留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铋含量对易切削钢组织与性能的影响研究

李彬周 王冬 王一甲 姜圆博 邵志保 李长生

李彬周, 王冬, 王一甲, 姜圆博, 邵志保, 李长生. 铋含量对易切削钢组织与性能的影响研究[J]. 钢铁钒钛, 2024, 45(2): 190-197. doi: 10.7513/j.issn.1004-7638.2024.02.027
引用本文: 李彬周, 王冬, 王一甲, 姜圆博, 邵志保, 李长生. 铋含量对易切削钢组织与性能的影响研究[J]. 钢铁钒钛, 2024, 45(2): 190-197. doi: 10.7513/j.issn.1004-7638.2024.02.027
Li Binzhou, Wang Dong, Wang Yijia, Jiang Yuanbo, Shao Zhibao, Li Changsheng. Effect of bismuth content on the microstructure and properties of free cutting steels[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 190-197. doi: 10.7513/j.issn.1004-7638.2024.02.027
Citation: Li Binzhou, Wang Dong, Wang Yijia, Jiang Yuanbo, Shao Zhibao, Li Changsheng. Effect of bismuth content on the microstructure and properties of free cutting steels[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 190-197. doi: 10.7513/j.issn.1004-7638.2024.02.027

铋含量对易切削钢组织与性能的影响研究

doi: 10.7513/j.issn.1004-7638.2024.02.027
详细信息
    作者简介:

    李彬周,1990年出生,男,博士,副研究员,主要从事表面堆焊工程技术及新钢种热轧工艺研究,E-mail:libz928@163.com

  • 中图分类号: TF76

Effect of bismuth content on the microstructure and properties of free cutting steels

  • 摘要: 含铋环保型易切削钢具有广阔应用前景。通过制备铋锰铁合金将铋合金化,再在真空感应熔炼过程中将铋锰铁合金加入钢液,浇铸并热轧变形,获得三种含铋易切削钢。研究铋含量对钢中第二相、钢材力学性能和切削性能的影响。结果表明,随着铋含量由0.013%增加至0.069%,钢中MnS第二相的尺寸下降约45%,外形由杆状向球状转变;钢材的屈服强度、基体和第二相的硬度以及冲击功降低,抗拉强度小幅增加,延伸率大幅度提升,钢材的综合力学性能略有降低;切削试验表明,铋含量的增加,使铣削刀具的磨损显著减小,钢材表面平整度和光洁度增加,切屑由长带状向短螺旋状转变,碎断程度提高,切削性能显著改善。
  • 图  1  三种钢中第二相的显微形貌

    (a) 1#钢; (b) 2#钢; (c) 3#

    Figure  1.  Microstructure of inclusions in three kinds of steels

    图  2  三种钢中第二相的面积、当量直径及长宽比的标准化频率

    (a) 面积;(b) 当量直径;(c) 长宽比

    Figure  2.  Standardized frequencies of area, equivalent diameter and length width ratio of inclusions in three experimental steels

    图  3  三种钢组织中第二相的SEM形貌

    (a) 1#钢; (b) 2#钢; (c) 3#

    Figure  3.  Morphology of inclusions in three kinds of steels

    图  4  第二相形貌及EDS能谱分析结果

    (a) 显微组织; (b)、(c) EDS能谱

    Figure  4.  Inclusion morphology and EDS energy spectrum analysis results

    图  5  钢中第二相的背散射图像和元素面扫描

    (a) 背散射电子像; (b) Bi元素; (c) Mn元素; (d) S元素

    Figure  5.  Backscattering images of inclusions and surface scanning of elements in the experimental steels

