷/钡/镉/钴/铜/铁/锰/钼/镍/锑/硒/锌尿液
    (114)
    墨西哥8—13岁
    女性
    队列研究(在8—13、14—18岁两个时间点通过检查评估Tanner分级)是(产前镍、铝和镉,延迟;青春期钡、铝,提前)产前镍[OR=0.73(95%CI:0.59—0.89),P<0.05)]、铝[OR=0.82(95%CI:0.68—0.99),P<0.05)]和镉[OR=0.83(95%CI:0.71—0.97),P<0.05)]暴露与乳房发育延迟有关;青春期钡、铝(P<0.05)暴露水平与生殖器毛发发育提前有关[56]
    尿液
    (211)
    美国10—13岁
    女性
    队列研究(每月1次,持续2年),通过Tanner分级评估青春期状态、自我报告确定初潮时间是(延迟)镉暴露与生殖器毛发发育程度[OR=0.21(95%CI:0.06—0.72),P<0.05]和月经初潮延迟有关[HR=0.42(95%CI:0.23—0.78),P<0.05][57]
    头发
    (344)
    比利时横断面研究,通过访谈确定初潮年龄是(提前)汞暴露与女性月经初潮年龄呈负相关(P<0.05)[58]
      注:OR,比值比;aHRs,调整后的风险比;HR,风险比.
      Note: OR,odds ratio;aHRs,adjusted hazard ratios;HR,hazard ratio.
    环境内分泌
    干扰物
    EEDs
    样本(量)
    Sample
    (size)
    研究人群
    Study
    population
    研究方法
    Study
    design
    与青春期性成
    熟的相关性
    Correlation
    with puberty
    主要结果
    Results
    参考文献
    Reference
    饮用水
    (809)
    孟加拉国横断面研究,通过访谈评估初潮年龄是(延迟)产前砷暴露与月经初潮延迟有关[aHR=0.77(95% CI:0.63—0.95),P<0.05)][53]
    产妇血清
    (月经初潮n=918,Tanner分级n=765)
    英国8—17岁
    女性
    队列研究(10年随访),通过Tanner分级和自我报告确定初潮时间母亲产前铅暴露与月经初潮、乳房及生殖器毛发发育程度无关(P>0.05)[54]
    产妇血清
    (200)
    墨西哥9—18岁
    女性
    队列研究(妊娠期每3个月一次血铅分析、访谈评估初潮年龄)是(延迟)妊娠中期高水平铅暴露女性较低水平铅暴露月经初潮OR值减小41%[HR=0.59(95%CI:10—72),P<0.05][55]
    铝/砷/钡/镉/钴/铜/铁/锰/钼/镍/锑/硒/锌尿液
    (114)
    墨西哥8—13岁
    女性
    队列研究(在8—13、14—18岁两个时间点通过检查评估Tanner分级)是(产前镍、铝和镉,延迟;青春期钡、铝,提前)产前镍[OR=0.73(95%CI:0.59—0.89),P<0.05)]、铝[OR=0.82(95%CI:0.68—0.99),P<0.05)]和镉[OR=0.83(95%CI:0.71—0.97),P<0.05)]暴露与乳房发育延迟有关;青春期钡、铝(P<0.05)暴露水平与生殖器毛发发育提前有关[56]
    尿液
    (211)
    美国10—13岁
    女性
    队列研究(每月1次,持续2年),通过Tanner分级评估青春期状态、自我报告确定初潮时间是(延迟)镉暴露与生殖器毛发发育程度[OR=0.21(95%CI:0.06—0.72),P<0.05]和月经初潮延迟有关[HR=0.42(95%CI:0.23—0.78),P<0.05][57]
    头发
    (344)
    比利时横断面研究,通过访谈确定初潮年龄是(提前)汞暴露与女性月经初潮年龄呈负相关(P<0.05)[58]
      注:OR,比值比;aHRs,调整后的风险比;HR,风险比.
      Note: OR,odds ratio;aHRs,adjusted hazard ratios;HR,hazard ratio.
    下载: 导出CSV

