二氧化锰基纳米材料对重金属离子的去除及机理研究进展

马俊平, 赵秋宇, 王晨, 周履俊, 汪建军. 二氧化锰基纳米材料对重金属离子的去除及机理研究进展[J]. 环境化学, 2020, (3): 687-703. doi: 10.7524/j.issn.0254-6108.2019090207
引用本文: 马俊平, 赵秋宇, 王晨, 周履俊, 汪建军. 二氧化锰基纳米材料对重金属离子的去除及机理研究进展[J]. 环境化学, 2020, (3): 687-703. doi: 10.7524/j.issn.0254-6108.2019090207
MA Junping, ZHAO Qiuyu, WANG Chen, ZHOU Lyujun, WANG Jianjun. Removal of heavy metal ions by manganese dioxide-based nanomaterials and mechanism research: A review[J]. Environmental Chemistry, 2020, (3): 687-703. doi: 10.7524/j.issn.0254-6108.2019090207
Citation: MA Junping, ZHAO Qiuyu, WANG Chen, ZHOU Lyujun, WANG Jianjun. Removal of heavy metal ions by manganese dioxide-based nanomaterials and mechanism research: A review[J]. Environmental Chemistry, 2020, (3): 687-703. doi: 10.7524/j.issn.0254-6108.2019090207

二氧化锰基纳米材料对重金属离子的去除及机理研究进展

    通讯作者: 汪建军, E-mail: wangjj2016@ncepu.edu.cn
  • 基金项目:

    国家自然科学基金(11575211,11875028)和中央大学基础研究基金(2017MS044)资助.

Removal of heavy metal ions by manganese dioxide-based nanomaterials and mechanism research: A review

    Corresponding author: WANG Jianjun, wangjj2016@ncepu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(11575211,11875028)and the Fundamental Research Funds for the Central Universities(2017MS044).
  • 摘要: 重金属离子对人类健康和环境安全产生了严重威胁,因此重金属废水高效处理成为了环境领域最具挑战性的热点问题之一.二氧化锰(MnO2)是一种环境友好型金属氧化物,具有来源广泛、成本低廉、形貌多样、晶型丰富、结构稳定、粒径可控等优异的性质,在重金属离子的去除应用上展现出巨大的潜力.近年来,人们利用MnO2基纳米材料在重金属离子的有效治理方面开展了大量的研究.本文综述了MnO2基纳米材料在重金属离子环境修复方面取得的研究进展,包括MnO2的制备和改性方法,MnO2基纳米材料在水溶液重金属离子去除中的应用及吸附作用机制,并对研究方向进行了总结和展望,旨在为进一步设计合成对重金属离子的吸附去除具有实际应用价值的MnO2基纳米材料提供参考.
  • 加载中
  • [1] 刘金燕,刘立华,薛建荣,等.重金属废水吸附处理的研究进展[J].环境化学,2018,37(9):2016-2024.

    LIU J Y,LIU L H,XUE J R,et al.Research progress on treatment of heavy metal wastewater by adsorption[J].Environmental Chemistry,2018,37(9):2016-2024(in Chinese).