    图  6  MnS的三维形貌

    (a) 球形; (b) 杆棒状; (c) 纺锤体形; (d) 长条状

    Figure  6.  Three dimensional morphology of MnS

    图  7  Bi-MnS的三维形貌

    (a) 1#钢; (b)、(c) 2#钢; (d) 3#

    Figure  7.  Three dimensional morphology of Bi-MnS

    图  8  三种钢的工程应力-应变曲线

    Figure  8.  Engineering stress-strain curves of three kinds of steels

    图  9  三种钢室温拉伸断口形貌

    (a)、(b) 1#钢; (c)、(d) 2#钢; (e)、(f) 3#

    Figure  9.  Tensile fractography of three kinds of steels at room temperature

    图  10  三种钢的冲击断口形貌

    (a、b) 1#钢; (c、d) 2#钢; (e、f) 3#

    Figure  10.  Impact testing fractography of three kinds of steels

    图  11  三种钢铣削后刀具的显微形貌

    (a)、(b)、(c) 刀具1; (d)、(e)、(f) 刀具2; (g)、(h)、(i) 刀具3;其中(b)、(e)、(h)为刀具的边部,(c)、(f)、(i)为刀具的角部

    Figure  11.  Micromorphology of tools after milling by three kinds of steels

    图  12  三种钢切削试验后工件表面的二维和三维形貌

    (a)、(b) 1#钢; (c)、(d) 2#钢; (e)、(f) 3#

    Figure  12.  Two-dimensional and three-dimensional morphology of workpiece surface after cutting experiments of three kinds of steels

    图  13  三种钢不同粗糙度参数值的变化曲线

    Figure  13.  Variation curves of different roughness parameter values in three kinds of steels

    图  14  三种钢的切屑照片

    (a) 1#钢; (b) 2#钢; (c) 3#

    Figure  14.  Photos of three kinds of steel chips

    表  1  含铋易切削钢的实际化学成分

    Table  1.   Actual chemical compositions of the bismuth containing free cutting steels %

    钢种编号CSiMnSPBiFe
    1#0.0630.0101.070.280.0520.013Bal
    2#0.0700.0141.140.300.0570.034Bal
    3#0.0670.0171.150.280.0580.069Bal
    下载: 导出CSV
  • [1] Chen Jing. Application status of main group element bismuth[J]. Guangzhou Chemical Industry, 2018,46(13):4−5. (陈静. 主族元素铋的应用现状[J]. 广州化工, 2018,46(13):4−5.

    Chen Jing. Application status of main group element bismuth[J]. Guangzhou Chemical Industry, 2018, 46(13): 4-5.
    [2] Wang Chengyan, Shao Shuang, Ma Baozhong, et al. Status and development of antimony and bismuth metallurgy technology in China[J]. Nonferrous Metals(Extractive Metallurgy), 2019,(8):7. (王成彦, 邵爽, 马保中, 等. 中国锑铋冶金现状及进展[J]. 有色金属:冶炼部分, 2019,(8):7.

    Wang Chengyan, Shao Shuang, Ma Baozhong, et al. Status and development of antimony and bismuth metallurgy technology in China[J]. Nonferrous Metals(Extractive Metallurgy) , 2019(8): 7.
    [3] 肖麟. 含铋易切削奥氏体不锈钢热变形行为的研究[D]. 武汉: 武汉科技大学, 2018.

    Xiao Lin. Thermal deformation behavior of free-cutting austenitic stainless steel containing bismuth[D]. Wuhan: Wuhan University of Science and Technology, 2018.
    [4] Wang Juntian. The development and production practice of free-cutting steel 1214Bi[J]. Continuous Casting, 2017,42(2):76−79. (王君天. 易切削钢1214Bi的开发及生产实践[J]. 连铸, 2017,42(2):76−79.

    Wang Juntian. The development and production practice of free-cutting steel 1214 Bi[J]. Continuous Casting, 2017, 42(2): 76-79.
    [5] Liu H T, Chen W Q. Research on recovery for adding low melting point metal bismuth to eco-friendly Bi–S based free cutting steel[J]. Ironmaking & Steelmaking, 2013,41(5):393.
    [6] Li Jielin, Li Zhi, Tu Hao, et al. Investigation on microstructure and properties of Bi free-cutting steel prepared with Bi-Mn-Fe alloy[J]. Hot Working Technology, 2014,43(2):24−27. (李节林, 李智, 涂浩, 等. 采用铋锰铁合金制备铋易切削钢的显微组织与性能研究[J]. 热加工工艺, 2014,43(2):24−27.