    表 3  环境内分泌干扰物暴露影响青春期性成熟的机制

    Table 3.  The mechanisms of EEDs on pubertal development

    环境内分泌
    干扰物EEDs
    受试动物
    Subjects
    结局
    Outcomes
    机制
    Mechanisms
    参考文献
    Reference
    BPA大鼠提前通过激活下丘脑Kiss-1的表达,导致下丘脑分泌GnRH,进而刺激垂体FSH和LH的脉动性释放[59]
    小鼠通过增加子代雌鼠GnRH分泌水平从而影响HPO轴功能的正常运作[60]
    小鼠血清E2水平显著升高[61]
    大鼠血清E2、LH和FSH水平显著升高[62]
    PAEs大鼠提前(5 mg·kg−1)/
    延迟(500 mg·kg−1
    低剂量组较对照组下丘脑Kiss1 mRNA表达水平、LH、E2和P分泌量显著增加;高剂量则相反。[67]
    大鼠提前激活下丘脑IGF-1、Kiss-1、GPR54、GnRH mRNA和蛋白的表达水平,血清FSH、LH水平降低,P水平升高[77]
    大鼠诱导下丘脑GnRH神经元激活IGF-1信号通路促进GnRH释放[78]
    大鼠提高侧脑室周围核kisspeptin蛋白水平和kisspeptin免疫反应神经元数量,从而促进GnRH的表达[79]
    多溴联苯醚大鼠提前卵泡发育及HIF-1α、CREB1、EGF、β-雌二醇和PPARA信号通路异常,血清E2水平显著升高[80]
    小鼠提前促进Oct2和Ttf1的mRNA和蛋白的表达水平,导致Kiss-1 mRNA和kisspeptin蛋白表达水平显著升高[81]
    大鼠延迟抑制血清中E2和P的分泌水平[82]
      注:BPA,双酚A;DEHP,邻苯二甲酸二(2-乙基己基)酯;GnRH,促性腺激素释放激素;FSH,卵泡刺激素;LH,黄体生成素;HPG,下丘脑-垂体-性腺轴;E2,雌二醇;IGF-1,胰岛素生长因子-1;GPR54,G蛋白偶联受体54;P,孕酮;HIF-1α,缺氧诱导因子-1α;CREB1,环AMP反应元件结合蛋白1;EGF,表皮生长因子;PPARA,过氧化物酶体增殖物激活受体α;Oct2,有机阳离子转运体2;Ttf1,转录终止因子1.
      Note: BPA,bisphenol A;DEHP,di(2-ethylhexyl) phthalate;GnRH,gonadotropin releasing hormone;FSH,follicle-stimulating hormone;LH,luteinizing hormone;HPG,hypothalamic-pituitary-gonad axis;E2,estradiol;IGF-1,insulin growth factor 1;GPR54,G protein-coupled receptor 54;P,progesterone;HIF1A,hypoxia inducible factor 1 alpha;CREB1,cyclic AMP responsive element binding protein 1;EGF,epidermal growth factor;PPARA,peroxisome proliferator-activated receptor alpha;Oct2,organic cation transporters 2;Ttf1,transcription termination factor 1.
    环境内分泌
    干扰物EEDs
    受试动物
    Subjects
    结局
    Outcomes
    机制
    Mechanisms
    参考文献
    Reference
    BPA大鼠提前通过激活下丘脑Kiss-1的表达,导致下丘脑分泌GnRH,进而刺激垂体FSH和LH的脉动性释放[59]
    小鼠通过增加子代雌鼠GnRH分泌水平从而影响HPO轴功能的正常运作[60]
    小鼠血清E2水平显著升高[61]
    大鼠血清E2、LH和FSH水平显著升高[62]
    PAEs大鼠提前(5 mg·kg−1)/
    延迟(500 mg·kg−1
    低剂量组较对照组下丘脑Kiss1 mRNA表达水平、LH、E2和P分泌量显著增加;高剂量则相反。[67]
    大鼠提前激活下丘脑IGF-1、Kiss-1、GPR54、GnRH mRNA和蛋白的表达水平,血清FSH、LH水平降低,P水平升高[77]
    大鼠诱导下丘脑GnRH神经元激活IGF-1信号通路促进GnRH释放[78]
    大鼠提高侧脑室周围核kisspeptin蛋白水平和kisspeptin免疫反应神经元数量,从而促进GnRH的表达[79]
    多溴联苯醚大鼠提前卵泡发育及HIF-1α、CREB1、EGF、β-雌二醇和PPARA信号通路异常,血清E2水平显著升高[80]
    小鼠提前促进Oct2和Ttf1的mRNA和蛋白的表达水平,导致Kiss-1 mRNA和kisspeptin蛋白表达水平显著升高[81]
    大鼠延迟抑制血清中E2和P的分泌水平[82]
      注:BPA,双酚A;DEHP,邻苯二甲酸二(2-乙基己基)酯;GnRH,促性腺激素释放激素;FSH,卵泡刺激素;LH,黄体生成素;HPG,下丘脑-垂体-性腺轴;E2,雌二醇;IGF-1,胰岛素生长因子-1;GPR54,G蛋白偶联受体54;P,孕酮;HIF-1α,缺氧诱导因子-1α;CREB1,环AMP反应元件结合蛋白1;EGF,表皮生长因子;PPARA,过氧化物酶体增殖物激活受体α;Oct2,有机阳离子转运体2;Ttf1,转录终止因子1.
      Note: BPA,bisphenol A;DEHP,di(2-ethylhexyl) phthalate;GnRH,gonadotropin releasing hormone;FSH,follicle-stimulating hormone;LH,luteinizing hormone;HPG,hypothalamic-pituitary-gonad axis;E2,estradiol;IGF-1,insulin growth factor 1;GPR54,G protein-coupled receptor 54;P,progesterone;HIF1A,hypoxia inducible factor 1 alpha;CREB1,cyclic AMP responsive element binding protein 1;EGF,epidermal growth factor;PPARA,peroxisome proliferator-activated receptor alpha;Oct2,organic cation transporters 2;Ttf1,transcription termination factor 1.
    下载: 导出CSV
  • [1] DORN L D, HOSTINAR C E, SUSMAN E J, et al. Conceptualizing puberty as a window of opportunity for impacting health and well-being across the life span [J]. Journal of Research on Adolescence, 2019, 29(1): 155-176. doi: 10.1111/jora.12431
    [2] YI Y, DENIC-ROBERTS H, RUBINSTEIN D, et al. Effect of age at menarche on microvascular complications among women with Type 1 diabetes [J]. Diabetic Medicine, 2019, 36(10): 1287-1293. doi: 10.1111/dme.13936
    [3] ZURAWIECKA M, WRONKA I. Age at menarche and risk of respiratory diseases [J]. Adv Exp Med Biol, 2019, 1222: 9-16.
    [4] WANG L Y, YAN B, SHI X L, et al. Age at menarche and risk of gestational diabetes mellitus: A population-based study in Xiamen, China [J]. BMC Pregnancy and Childbirth, 2019, 19(1): 138. doi: 10.1186/s12884-019-2287-6
    [5] MCLACHLAN J A. Environmental signaling: From environmental estrogens to endocrine-disrupting chemicals and beyond [J]. Andrology, 2016, 4(4): 684-694. doi: 10.1111/andr.12206