    [2] LIU M,WU X,CHEN C,et al.Synthesizing the composites of graphene oxide-wrapped polyaniline hollow microspheres for high-performance supercapacitors[J].Science of Advanced Materials,2013,5(11):1686-1693.
    [3] LIU Z,CHEN L,ZHANG Z,et al.Synthesis of multi-walled carbon nanotube-hydroxyapatite composites and its application in the sorption of Co(Ⅱ)from aqueous solutions[J].Journal of Molecular Liquids,2013,179(39):46-53.
    [4] REN X,YANG S,SHAO D,et al.Retention of Pb(Ⅱ)by a low-cost magnetic composite prepared by environmentally-friendly plasma technique[J].Separation Science & Technology,2013,48(8):1211-1219.
    [5] HU J,YANG S,WANG X J.Adsorption of Cu(Ⅱ)on β-cyclodextrin modified multiwall carbon nanotube/iron oxides in the absence/presence of fulvic acid[J].Journal of Chemical Technology & Biotechnology,2012,87(5):673-681.
    [6] SHAO D,CHEN C,WANG X.Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(Ⅱ)[J].Chemical Engineering Journal,2012,185-186(6):144-150.
    [7] ZHANG S,WANG X,LI J,et al.Efficient removal of a typical dye and Cr(Ⅵ)reduction using N-doped magnetic porous carbon[J].RSC Advances,2014,4(108):63110-63117.
    [8] LIU L,LI Y,LIU X,et al.Chelating stability of an amphoteric chelating polymer flocculants with Cu(Ⅱ),Pb(Ⅱ),Cd(Ⅱ),and Ni(Ⅱ)[J].Spectrochimica Acta Part a Molecular & Biomolecular Spectroscopy,2014,118:765-775.
    [9] ZHAO Y,ZHAO D,CHEN C,et al.Enhanced photo-reduction and removal of Cr(Ⅵ)on reduced graphene oxide decorated with TiO2 nanoparticles[J].Journal of Colloid & Interface Science,2013,405(Complete):211-217.
    [10] CHEN H,LI J,WU X,et al.Synthesis of alumina-modified cigarette soot carbon as an adsorbent for efficient arsenate removal[J].Industrial & Engineering Chemistry Research,2015,53(41):16051-16060.
    [11] 刘立华,杨刚刚,王易峰,等.模板法合成介孔硅酸钙及其对重金属离子的吸附性能[J].环境化学,2016,35(9):1943-1951.

    LIU L H,YANG G G,WANG Y F,et al.Synthesis of mesoporous calcium silicate by template method and its adsorption performance for heavy metal ions[J].Environmental Chemistry,2016,35(9):1943-1951(in Chinese).

    [12] HU R,WANG X,DAI S,et al.Application of graphitic carbon nitride for the removal of Pb(Ⅱ)and aniline from aqueous solutions[J].Chemical Engineering Journal,2015,230:469-477.
    [13] ARSHADI M,SOLEYMANZADEH M,SALVACION J W,et al.Nanoscale zero-valent iron(NZVI)supported on sineguelas waste for Pb(Ⅱ)removal from aqueous solution:kinetics,thermodynamic and mechanism[J].Journal of Colloid & Interface Science,2014,426(27):241-251.
    [14] KARABELLI D,VZVM Ç,SHAHWAN T,et al.Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron:A study of the capacity and mechanism of uptake[J].Industrial & Engineering Chemistry Research,2008,47(14):4758-4764.
    [15] ZHANG S,LI J,ZENG M,et al.Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions[J].Nanoscale,2014,6(8):4157-4162.
    [16] MEUNIER N,DROGUI P,MONTANÉ C,et al.Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate[J].Journal of Hazardous Materials,2006,137(1):581-90.
    [17] AZARUDEEN R S,SUBHA R,JEYAKUMAR D,et al.Batch separation studies for the removal of heavy metal ions using a chelating terpolymer:Synthesis,characterization and isotherm models[J].Separation & Purification Technology,2013,116(37):366-377.
    [18] AKIN I,ARSLAN G,TOR A,et al.Removal of arsenate[As(V)] and arsenite[As(Ⅲ)] from water by SWHR and BW-30 reverse osmosis[J].Desalination,2011,281(1):88-92.
    [19] LIU L H,LI T,YANG G,et al.Synthesis of thiol-functionalized mesoporous calcium silicate and its adsorption characteristics for heavy metal ions[J].Journal of Environmental Chemical Engineering,2017,5(6):6201-6215.
    [20] GAO J,SUN S P,ZHU W P,et al.Chelating polymer modified P84 nanofiltration(NF)hollow fiber membranes for high efficient heavy metal removal[J].Water Research,2014,63(Complete):252-261.
    [21] YU L L,ZHU J J,ZHAO J T.Beta-manganese dioxide nanoflowers self-assembled by ultrathin nanoplates with enhanced supercapacitive performance[J].Journal of Materials Chemistry A,2014,2(24):9353-9360.
    [22] LI W,XU K,AN L,et al.Effect of temperature on the performance of ultrafine MnO2 nanobelt supercapacitors[J].Journal of Materials Chemistry A,2013,2(5):1443-1447.
    [23] TAN W,YUAN Z,JIANG J,et al.Preparation of different morphologies of Au/α-MnO2 catalyst for oxidation of carbon monoxide and toluene[J].Journal of Environmental Engineering Technology,2018,8(2):142-148.
    [24] MA J,ZHAO Q,WEI D,et al.Simple construction of core-shell MnO2@TiO2 with highly enhanced U(Ⅵ)adsorption performance and evaluated adsorption mechanism[J].Inorganic Chemistry Frontiers,2019,6(4):1011-1021.
    [25] WANG J,MA J,ZHANG C,et al.Fabrication of core-shell α-MnO2@polydopamine nanocomposites for the efficient and ultra-fast removal of U(Ⅵ)from aqueous solution[J].Dalton Transactions,2019,48(3):971-981.
    [26] WANG Z,LEE S W,CATALANO J G,et al.Adsorption of uranium(Ⅵ)to manganese oxides:X-ray absorption spectroscopy and surface complexation modeling[J].Environmental Science & Technology,2012,47(2):850-858.
    [27] ZHU Q,LI Z.Hydrogel-supported nanosized hydrous manganese dioxide:Synthesis,characterization,and adsorption behavior study for Pb2+,Cu2+,Cd2+,and Ni2+,removal from water[J].Chemical Engineering Journal,2015,281:69-80.
    [28] 宋燕青,谭期,林滨钰,等.二氧化锰的可控合成及其重金属吸附性能研究[J].无机盐工业,2018,50(2):40-43.