    Li Jielin, Li Zhi, Tu Hao, et al. Investigation on microstructure and properties of Bi free-cutting steel prepared with Bi-Mn-Fe alloy[J]. Hot Working Technology, 2014, 43(2): 24-27.
    [7] Yang Y, Lim J T, Qian H D, et al. Effect of Fe doping on the magnetic properties of MnBi alloy[J]. Journal of Alloys and Compounds, 2021,855:157312. doi: 10.1016/j.jallcom.2020.157312
    [8] Xia X, Zhang J, Zou Y. An investigation on the machinability of newly developed low-carbon sulphurised free-cutting steels[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230(9): 1592-1599.
    [9] Hui S, Wang L, Wang Q, et al. The formation and growth of sulfides in free-cutting stainless steel[J]. Steel Research International, 2018,89(10):9.
    [10] Liu H, Chen W. Effect of total oxygen content on the machinability of low carbon resulfurized free cutting steel[J]. Steel Research International, 2012,83(12):1172−1179. doi: 10.1002/srin.201200053
    [11] Lü Z A, Ni H W, Zhang H, et al. Evolution of MnS inclusions in Ti-bearing X80 pipeline steel[J]. Journal of Iron and Steel Research, 2017,24(6):7.
    [12] 陈亚楠. BN粒子的生长机理及BN新型易切削钢应用基础研究[D]. 北京: 北京科技大学, 2017.

    Chen Yanan. Participation and growth mechanism of BN and the basic research of BN-type free-cutting steel[D]. Beijing: University of Science and Technology Beijing, 2017.
    [13] Xie J, Hu D, Fu J, et al. Numerical analysis of effect of the solutes on formation of MnS in non-tempered steel[J]. Ironmaking & Steelmaking, 2019,46(6):542−549.
    [14] Xie J B, Fan T, Zeng Z Q, et al. Bi-sulfide existence in 0Cr18Ni9 steel: correlation with machinability and mechanical properties[J]. Journal of Materials Research and Technology, 2020,9(4):9142−9152. doi: 10.1016/j.jmrt.2020.06.043
    [15] Tong Ke, He Xiaodong, Wei Zunyi, et al. Effect of geometrical characteristisc of inclusions on initiation and propagation of cracks in X80 pipeline steel during tensile test.[J]. Materials for Mechanical Engineering, 2012,36(5):22−25. (仝珂, 何小东, 卫尊义, 等. 夹杂物几何特征对拉伸过程中X80管线钢中裂纹萌生及扩展的影响[J]. 机械工程材料, 2012,36(5):22−25.

    Tong K, He X D, Wei Z Y, et al. Effect of geometrical characteristisc of inclusions on initiation and propagation of cracks in X80 pipeline steel during tensile test. [J]. Materials for Mechanical Engineering, 2012, 36(5): 22-25.
    [16] Krahmer D M, Hameed S, Egea A, et al. Wear and MnS layer adhesion in uncoated cutting tools when dry and wet turning free-cutting steels[J]. Metals - Open Access Metallurgy Journal, 2019,9(5):10.
    [17] Zhou Qiufeng. GB/T 1031-2009 "Product geometry technical specification (GPS) surface structure profile method surface roughness parameters and their values" introduction[J]. Machinery Industry Standardization & Quality, 2010,(3):30−32, 37. (周秋凤. GB/T 1031-2009《产品几何技术规范(GPS)表面结构轮廓法表面粗糙度参数及其数值》介绍[J]. 机械工业标准化与质量, 2010,(3):30−32, 37.

    Zhou Qiufeng. GB/T1031-2009 "Product Geometry Technical Specification (GPS) Surface structure profile method surface roughness parameters and their values" introduction[J]. Machinery Industry Standardization & Quality, 2010(3): 30-32.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 网络出版日期:  2024-05-14
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回