    [6] BARBER L B, LOYO-ROSALES J E, RICE C P, et al. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions [J]. Science of the Total Environment, 2015, 517: 195-206. doi: 10.1016/j.scitotenv.2015.02.035
    [7] DAN L, WU S M, XU H Z, et al. Distribution and bioaccumulation of endocrine disrupting chemicals in water, sediment and fishes in a shallow Chinese freshwater lake: Implications for ecological and human health risks [J]. Ecotoxicology and Environmental Safety, 2017, 140: 222-229. doi: 10.1016/j.ecoenv.2017.02.045
    [8] YILMAZ B, TEREKECI H, SANDAL S, et al. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention [J]. Reviews in Endocrine and Metabolic Disorders, 2020, 21(1): 127-147. doi: 10.1007/s11154-019-09521-z
    [9] SUPORNSILCHAI V, JANTARAT C, NOSOOGNOEN W, et al. Increased levels of bisphenol A (BPA) in Thai girls with precocious puberty [J]. Journal of Pediatric Endocrinology and Metabolism, 2016, 29(11): 1233-1239.
    [10] YE X Q, PAN W Y, ZHAO Y H, et al. Association of pyrethroids exposure with onset of puberty in Chinese girls [J]. Environmental Pollution, 2017, 227: 606-612. doi: 10.1016/j.envpol.2017.04.035
    [11] WORTHMAN C M, DOCKRAY S, MARCEAU K. Puberty and the evolution of developmental science [J]. Journal of Research on Adolescence, 2019, 29(1): 9-31. doi: 10.1111/jora.12411
    [12] LEE Y, STYNE D. Influences on the onset and tempo of puberty in human beings and implications for adolescent psychological development [J]. Hormones and Behavior, 2013, 64(2): 250-261. doi: 10.1016/j.yhbeh.2013.03.014
    [13] VIJAYAKUMAR N, OP de MACKS Z, SHIRTCLIFF E A, et al. Puberty and the human brain: Insights into adolescent development [J]. Neuroscience & Biobehavioral Reviews, 2018, 92: 417-436.
    [14] ABREU A P, KAISER U B. Pubertal development and regulation [J]. The Lancet Diabetes & Endocrinology, 2016, 4(3): 254-264.
    [15] BRUCE-VANDERPUIJE P, MEGSON D, REINER E J, et al. The state of POPs in Ghana- A review on persistent organic pollutants: Environmental and human exposure [J]. Environmental Pollution, 2019, 245: 331-342. doi: 10.1016/j.envpol.2018.10.107
    [16] HARLEY K G, RAUCH S A, CHEVRIER J, et al. Association of prenatal and childhood PBDE exposure with timing of puberty in boys and girls [J]. Environment International, 2017, 100: 132-138. doi: 10.1016/j.envint.2017.01.003
    [17] WARNER M, RAUCH S, AMES J, et al. Age at menarche in Seveso daughters exposed in utero to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin [J]. Environmental Epidemiology, 2020, 4(5): e111. doi: 10.1097/EE9.0000000000000111
    [18] BAPAYEVA G, ISSAYEVA R, ZHUMADILOVA A, et al. Organochlorine pesticides and female puberty in South Kazakhstan [J]. Reproductive Toxicology, 2016, 65: 67-75. doi: 10.1016/j.reprotox.2016.06.017
    [19] WINDHAM G C, PINNEY S M, VOSS R W, et al. Brominated flame retardants and other persistent organohalogenated compounds in relation to timing of puberty in a longitudinal study of girls [J]. Environmental Health Perspectives, 2015, 123(10): 1046-1052. doi: 10.1289/ehp.1408778
    [20] ATTFIELD K R, PINNEY S M, SJÖDIN A, et al. Longitudinal study of age of menarche in association with childhood concentrations of persistent organic pollutants [J]. Environmental Research, 2019, 176: 108551. doi: 10.1016/j.envres.2019.108551
    [21] TASSINARI R, MANCINI F R, MANTOVANI A, et al. Pilot study on the dietary habits and lifestyles of girls with idiopathic precocious puberty from the city of Rome: Potential impact of exposure to flame retardant polybrominated diphenyl ethers [J]. Journal of Pediatric Endocrinology & Metabolism, 2015, 28(11/12): 1369-1372.
    [22] DOBRACA D, LAURENT C A, GREENSPAN L C, et al. Urinary polycyclic aromatic hydrocarbons in relation to anthropometric measures and pubertal development in a cohort of Northern California girls [J]. Environmental Epidemiology, 2020, 4(4): e0102. doi: 10.1097/EE9.0000000000000102
    [23] 邓旭, 刘琴, 刘舒丹, 等. 重庆市某区小学女生多环芳烃内暴露水平及其与青春发动时相的关系 [J]. 卫生研究, 2017, 46(5): 743-748. doi: 10.19813/j.cnki.weishengyanjiu.2017.05.011