    SONG Y Q,TAN Q,LIN B Y,et al.Controllable synthesis of MnO2 with different crystal structures and their adsorption activity for heavy metals[J].Inorganic Chemicals Industry,2018,50(2):40-43(in Chinese).

    [29] DUAN Y,MA H,LI X,et al.The microwave electromagnetic characteristics of manganese dioxide with different crystallographic structures[J].Physica B:Condensed Matter,2010,405(7):1826-1831.
    [30] XU N,LIU Z,WANG J,et al.Progresses on hydrothermal synthesis and formation mechanism of MnO2 nano-materials[J].Chemistry,2011,74(11):1041-1046.
    [31] 朱丽珺,张金池,宰德欣,等.水热法合成δ-MnO2及其对重金属Pb2+的吸附作用[J].安全与环境学报,2007,7(4):20-23.

    ZHU L J,ZHANG J C,ZAI D X,et al.Hydrothermal synthesis of δ-MnO2 and its adsorption on heavy metal Pb2+.Journal of Safety & Environment 2007,7(4):20-23(in Chinese).

    [32] 高博文,苏磊,张学记.聚多巴胺还原高锰酸钾制备二氧化锰阵列纳米管[J].化学通报,2017,80(1):53-58.

    GAO B W,SUI L,ZHANG X J.fabrication of manganese dioxide nanotube array through potassium permanganate reduction by polydopamine coatings formed on zinc oxide nanorod array template[J].Chemistry,2017,80(1):53-58(in Chinese).

    [33] LI W N,YUAN J,SHEN X F,et al.Hydrothermal synthesis of structure-and shape-controlled manganese oxide octahedral molecular sieve nanomaterials[J].Advanced Functional Materials,2010,16(9):1247-1253.
    [34] LI W,YUAN J,GOMEZ-MOWER S,et al.Synthesis of single crystal manganese oxide octahedral molecular sieve (OMS) nanostructures with tunable tunnels and shapes[J].Journal of Physical Chemistry B,2006,110(7):3066-3070.
    [35] CHENG F Y,CHEN J,GOU X L,et al.High-power alkaline Zn-MnO2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic zinc powder[J].Advanced Materials,2010,17(22):2753-2756.
    [36] DINH V P,LE N C,NGUYEN T P T,et al.Synthesis of α-MnO2 nanomaterial from a precursor γ-MnO2:Characterization and comparative adsorption of Pb(Ⅱ)and Fe(Ⅲ)[J].Journal of Chemistry,2016:1-9.
    [37] CHENG F,ZHAO J,SONG W,et al.Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries[J].Inorganic Chemistry,2006,45(5):2038-2044.
    [38] ZHANG H T,CHEN X H.Morphology-controllable synthesis and characterization of hierarchical 3D Co1-xMnxO nanostructures[J].Journal of Physical Chemistry B,2006,110(19):9442-9447.
    [39] 王春雨,侯永江,李博,等.纳米二氧化锰制备方法的研究进展[J].现代化工,2016(4):13-17. WANG C Y,HOU Y J,LI B,YAN Y,et al.Progress of preparation methods for nanometer manganese dioxide[J].Modern Chemical Industry,2016

    (4):13-17(in Chinese).

    [40] CHERIAN E,DHARMENDIRAKUMAR M,BASKAR G.Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste[J].Chinese Journal of Catalysis,2015,36(8):1223-1229.
    [41] 陶玉贵,金成,曹宁,等.水热法仿生合成纳米二氧化锰及其形貌调控[J].化工新型材料,2013,41(3):122-124.

    TAO Y G,JIN C,CAO N,et al.Hydrothermal synthesis and morphology control of nano-manganese dioxide[J].Chemical Materials,2013,41(3):122-124(in Chinese).

    [42] 程文,周孝德,部瑾珑,等.水中气泡上升速度的实验研究[J].西安理工大学学报,2000,16(1):57-60.

    CHENG W,ZHOU X D,BU J L,et al.Experimental study of the velocity bubble rising in water[J].Journal of Xi'an University of Technology,2000,16(1):57-60(in Chinese).

    [43] CAI Z,BAO Y,GAO Z.Hydrodynamic behavior of a single bubble rising in viscous liquids[J].Chinese Journal of Chemical Engineering,2010,18(6):923-930.
    [44] LI Y,WANG J,ZHANG Y,et al.Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method[J].Journal of Colloid & Interface Science,2012,369(1):123-128.
    [45] MALLAKPOUR S,ABDOLMALEKI A,TABEBORDBAR H.Employment of ultrasonic irradiation for production of poly(vinyl pyrrolidone)/modified alpha manganese dioxide nanocomposites:morphology,thermal and optical characterization[J].Ultrasonics Sonochemistry,2018,41:163-171.
    [46] 赵颖,王任国,曾武,等.纳米二氧化锰的制备及其对Cd2+的吸附研究[J].环境科学与技术,2012,35(3):112-116.

    ZHAO Y,WANG R G,ZENG W,et al.Preparation of nano-MnO2 and adsorption of Cd2+[J].Environmental Science & Technology,2012,35(3):112-116(in Chinese).

    [47] 殷辉,冯雄汉,邱国红,等.掺钴水钠锰矿对铅的吸附及对砷的氧化[J].环境科学,2011,32(7):2092-2101.

    YIN H,FENG X H,QIU G H,et al.Lead adsorption and arsenite oxidation by cobalt doped birnessite[J].Environmental Science,2011,32(7):2092-2101(in Chinese).

    [48] ZHANG H,GU L,ZHANG L,et al.Removal of aqueous Pb(Ⅱ)by adsorption on Al2O3-pillared layered MnO2[J].Applied Surface Science,2017,406:330-338.
    [49] MALLAKPOUR S,MADANI M.Functionalized-MnO2/chitosan nanocomposites:A promising adsorbent for the removal of lead ions[J].Carbohydrate Polymers,2016,147:53-59.
    [50] 蔡冬鸣,任南琪.不同晶型锰氧化物去除水中亚甲基蓝染料的研究[J].环境科学学报,2006,26(12):1971-1976.