    DENG X, LIU Q, LIU S D, et al. Determination of polycyclic aromatic hydrocarbons in girls and association between polycyclic aromatic hydrocarbons exposure and puberty timing [J]. Journal of Hygiene Research, 2017, 46(5): 743-748(in Chinese). doi: 10.19813/j.cnki.weishengyanjiu.2017.05.011

    [24] JANOUSEK R M, MÜLLER J, KNEPPER T P. Combined study of source, environmental monitoring and fate of branched alkylphenols: The chain length matters [J]. Chemosphere, 2020, 241: 124950. doi: 10.1016/j.chemosphere.2019.124950
    [25] FAN X H, KUBWABO C, WU F, et al. Analysis of bisphenol A, alkylphenols, and alkylphenol ethoxylates in NIST SRM 2585 and indoor house dust by gas chromatography-tandem mass spectrometry (GC/MS/MS) [J]. Journal of Aoac International, 2019, 102(1): 246-254. doi: 10.5740/jaoacint.18-0071
    [26] WEN H J, CHANG T C, DING W H, et al. Exposure to endocrine disruptor alkylphenols and the occurrence of endometrial cancer [J]. Environmental Pollution, 2020, 267: 115475. doi: 10.1016/j.envpol.2020.115475
    [27] KONIECZNA A, RUTKOWSKA A, RACHOŃ D. Health risk of exposure to Bisphenol A (BPA) [J]. Roczniki Panstwowego Zakladu Higieny, 2015, 66(1): 5-11.
    [28] WATKINS D J, SÁNCHEZ B N, TÉLLEZ-ROJO M M, et al. Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls [J]. Environmental Research, 2017, 159: 143-151. doi: 10.1016/j.envres.2017.07.051
    [29] BERGER K, ESKENAZI B, KOGUT K, et al. Association of prenatal urinary concentrations of phthalates and bisphenol A and pubertal timing in boys and girls [J]. Environmental Health Perspectives, 2018, 126(9): 97004. doi: 10.1289/EHP3424
    [30] DURMAZ E, ASCI A, ERKEKOGLU P, et al. Urinary bisphenol A levels in Turkish girls with premature thelarche [J]. Human & Experimental Toxicology, 2018, 37(10): 1007-1016.
    [31] CHEN Y, WANG Y C, DING G D, et al. Association between bisphenol a exposure and idiopathic central precocious puberty (ICPP) among school-aged girls in Shanghai, China [J]. Environment International, 2018, 115: 410-416. doi: 10.1016/j.envint.2018.02.041
    [32] MIAO M H, WANG Z L, LIU X Q, et al. Urinary bisphenol A and pubertal development in Chinese school-aged girls: A cross-sectional study [J]. Environmental Health, 2017, 16(1): 80. doi: 10.1186/s12940-017-0290-9
    [33] KASPER-SONNENBERG M, WITTSIEPE J, WALD K, et al. Pre-pubertal exposure with phthalates and bisphenol A and pubertal development [J]. PLoS One, 2017, 12(11): e0187922. doi: 10.1371/journal.pone.0187922
    [34] ÖZGEN İ T, TORUN E, BAYRAKTAR-TANYERI B, et al. The relation of urinary bisphenol A with kisspeptin in girls diagnosed with central precocious puberty and premature thelarche [J]. Journal of Pediatric Endocrinology & Metabolism, 2016, 29(3): 337-341.
    [35] LEE S H, KANG S M, CHOI M H, et al. Changes in steroid metabolism among girls with precocious puberty may not be associated with urinary levels of bisphenol A [J]. Reproductive Toxicology, 2014, 44: 1-6. doi: 10.1016/j.reprotox.2013.03.008
    [36] BUTTKE D E, SIRCAR K, MARTIN C. Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003-2008) [J]. Environmental Health Perspectives, 2012, 120(11): 1613-1618. doi: 10.1289/ehp.1104748
    [37] JUNG M K, CHOI H S, SUH J, et al. The analysis of endocrine disruptors in patients with central precocious puberty [J]. BMC Pediatrics, 2019, 19(1): 323. doi: 10.1186/s12887-019-1703-4
    [38] BULUŞ A D, AŞCI A, ERKEKOGLU P, et al. The evaluation of possible role of endocrine disruptors in central and peripheral precocious puberty [J]. Toxicology Mechanisms and Methods, 2016, 26(7): 493-500. doi: 10.3109/15376516.2016.1158894
    [39] ARAUJO F G D, BAUERFELDT G F, CID Y P. Nonylphenol: Properties, legislation, toxicity and determination[J]. Anais Da Academia Brasileira De Ciencias, 2018, 90(2 suppl 1): 1903-1918.
    [40] YUM T, LEE S, KIM Y. Association between precocious puberty and some endocrine disruptors in human plasma [J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2013, 48(8): 912-917.
    [41] HOU J W, LIN C L, TSAI Y A, et al. The effects of phthalate and nonylphenol exposure on body size and secondary sexual characteristics during puberty [J]. International Journal of Hygiene and Environmental Health, 2015, 218(7): 603-615. doi: 10.1016/j.ijheh.2015.06.004
    [42] JUREWICZ J, HANKE W. Exposure to phthalates: Reproductive outcome and children health. A review of epidemiological studies [J]. International Journal of Occupational Medicine and Environmental Health, 2011, 24(2): 115-141.
    [43] HARLEY K G, BERGER K P, KOGUT K, et al. Association of phthalates, parabens and phenols found in personal care products with pubertal timing in girls and boys [J]. Human Reproduction (Oxford, England), 2019, 34(1): 109-117. doi: 10.1093/humrep/dey337
    [44] BINDER A M, CORVALAN C, CALAFAT A M, et al. Childhood and adolescent phenol and phthalate exposure and the age of menarche in Latina girls [J]. Environmental Health, 2018, 17(1): 32. doi: 10.1186/s12940-018-0376-z
    [45] SHI H J, CAO Y, SHEN Q, et al. Association between urinary phthalates and pubertal timing in Chinese adolescents [J]. Journal of Epidemiology, 2015, 25(9): 574-582. doi: 10.2188/jea.JE20140205
    [46] DEZIEL N C, COLT J S, KENT E E, et al. Associations between self-reported pest treatments and pesticide concentrations in carpet dust [J]. Environmental Health, 2015, 14(1): 1-11. doi: 10.1186/1476-069X-14-1
    [47] YE X Q, LIU J. Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: A reproductive health perspective [J]. Environmental Pollution, 2019, 245: 590-599. doi: 10.1016/j.envpol.2018.11.031
    [48] HU Y, ZHANG Z J, QIN K L, et al. Environmental pyrethroid exposure and thyroid hormones of pregnant women in Shandong, China [J]. Chemosphere, 2019, 234: 815-821. doi: 10.1016/j.chemosphere.2019.06.098
    [49] CASTIELLO F, FREIRE C. Exposure to non-persistent pesticides and puberty timing: A systematic review of the epidemiological evidence [J]. European Journal of Endocrinology, 2021, 184(6): 733-749. doi: 10.1530/EJE-20-1038
    [50] LI J W, REN F Z, LI Y X, et al. Chlorpyrifos induces metabolic disruption by altering levels of reproductive hormones [J]. Journal of Agricultural and Food Chemistry, 2019, 67(38): 10553-10562. doi: 10.1021/acs.jafc.9b03602
    [51] FU Z S, XI S H. The effects of heavy metals on human metabolism [J]. Toxicology Mechanisms and Methods, 2020, 30(3): 167-176. doi: 10.1080/15376516.2019.1701594
    [52] VAREDA J P, VALENTE A J M, DURÃES L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review [J]. Journal of Environmental Management, 2019, 246: 101-118. doi: 10.1016/j.jenvman.2019.05.126
    [53] RAHMAN A, KIPPLER M, PERVIN J, et al. A cohort study of the association between prenatal arsenic exposure and age at menarche in a rural area, Bangladesh [J]. Environment International, 2021, 154: 106562. doi: 10.1016/j.envint.2021.106562
    [54] MAISONET M, JAAKKOLA J J K, TAYLOR C M, et al. Prenatal lead exposure and puberty timing in girls [J]. Epidemiology, 2014, 25(1): 153-155. doi: 10.1097/EDE.0000000000000021
    [55] JANSEN E C, ZHOU L, SONG P X K, et al. Prenatal lead exposure in relation to age at menarche: Results from a longitudinal study in Mexico City [J]. Journal of Developmental Origins of Health and Disease, 2018, 9(4): 467-472. doi: 10.1017/S2040174418000223
    [56] ASHRAP P, SÁNCHEZ B N, TÉLLEZ-ROJO M M, et al. In utero and peripubertal metals exposure in relation to reproductive hormones and sexual maturation and progression among girls in Mexico City [J]. Environmental Research, 2019, 177: 108630. doi: 10.1016/j.envres.2019.108630
    [57] REYNOLDS P, CANCHOLA A J, DUFFY C N, et al. Urinary cadmium and timing of menarche and pubertal development in girls [J]. Environmental Research, 2020, 183: 109224. doi: 10.1016/j.envres.2020.109224
    [58] CROES K, de COSTER S, de GALAN S, et al. Health effects in the Flemish population in relation to low levels of mercury exposure: From organ to transcriptome level [J]. International Journal of Hygiene and Environmental Health, 2014, 217(2/3): 239-247.
    [59] QIU J, SUN Y Y, SUN W, et al. Neonatal exposure to bisphenol A advances pubertal development in female rats [J]. Molecular Reproduction and Development, 2020, 87(4): 503-511. doi: 10.1002/mrd.23329
    [60] 徐耿, 韩阿珠, 许诺, 等. 孕期双酚A暴露对子代雌鼠青春期发育提前及下丘脑-垂体-性腺轴激素水平的影响 [J]. 卫生研究, 2018, 47(3): 425-431. doi: 10.19813/j.cnki.weishengyanjiu.2018.03.015

    XU G, HAN A, XU N, et al. Effects of maternal exposure to bisphenol A during pregnancy on puberty in advance and hypothalamo-pituitary gonadal axis hormones level in female offspring [J]. Journal of Hygiene Research, 2018, 47(3): 425-431(in Chinese). doi: 10.19813/j.cnki.weishengyanjiu.2018.03.015

    [61] SHI M X, WHORTON A E, SEKULOVSKI N, et al. Prenatal exposure to bisphenol A, E, and S induces transgenerational effects on female reproductive functions in mice [J]. Toxicological Sciences, 2019, 170(2): 320-329. doi: 10.1093/toxsci/kfz124
    [62] YUAN M, ZHAO Y N, LIN R, et al. Adverse reproductive function induced by maternal BPA exposure is associated with abnormal autophagy and activating inflamation via mTOR and TLR4/NF-κB signaling pathways in female offspring rats [J]. Reproductive Toxicology, 2020, 96: 185-194. doi: 10.1016/j.reprotox.2020.07.001
    [63] FERNÁNDEZ M, BIANCHI M, LUX-LANTOS V, et al. Neonatal exposure to bisphenol A alters reproductive parameters and gonadotropin releasing hormone signaling in female rats [J]. Environmental Health Perspectives, 2009, 117(5): 757-762. doi: 10.1289/ehp.0800267
    [64] LI Z L, LI T, LENG Y, et al. Hormonal changes and folliculogenesis in female offspring of rats exposed to cadmium during gestation and lactation [J]. Environmental Pollution, 2018, 238: 336-347. doi: 10.1016/j.envpol.2018.03.023
    [65] MUNIER M, AYOUB M, SUTEAU V, et al. In vitro effects of the endocrine disruptor p, p'-DDT on human choriogonadotropin/luteinizing hormone receptor signalling [J]. Archives of Toxicology, 2021, 95(5): 1671-1681. doi: 10.1007/s00204-021-03007-1
    [66] HALL J M, GRECO C W. Perturbation of nuclear hormone receptors by endocrine disrupting chemicals: Mechanisms and pathological consequences of exposure [J]. Cells, 2019, 9(1): 13. doi: 10.3390/cells9010013
    [67] YU Z, WANG F, HAN J Y, et al. Opposite effects of high- and low-dose di-(2-ethylhexyl) phthalate (DEHP) exposure on puberty onset, oestrous cycle regularity and hypothalamic kisspeptin expression in female rats [J]. Reproduction, Fertility, and Development, 2020, 32(6): 610-618. doi: 10.1071/RD19024
    [68] KIM D H, PARK C G, KIM S H, et al. The effects of mono-(2-ethylhexyl) phthalate (MEHP) on human estrogen receptor (hER) and androgen receptor (hAR) by YES/YAS in vitro assay [J]. Molecules, 2019, 24(8): E1558. doi: 10.3390/molecules24081558
    [69] REN X M, GUO L H. Molecular toxicology of polybrominated diphenyl ethers: Nuclear hormone receptor mediated pathways [J]. Environmental Science. Processes & Impacts, 2013, 15(4): 702-708.
    [70] CAO L Y, REN X M, YANG Y, et al. Hydroxylated polybrominated diphenyl ethers exert estrogenic effects via non-genomic G protein-coupled estrogen receptor mediated pathways [J]. Environmental Health Perspectives, 2018, 126(5): 057005. doi: 10.1289/EHP2387
    [71] DICKERSON S M, GORE A C. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle [J]. Reviews in Endocrine and Metabolic Disorders, 2007, 8(2): 143-159. doi: 10.1007/s11154-007-9048-y
    [72] ANDROUTSOPOULOS V P, HERNANDEZ A F, LIESIVUORI J, et al. A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides [J]. Toxicology, 2013, 307: 89-94. doi: 10.1016/j.tox.2012.09.011
    [73] GRACELI J B, DETTOGNI R S, MERLO E, et al. The impact of endocrine-disrupting chemical exposure in the mammalian hypothalamic-pituitary axis [J]. Molecular and Cellular Endocrinology, 2020, 518: 110997. doi: 10.1016/j.mce.2020.110997
    [74] BAYKARA M, OZCAN M, BILGEN M, et al. Interference of gadolinium dechelated from MR contrast agents by calcium signaling in neuronal cells of GnRH [J]. Journal of Cellular Physiology, 2021, 236(3): 2139-2143. doi: 10.1002/jcp.30000
    [75] TCHOUNWOU P B, YEDJOU C G, PATLOLLA A K, et al. Heavy metal toxicity and the environment[M]//Experientia Supplementum. Basel: Springer Basel, 2012: 133-164.
    [76] JALAL N, SURENDRANATH A R, PATHAK J L, et al. Bisphenol A (BPA) the mighty and the mutagenic [J]. Toxicology Reports, 2018, 5: 76-84. doi: 10.1016/j.toxrep.2017.12.013
    [77] LIU T, WANG Y Z, YANG M D, et al. Di-(2-ethylhexyl) phthalate induces precocious puberty in adolescent female rats [J]. Iranian Journal of Basic Medical Sciences, 2018, 21(8): 848-855.
    [78] SHAO P, WANG Y Z, ZHANG M, et al. The interference of DEHP in precocious puberty of females mediated by the hypothalamic IGF-1/PI3K/Akt/mTOR signaling pathway [J]. Ecotoxicology and Environmental Safety, 2019, 181: 362-369. doi: 10.1016/j.ecoenv.2019.06.017
    [79] YU Z, ZHAN Q F, CHEN A, et al. Intermittent fasting ameliorates di-(2-ethylhexyl) phthalate-induced precocious puberty in female rats: A study of the hypothalamic-pituitary-gonadal axis [J]. Reproductive Biology, 2021, 21(3): 100513. doi: 10.1016/j.repbio.2021.100513
    [80] ALLAIS A, ALBERT O, LEFÈVRE P L C, et al. In utero and lactational exposure to flame retardants disrupts rat ovarian follicular development and advances puberty [J]. Toxicological Sciences, 2020, 175(2): 197-209. doi: 10.1093/toxsci/kfaa044
    [81] LI X H, SUN Z L, MANTHARI R K, et al. Effect of gestational exposure to arsenic on puberty in offspring female mice [J]. Chemosphere, 2018, 202: 119-126. doi: 10.1016/j.chemosphere.2018.03.095
    [82] SAEDI S, SHIRAZI M R J, ZAMIRI M J, et al. Impaired follicular development and endocrine disorders in female rats by prepubertal exposure to toxic doses of cadmium [J]. Toxicology and Industrial Health, 2020, 36(2): 63-75. doi: 10.1177/0748233720912060
  • 加载中
表( 3)
计量
  • 文章访问数:  2473
  • HTML全文浏览数:  2473
  • PDF下载数:  57
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-28
  • 录用日期:  2022-01-20
  • 刊出日期:  2023-02-27

环境内分泌干扰物对女性青春期性成熟的干扰作用研究进展

    通讯作者: Tel:0571-86633307,E-mail:yexq@zcmu.edu.cn
  • 浙江中医药大学医学技术与信息工程学院,杭州,310053
基金项目:
浙江省自然科学基金(LQ20B070005)和浙江中医药优秀青年人才基金项目(2020ZQ013)资助.

摘要: 青春期是人一生中生长发育的关键窗口期,易受到外界环境信号的干扰。环境内分泌干扰物能通过干扰人体内天然激素的正常运作,影响青春期发动时相。目前,各种环境内分泌干扰物对女性青春期性成熟的影响均未得到一致结论,且具体诱发机制不明确。本文综述了有机污染物和重金属这两类环境内分泌干扰物对女性青春期性成熟的影响及其造成女性青春期性成熟异常的可能机制,以期为深入研究环境内分泌干扰物对青春期性成熟的影响和分子机制提供思路,为加强环境内分泌干扰物的风险管理提供科学依据,对保障女性健康具有重要的科学意义和社会意义。

English Abstract

  • 青春期是生理-心理-社会三者相互交织的现象,是儿童到成人的过渡期。青春期发动时相对整个生命周期的身心健康有着巨大影响[1],发动时相异常会增加女性罹患各种疾病甚至癌症的风险[2-4]。目前,全球儿童青春期发育开始时间和速度加快,尽管个体基因是其主要决定因素,但上世纪环境污染严重,已发现许多环境内分泌干扰物(environmental endocrine disruptors,EEDs)会严重影响青春期的正常进程[5].