    CAI D M,REN N Q.Removal of methylene blue from aqueous solution onto manganese oxide with various crystal structures[J].Acta Science Circumstantiate,2006,26(12):1971-1976(in Chinese).

    [51] PAN N,LI L,DING J,et al.Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(Ⅵ)[J].Journal of Hazardous Materials,2016,309:107-115.
    [52] LIU J,GE X,YE X,et al.3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions[J].Journal of Materials Chemistry A,2016,4(5):1970-1979.
    [53] TAN X,FANG M,REN X,et al.Effect of silicate on the formation and stability of Ni-Al LDH at the γ-Al2O3 surface[J].Environmental Science & Technology,2014,48(22):13138-13145.
    [54] KIM E J,LEE C S,CHANG Y Y,et al.Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems[J].Applied Materials & Interfaces,2013,5(19):9628-9634.
    [55] DU Y,WANG L,WANG J,et al.Flower-,wire-,and sheet-like MnO2-deposited diatomites:Highly efficient absorbents for the removal of Cr(Ⅵ)[J].Journal of Environmental Sciences,2015,29(3):71-81.
    [56] JIANG L,YE Q,CHEN J,et al.Preparation of magnetically recoverable bentonite-Fe3O4-MnO2 composite particles for Cd(Ⅱ)removal from aqueous solutions[J].Journal of Colloid and Interface Science,2017,513:748-759.
    [57] MALLAKPOUR S,MOTIRASOUL F.Use of PVA/α-MnO2-stearic acid nanocomposite films prepared by sonochemical method as a potential sorbent for adsorption of Cd(Ⅱ)ion from aqueous solution[J].Ultrasonics Sonochemistry,2017,37:623-633.
    [58] MALLAKPOUR S,MOTIRASOUL F.Ultrasonication synthesis of PVA/PVP/α-MnO2-stearic acid blend nanocomposites for adsorbing Cd Ⅱ ion[J].Ultrasonics Sonochemistry,2018,40:410-418.
    [59] ABDOLMALEKI A,MALLAKPOUR S,TABEBORDBAR H.Study on morphology,thermal,mechanical and Cd(Ⅱ)adsorption properties of PVC/α-MnO2-stearic acid nanocomposites production and application[J].Journal of Polymer Research,2016,23(12):260-269.
    [60] 黄一帆,于志红,廉菲,等.纳米二氧化锰对水中Cu2+和Cd2+的吸附特性[J].环境工程技术学报,2016,6(4):350-356.

    HUANG Y F,YU Z H,LIAN F,et al.Adsorption properties of nano MnO2 for Cu2+ and Cd2+ in water[J].Journal of Environmental Engineering Technology,2016,6(4):350-356(in Chinese).