    EEDs是一类能通过干扰天然激素的合成、分泌、运输、结合、反应和代谢等过程从而对人体的生殖、神经和免疫系统等功能产生影响的外源性化学物质。农药、洗涤剂、塑料、纺织品、塑化剂、防腐剂等化学用品是其主要来源。随着这些产品日益广泛而高频的使用,越来越多的EEDs进入环境,造成污染[6-7]。人类可通过摄取被EEDs污染的食物、呼吸道吸入和皮肤接触等途径接触EEDs,暴露风险不言而喻[8]。EEDs暴露对女性青春期性成熟具有干扰作用,如女性尿液中高双酚A水平与青春期启动提前相关(P<0.05)[9];我们前期的研究也发现,尿液中拟除虫菊酯主要代谢产物水平与女性青春期发动时相呈显著负相关[OR=0.51(95%CI:0.28—0.93),P<0.05][10]。但各类EEDs对女性青春期性成熟的具体影响均未得到一致结论,且具体诱发机制尚不明确。

    本文回顾了青春期性成熟的神经内分泌机理,并对近10年发表的有关EEDs对女性青春期性成熟影响的人群流行病学研究进行整理,初步探讨产生这些作用可能的分子机制,以期为深入研究EEDs和青春期性成熟的关系提供思路。

    • 在PubMed和中国知网数据库中使用“青春期、性成熟、女孩、下丘脑-垂体-性腺轴、有机氯、二恶英、多氯联苯、多环芳烃、多溴联苯醚、烷基酚、双酚A、邻苯二甲酸酯、拟除虫菊酯、有机磷农药、暴露、重金属、类固醇受体、钙通道、信号分子”关键词对2011年至2021年的科学文献进行搜索。所有论文均经过仔细和系统的审查与筛选,符合本研究范围的论文纳入本综述。

    • 神经内分泌机理主要指神经系统和内分泌系统之间的调控关系。虽然目前关于青春期启动机制的理论尚不完善,但通过大量实验研究,对青春期性成熟的神经内分泌机理已有较为清晰的认识。青春期是一个主要由神经内分泌和性腺激素级联驱动的生理和社会情感成熟发展的过程[11]。青春期的发育分为肾上腺期和性腺期。第一阶段,由下丘脑-垂体-肾上腺轴(hypothalamic-pituitary-adrenal axis,HPA轴)触发的肾上腺素是青春期发育的最早迹象,负责部分第二性征的表现。下丘脑-垂体-性腺轴(hypothalamic-pituitary-gonad axis,HPG轴)是青春期发育第二阶段的调控轴,其与青春期启动的内分泌调控有关。在胎儿期,HPG轴已基本建立,但由于该时期母体能通过胎盘进行雌激素的供给,因此该系统对内分泌的调控直到出生后才逐步稳定。婴幼儿时期,HPG系统被抑制,促性腺激素释放激素(gonadotropin releasing hormone,GnRH)分泌水平较低。在这一静止期后,HPG轴被重新激活并随着青春期临床特征的出现而达到顶峰。下丘脑释放的GnRH诱导垂体分泌促性腺激素——黄体生成素(luteinizing,LH)和卵泡刺激素(follicle-stimulating hormone,FSH),进而刺激卵巢和睾丸产生性类固醇激素如雌激素和睾酮,较高的性激素浓度也会对下丘脑GnRH的分泌和垂体促性腺激素的分泌进行负反馈。关于HPG轴的启动可能与Kiss-1基因(Kisspeptin-1)的表达及其受体G蛋白偶联受体54(G protein-coupled receptor 54,GPR54)、速激肽、MKRN3基因(makorin ring finger protein 3)等有关[12-14]

    • 本文收集到32项与EEDs暴露对女性青春期性成熟影响有关的人群流行病学研究,根据文献中研究的EEDs种类,将文献分为有机污染物、重金属这两类化合物对女性青春期性成熟的影响。表1表2总结了这些文献的研究方法及其与青春期性成熟的相关性,具体分析如下。

    • 工业化学品如阻燃剂、绝缘油、杀虫剂、焚烧产物等是环境中持久性有机污染物(persistent organic pollutants,POPs)的主要来源。由于POPs毒性大、难降解、半衰期长[15],对人类健康及生态环境潜在危害大,2001年联合国环境规划署首次提出控制包括滴滴涕、多氯联苯等在内的12种POPs。2004年斯德哥尔摩公约正式生效,指出应禁止生产、使用POPs。

      两项前瞻性队列研究探讨了母亲产前POPs暴露对所产女性青春期性成熟的影响。一项针对314名女性的调查,对其母亲怀孕时和其9岁时血清中4种多溴二苯醚(polybrominated diphenyl ether,PBDE)(BDE-47,-99,-100,-153)浓度的研究发现,产前暴露于多溴二苯醚使所产女性月经初潮时间延迟[相对危险度(relative risk,RR)=0.5(95%CI:0.3—0.9),P<0.05][16];意大利的一项以塞维索化工厂爆炸事件导致的2,3,7,8-四氯二苯-并-对二恶英(2,3,7,8-tetrachlorodibenzo-p-dioxin,TCDD)暴露为调查背景的队列研究将爆炸发生时母亲当时青春期性成熟发育情况作为影响因素进行修正后发现,母亲产前TCDD暴露与其所产女性月经初潮年龄延迟有关[风险比(hazard ratio,HR) = 0.71(95%CI:0.52—0.97),P<0.05][17]

      六项人群流行病学研究对女性出生后POPs暴露与女性青春期性成熟之间是否存在相关性进行探讨。三项研究[18-20]通过对女性血清中有机氯农药、多溴联苯醚、多氯联苯水平检测后发现这些POPs与女性青春期性成熟时间提前相关;罗马的一项包括404名女性的病例对照研究显示,特发性中枢性性早熟女性血清中多溴二苯醚浓度较其他文献中正常女性浓度高[21];两项研究显示[22-23]多环芳烃是女性尤其是超重女性青春期发动时相提前的潜在风险因素。

      就以上8项研究结果来看,母亲产前POPs暴露和女性出生后的POPs暴露与女性青春期发动时相有关。

    • 烷基酚(alkylphenols,APs)是一种表面活性剂,常应用于如橡胶制品、塑料、纺织品等化工产品的生产中,在室内空气、建筑材料、污水处理厂的流出物及地下水中均能检出APs[24]。吸入含APs的粉尘是人体暴露主要途径[25]。Wen等[26]研究表明,超过60%的女性尿液中检出APs残留。

      双酚A(bisphenol A,BPA)是APs的代表物之一,全世界每年能生产2700万吨含有BPA的塑料用作食品包装。由于BPA的广泛使用,其衍生物被大量释放到环境中,造成水体和土壤污染[27]。两项前瞻性队列研究探讨了母亲产前BPA暴露对所产女性青春期性成熟的影响。一项研究报告称妊娠中期BPA暴露与乳房发育Tanner第二阶段及以上提前有关[比值比(odds ratio,OR)=2.2(95%CI:1.0—4.5),P<0.05][28];而另一项研究表示BPA暴露与生殖器毛发发育程度[mean shift=4.0 months(95%CI:1.3—6.7),P<0.05]、月经初潮[mean shift=3.2 months(95%CI:1.1—5.3),P<0.05]延迟有关[29]。十项人群流行病学研究对女性出生后BPA暴露与女性青春期性成熟之间是否存在相关性进行探讨。三项病例对照研究[930-31]结果提示性早熟患者尿液中BPA浓度水平较高,表明BPA暴露可能与青春期发动时相提前有关,并且在身体质量指数(body mass index,BMI)较低的女性中这种关联性更强;而中国的一项针对655名9—18岁女性的横断面研究发现,中剂量和高剂量BPA暴露的女性较对照组月经初潮相关的可能性较小,患病率(prevalence ratios,PRs)(95%CI)分别为0.73(0.56—0.95)和0.72(0.52—0.99)[32];其他研究结果则显示BPA暴露与青春期性成熟无关[33-38]

      壬基酚是乙氧基化烷基厌氧降解的产物,它在洗涤剂、农药乳化剂、纺织印染中充当表面活性剂的角色[39]。本文收集到了两项关于壬基酚暴露对青春期性成熟的影响的流行病学研究。Yum等[40]研究发现性早熟患者血液中n-壬基酚(n-nonyl phenol,n-NP)水平比对照组高1.2倍,但无统计学意义,提示这些化合物可能是青春期发动时相提前的潜在因素;而一项以问卷形式评估青春期发育情况、人体测量指数评估体型的横断面研究表明,壬基酚暴露与女性青春期性成熟无显著关联[41]

      本文发现与APs暴露对女性青春期性成熟时间影响有关的人群流行病学研究结果不尽相同,且即使在同一项研究中若判断依据不同,研究结果可能也会出现差异。

      邻苯二甲酸酯(phthalate,PAEs)是一类多功能化合物,常被当作塑化剂应用于儿童玩具、建筑材料、化妆品、医疗器械等用品中。虽然其生物半衰期小于24 h,不易在机体中蓄积,但其在生活中的广泛使用对人类造成了一个持续暴露的环境,超过90%的女性尿液中检出PAEs残留[42]

      三项队列研究对母亲产前PAEs暴露与其所产女性青春期性成熟之间是否存在相关性进行探讨。Berger等[29]通过研究产妇尿液中高分子量邻苯二甲酸二(2-乙基己基)酯(di-2-ethylhexyl phthalate,DEHP)浓度与其所产女性青春期乳房、生殖器毛发发育程度及月经初潮时间的关联性,发现产前暴露于高分子量DEHP与女性青春期性成熟延迟有关;一项美国的研究表明产前尿液邻苯二甲酸单乙酯浓度与生殖器毛发发育程度提前有关[mean shift=−1.3 months(95%CI:−2.5—−0.1),P<0.05][43];而Watkins等[28]对妊娠早、中、晚期母亲尿液中邻苯二甲酸酯代谢物进行分析后发现,尿液中邻苯二甲酸单(2-乙基己基)酯(mono-2-ethylhexyl phthalate,MEHP)浓度水平与妊娠中期乳房提前有关[OR=0.32(95%CI:0.11—0.95),P<0.05],与妊娠晚期乳房发育程度延迟有关[OR=3.76(95%CI:1.1—12.8),P<0.05]。

      七项人群流行病学研究探讨了女性出生后PAEs暴露对女性青春期性成熟的影响。两项队列研究[3344]表明PAEs暴露与女性青春期性成熟延迟有关;两项研究[3845]提示PAEs暴露与女性青春期性成熟提前有关,且在BMI值较低的人群中这种相关性更强;其他研究结果则显示PAEs暴露与女性青春期性成熟无关[36-3741]

      总而言之,不同研究得到的尿液中邻苯二甲酸酯代谢产物浓度与第二性征发育程度及月经初潮时间的相关性结果并不一致。考虑到生殖系统在不同生命发育周期完成不同的发育程序,每个发育点一到两次生物样品的测量可能不能准确反映通常的接触情况,同时研究人群特征、PAEs分子量不同也可能导致不同结局的发生。

      农药是在农业中以防治病虫害及调节植物生长为目的的一类有机化合物。随着滴滴涕、六六六、毒死蜱等传统农药的禁用,新型农药如拟除虫菊酯杀虫剂、有机磷农药等因其高效、低毒的特点逐渐在消费市场中占据主要地位。

      拟除虫菊酯是一种模拟天然除虫菊素的人工合成的杀虫剂,尽管其对人类的估计风险较低,但农业上的大量使用使其对环境造成不可避免的污染,空气、食物及生物体内均能检出拟除虫菊酯及其代谢物[46]。饮食摄入是人体暴露于拟除虫菊酯的主要途径[47]。已有研究表明,拟除虫菊酯在女性尿液中的检出率可高达90.4%,中位值浓度达到1.14 µg·g−1肌氨酸酐[48]。拟除虫菊酯对女性青春期性成熟具有干扰作用。Ye等[10]采用二元logistic回归模型对305名9—15岁的中国女性尿液中多种拟除虫菊酯的共同代谢产物3-苯氧基苯甲酸(3-phenoxybenzoic,3-PBA)浓度进行分析后首次发现,尿液中3-PBA浓度与初潮来否呈负相关[OR=0.51(95%CI:0.28—0.93),P<0.05],提示拟除虫菊酯可能会延迟女性青春期性成熟。

      有机磷化合物是一种神经毒性化学物质,曾在世界范围内广泛用作农药防治病虫害,对人体健康造成极大危害。Castiello等[49]研究发现母亲产前接触有机磷农药会延迟所产女性性成熟,其机制可能与生殖激素分泌异常有关[50]表1)。

    • 随着人类在生产生活中排放污水、废气及电子垃圾,重金属在环境中的浓度急剧升高,打破生态平衡。人体主要通过摄入受污染的水或食物接触重金属[51]。许多重金属已被证明对女性青春期性成熟有干扰作用[52]