    [61] EL-DEEN S E A S,MOUSSA S I,MEKAWY Z A,et al.Evaluation of CNTs/MnO2 composite for adsorption of 60Co(Ⅱ),65Zn(Ⅱ)and Cd(Ⅱ) ions from aqueous solutions[J].Radiochimica Acta,2017,105(1):43-55.
    [62] JUNG K W,LEE S Y,LEE Y J.Hydrothermal synthesis of hierarchically structured birnessite-type MnO2/biochar composites for the adsorptive removal of Cu(Ⅱ)from aqueous media[J].Bioresource Technology,2018,260:204-212.
    [63] ASHRAFI A,RAHBARKELISHAMI A,SHAYESTEH H.Highly efficient simultaneous ultrasonic assisted adsorption of Pb(Ⅱ)by Fe3O4@MnO2 core-shell magnetic nanoparticles:Synthesis and characterization,kinetic,equilibrium,and thermodynamic studies[J].Journal of Molecular Structure,2017,1147:40-47.
    [64] LI R,LIU L,ZHANG Y,et al.Preparation of a nano-MnO2 surface-modified reduced graphene oxide/PVDF flat sheet membrane for adsorptive removal of aqueous Ni(Ⅱ)[J].RSC Advances,2016,6(25):20542-20550.
    [65] LUO C,WEI R,GUO D,et al.Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions[J].Chemical Engineering Journal,2013,225(6):406-415.
    [66] HAN T,ZHANG X,FU X,et al.Facile synthesis of chitosan nanoparticle-modified MnO2 nanoflakes for ultrafast adsorption of Pb(Ⅱ)from aqueous solution[J].Water Science and Technology:Water Supply,2016,17(1):32-38.
    [67] JIE L,LI X,YU Z,et al.Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(Ⅱ)and Cd(Ⅱ)[J].ACS Sustainable Chemistry & Engineering,2017,5(6):5049-5058.
    [68] GUO Y,GUO H,WANG Y,et al.Designed hierarchical MnO2 microspheres assembled from nanofilms for removal of heavy metal ions[J].RSC Advances,2014,4(27):14048-14054.
    [69] 朱秋锋,王丽婷,安泽欢,等.不同形态氧化锰的水热制备及吸附重金属离子性能[J].化工新型材料,2016,44(6):184-186.

    ZHU Q F,WANG L T,AN Z H,et al.Hydrothermal synthesis of different manganese oxide and their adsorption performance for heavy metal ion[J].New Chemical Materials,2016,44(6):184-186(in Chinese).

    [70] MALLAKPOUR S,MADANI M.Use of valine amino acid functionalized α-MnO2/chitosan bionanocomposites as potential sorbents for the removal of lead(Ⅱ)ions from the aqueous solution[J].Industrial & Engineering Chemistry Research,2016,55(30):8349-8356.
    [71] ZHAI Y,XU X,WANG H,et al.Adsorption of copper on tri-amino-functionalized mesoporous delta manganese dioxide from aqueous solution[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2013,435(5):78-84.
    [72] MA H M,ZHU Z L,CHENG Y Q.Simultaneous removal of heavy-metal ions by MnO2 loaded D301 resin[J].Advanced Materials Research,2011,255-260:2791-2796.
    [73] ZHANG J,HAN J,WANG M,et al.Fe3O4/PANI/MnO2 core-shell hybrids as advanced adsorbents for heavy metal ions[J].Journal of Materials Chemistry A,2017,5(8):4058-4066.
    [74] SARI A,TUZEN M.Cd(Ⅱ)adsorption from aqueous solution by raw and modified kaolinite[J].Applied Clay Science,2014,88-89(3):63-72.
    [75] HE C,XIE F.Adsorption behavior of manganese dioxide towards heavy metal ions:surface zeta potential effect[J].Water Air & Soil Pollution,2018,229(3):77-89.
    [76] LI J,WANG X,ZHAO G,et al.Metal-organic framework-based materials:Superior adsorbents for the capture of toxic and radioactive metal ions[J].Chemical Society Reviews,2018,47:2322-2356.
    [77] ZHAO G,HUANG X,TNAG Z,et al.Polymer-based nanocomposites for heavy metal ions removal from aqueous solution:A review[J].Polymer Chemistry,2018,9(26):3562-3582.
    [78] SHENG G,JIANG S,YANG S,et al.Behavior and mechanism of Ni(Ⅱ)uptake on MnO2 by a combination of macroscopic and EXAFS investigation[J].Journal of Radioanalytical & Nuclear Chemistry,2011,289(1):129-135.
    [79] TONKIN J W,BALISTRIERI L S,MURRAY J W.Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model[J].Applied Geochemistry,2004,19(1):29-53.
    [80] SAHAI N,SVERJENSKY D A.Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data[J].Geochimica Et Cosmochimica Acta,1997,61(14):2801-2826.
    [81] SHERMAN D M,PEACOCK C L.Surface complexation of Cu on birnessite(δ-MnO2):Controls on Cu in the deep ocean[J].Geochimica Et Cosmochimica Acta,2010,74(23):6721-6730.
    [82] BRASSARD P,KRAMER J R,MCANDREW J,et al.Metal-sediment interaction during resuspension[J].Hydrobiologia,1994,284(1):101-112.
    [83] LI G,ZHAO P,ZHENG H,et al.Research on the removal mechanism of antimony on α-MnO2 nanorod in aqueous solution:DFT+U method.[J].Journal of Hazardous Materials,2018,354:8-16.
    [84] PEÑA J,KWON K D,REFSON K,et al.Mechanisms of nickel sorption by a bacteriogenic birnessite[J].Geochimica Et Cosmochimica Acta,2010,74(11):3076-3089.
    [85] KWON K D,REFSON K,SPOSITO G.Surface complexation of Pb(Ⅱ)by hexagonal birnessite nanoparticles[J].Geochimica Et Cosmochimica Acta,2011,74(23):6731-6740.
    [86] SIMANOVA A A,KWON K D,BONE S E,et al.Probing the sorption reactivity of the edge surfaces in birnessite nanoparticles using Nickel(Ⅱ)[J].Geochimica Et Cosmochimica Acta,2015,164(3):191-204.
    [87] MAENO M Y,OHASHI H,YONEZU K,et al.Sorption behavior of the Pt(Ⅱ)complex anion on manganese dioxide(δ-MnO2):A model reaction to elucidate the mechanism by which Pt is concentrated into a marine ferromanganese crust[J].Mineralium Deposita,2015,51(2):211-218.
    [88] HUANGFU X,JIANG J,LU X,et al.Adsorption and oxidation of thallium(I)by a nanosized manganese dioxide[J].Water Air & Soil Pollution,2015,226(1):2272-2280.
    [89] KONG S Q,WANG Y X,HUANG X W,et al.As(Ⅲ)and As(V)removal on manganese dioxide[J].Advanced Materials Research,2012,573-574:39-42.
    [90] LENOBLE V,LACLAUTFRE C,SERPAUD B,et al.As(V)retention and As(Ⅲ)simultaneous oxidation and removal on a MnO2-loaded polystyrene resin.[J].Science of the Total Environment,2004,326(1):197-207.
    [91] ZHU L,ZHANG J,JI G,et al.The adsorption characteristic of heavy metals from electroplating wastewater on delta-MnO2/polymeric ferric sulfate[C].International Conference on Digital Manufacturing & Automation,2011,2:613-616.
  • 加载中
计量
  • 文章访问数:  2692
  • HTML全文浏览数:  2692
  • PDF下载数:  96
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-02

二氧化锰基纳米材料对重金属离子的去除及机理研究进展

    通讯作者: 汪建军, E-mail: wangjj2016@ncepu.edu.cn
  • 华北电力大学环境科学与工程学院, 资源与环境系统优化教育部重点实验室, 北京, 102206
基金项目:

国家自然科学基金(11575211,11875028)和中央大学基础研究基金(2017MS044)资助.

摘要: 重金属离子对人类健康和环境安全产生了严重威胁,因此重金属废水高效处理成为了环境领域最具挑战性的热点问题之一.二氧化锰(MnO2)是一种环境友好型金属氧化物,具有来源广泛、成本低廉、形貌多样、晶型丰富、结构稳定、粒径可控等优异的性质,在重金属离子的去除应用上展现出巨大的潜力.近年来,人们利用MnO2基纳米材料在重金属离子的有效治理方面开展了大量的研究.本文综述了MnO2基纳米材料在重金属离子环境修复方面取得的研究进展,包括MnO2的制备和改性方法,MnO2基纳米材料在水溶液重金属离子去除中的应用及吸附作用机制,并对研究方向进行了总结和展望,旨在为进一步设计合成对重金属离子的吸附去除具有实际应用价值的MnO2基纳米材料提供参考.

English Abstract

参考文献 (91)

目录

/

返回文章
返回