      四项人群流行病学研究对母亲产前重金属暴露与其所产女性青春期性成熟之间是否存在相关性进行探讨。Rahman等[53]通过评估产妇怀孕时饮用水中砷浓度与其所产女性月经初潮时间的关系,发现产前砷暴露与其所产女性月经初潮时间延迟有关[调整后的风险比(adjusted hazard ratios,aHR)=0.77(95%CI:0.63—0.95),P<0.05)],且当饮用水中砷浓度超过200 μg·L−1时,月经初潮时间较砷暴露小于50 μg·L−1的女性延迟2.8个月;Maisonet[54]和Jansen[55]均采用队列研究的方法对母亲产前血铅浓度与其所产女性青春期第二性征发育程度和月经初潮时间之间是否存在相关性进行研究得出了相反的结果,这可能与不同妊娠阶段铅暴露产生的毒性效应不同有关;一项在墨西哥城开展的包括132名孕妇及其所产女性的队列研究发现,妊娠晚期孕妇尿液中镍[OR=0.73(95%CI:0.59—0.89),P<0.05)]、铝[OR=0.82(95%CI:0.68—0.99),P<0.05)]和镉[OR=0.83(95%CI:0.71—0.97),P<0.05)]浓度与所产女性青春期乳房发育缓慢呈正相关[56]

      三项人群流行病学研究探讨了女性出生后重金属暴露对女性青春期性成熟的影响。Reynolds等[57]采用电感耦合等离子体质谱法测定居住在旧金山的211名10—13岁女性的尿液样本中镉浓度,发现女性尿液中的镉暴露与月经初潮时间延迟有关[HR=0.42(95%CI:0.23—0.78),P<0.05];比利时的一项横断面研究结果显示汞暴露与女性月经初潮年龄呈负相关(P<0.05)[58]。Ashrap等[56]对包括132名孕妇及其所产女性的队列研究发现,青春期钡、铝暴露水平与生殖器毛发发育提前有关(P<0.05)。

      以上六项研究表明母亲产前或女性出生后重金属暴露与女性青春期性成熟之间存在相关性,且同一重金属在不同发育阶段的暴露可能造成不同的结局(表2)。

    • EEDs对女性青春期性成熟的影响主要表现为诱导青春期性成熟提前和延迟青春期性成熟,主要通过干扰下丘脑-垂体-卵巢轴(hypothalamic-pituitary-ovary axis,HPO轴)青春期相关基因的表达和激素的分泌影响女性青春期性成熟。目前关于EEDs暴露影响青春期性成熟机制的研究仍然十分匮乏,其中以BPA、DEHP和PBDEs居多(表3)。女性青春期性成熟提前或延后通常是雌激素分泌增加或减少的直接结果,雌激素分泌的改变可能是直接作用于卵巢甾体激素受体引起,也可能是通过对HPO轴离子通道或相关信号分子的调控引起的。

    • 雌激素水平在青春期性成熟的过程中发挥着重要的作用,EEDs可能直接通过雌激素受体诱导雌激素分泌从而使雌性青春期性成熟提前。研究表明,BPA可通过激活下丘脑中肿瘤转移抑制基因-1的表达,促使下丘脑分泌GnRH,进而促进垂体分泌LH、FSH、卵巢分泌雌二醇(estradiol,E2)、孕酮(progesterone,P)等性腺激素的分泌,导致受试动物阴道口张开较正常对照组提前(P<0.05)[59-62]。EEDs可通过多种信号转导途径间接对雌激素分泌造成干扰,从而诱导雌性青春期性成熟提前。BPA能干扰细胞外信号调节激酶1/2(ERK1/2)通路影响GnRH的激活,增加LH的脉动性[63]。Li等[64]将亲代(F0)妊娠期母鼠暴露于CdCl2并观察其雌性后代的类固醇及卵泡生成、青春期开始时间,发现镉能通过激活cAMP/PKA通路,增加F1雌性后代类固醇激素的生物合成,导致雌性F1代青春期提前。2,2-双(4-氯苯基)-1,1,1-三氯乙烷(dichlorodiphenyltrichloroethane,p,p'-DDT)是人类促卵泡激素受体的正变构调节剂[65]

    • 甾体激素受体在青春期性成熟的过程中发挥的作用不容忽视[66]。Yu等[67]对雌性SD大鼠于出生第22天至70天进行灌胃给药,发现500 mg·kg−1 DEHP剂量组大鼠阴道口张开时间较正常对照组延迟,下丘脑Kiss1 mRNA表达水平、血清雌二醇、黄体生成素、孕酮分泌量显著减少(P<0.05)。EEDs可通过离子通道、甾体激素受体对雌激素的合成与分泌产生影响。DEHP可通过直接与雌激素受体结合或通过雄激素的非受体介导的方式诱导抗雌激素和抗雄激素活性[68]。多溴联苯醚及其代谢产物、多氯联苯、部分农药如滴滴涕、有机氯、有机磷等也被观察到能与G蛋白偶联雌激素受体结合,具有拮抗雌激素和雄激素活性的功能[69-72]。BPA可作为雌二醇的拮抗剂,抑制雌激素受体β信号的传导[73]

      钙信号在GnRH的分泌过程中扮演着重要角色,实验证明,阻断Ca2+通道能抑制自发性电活动,从而阻止GnRH的释放[74],因此可能是EEDs诱导青春期性成熟延迟潜在的分子机制。铅能与钙离子竞争结合位点,从而影响钙离子的运输[75];低剂量BPA可通过抑制SPCA1/2等钙通道使细胞的Ca2+稳态失衡[76]。EEDs也可能通过直接作用于钙离子通道从而延迟雌性青春期性成熟,但目前相关研究仍然较少,亟需进一步探究。

    • 大量研究表明,EEDs会干扰女性青春期性成熟的正常进程。本文总结了有机化合物和重金属这两类环境内分泌干扰物对女性青春期性成熟影响的人群流行病学研究,以及这些EEDs造成女性青春期性成熟异常的可能机制。然而EEDs种类繁多,其化学结构、理化性质及毒理学效应复杂,且关于人群流行病学及其分子机制的研究还不够充分,所得结果通常是不确定甚至矛盾的,相关机制需要进一步探究。综上所述,今后的研究可以从以下4个方向进行探讨:①EEDs的毒性效应可受如共暴露、暴露时间、接触方式等因素的影响,应建立系统的评价人体健康危害的方法和指标,寻找合适的生物标志物进行分析测定,准确、全面地评估其对人类尤其是女性造成的影响;②应加强EEDs暴露的人群流行病学调查尤其是队列研究,进一步探究EEDs暴露对青春期发动时相的影响;③未来的研究应集中于青春期时间纵向测量和产前、早期生活暴露的测量,进一步探索超重、肥胖状态的潜在修正效应;④目前关于EEDs对青春期性成熟影响的相关分子机制研究十分匮乏,深入探讨其潜在的毒性机制可为EEDs的健康风险评估提供理论依据。

    参考文献 (82)

目录

/

返回文章
返回