留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚氯酸钠对钛铁矿的表面改性及浮选行为的影响

张云 叶国华 胡渝杰 项新月 荣一阳 宋昌溆

张云, 叶国华, 胡渝杰, 项新月, 荣一阳, 宋昌溆. 亚氯酸钠对钛铁矿的表面改性及浮选行为的影响[J]. 钢铁钒钛, 2024, 45(2): 94-101. doi: 10.7513/j.issn.1004-7638.2024.02.014
引用本文: 张云, 叶国华, 胡渝杰, 项新月, 荣一阳, 宋昌溆. 亚氯酸钠对钛铁矿的表面改性及浮选行为的影响[J]. 钢铁钒钛, 2024, 45(2): 94-101. doi: 10.7513/j.issn.1004-7638.2024.02.014
Zhang Yun, Ye Guohua, Hu Yujie, Xiang Xinyue, Rong Yiyang, Song Changxu. Effect of sodium chlorite on surface modification and flotation behavior of ilmenite[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 94-101. doi: 10.7513/j.issn.1004-7638.2024.02.014
Citation: Zhang Yun, Ye Guohua, Hu Yujie, Xiang Xinyue, Rong Yiyang, Song Changxu. Effect of sodium chlorite on surface modification and flotation behavior of ilmenite[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 94-101. doi: 10.7513/j.issn.1004-7638.2024.02.014

亚氯酸钠对钛铁矿的表面改性及浮选行为的影响

doi: 10.7513/j.issn.1004-7638.2024.02.014
详细信息
    作者简介:

    张云,1999年出生,女,硕士研究生,研究方向:选矿理论与工艺, E-mail:antzhangyun@163.com

    通讯作者:

    叶国华,男,博士,教授,从事选矿理论与工艺的研究,E-mail:ghye581@163.com

  • 中图分类号: TD951

Effect of sodium chlorite on surface modification and flotation behavior of ilmenite

  • 摘要: 采用亚氯酸钠对钛铁矿进行表面改性以增强捕收剂的吸附效果。首先从微浮选试验与Zeta电位角度研究了亚氯酸钠改性钛铁矿的机理,结果表明,在油酸钠体系下,经过亚氯酸钠改性后,钛铁矿的回收率有大幅度提升,并在油酸钠浓度1.54×10−4 mol/L、亚氯酸钠浓度80 mg/L、pH=8时达到最佳值,为80.67%。在pH 5~10时,在亚氯酸钠和油酸钠同时作用下,钛铁矿Zeta电位比仅添加油酸钠时更趋向于负值,表明油酸钠在钛铁矿表面吸附量增加。然后以TiO2品位为5.83%的钛铁矿实际矿石为研究对象,通过响应曲面法分析了水玻璃、油酸钠、亚氯酸钠之间的交互作用对钛铁矿浮选过程的影响,并优化了药剂制度,在药剂用量为水玻璃160 g/t、油酸钠110 g/t、亚氯酸钠220 g/t的条件下进行验证试验,可得钛精矿中TiO2品位和回收率为33.92%和86.30%,所得结果与模拟的预测结果接近,表明响应模型具有较高的可靠性。最后通过闭路试验得到钛精矿品位为48.24%,回收率为62.55%的良好指标。
  • 图  1  不同pH条件下有无亚氯酸钠对钛铁矿回收率的影响

    Figure  1.  Effect of with sodium chlorite or not on recovery of ilmenite at different pH

    图  2  亚氯酸钠浓度对钛铁矿回收率的影响

    Figure  2.  Effect of sodium chlorite concentration on recovery of ilmenite

    图  3  钛铁矿的Zeta电位和pH值之间的关系

    Figure  3.  Relationship between pH and zeta potential of ilmenite

    图  4  TiO2品位与回收率模型预测值与试验值对比

    Figure  4.  Comparison of model predicted and actually measured TiO2 grade and recovery

    图  5  各因素交互作用对TiO2品位影响的响应曲面

    Figure  5.  Response surface diagram of the influence of interaction of various factors on TiO2 grade

    图  6  各因素交互作用对TiO2回收率影响的响应曲面

    Figure  6.  Response surface diagram of the influence of interaction of various factors on TiO2 recovery

    图  7  浮选闭路试验流程

    Figure  7.  Process flowchart of the flotation closed circuit test

    表  1  原矿化学多元素分析结果

    Table  1.   Results of chemical multielement analysis of raw ore %

    TiO2FeAl2O3SMgOCaOSiO2KNaV2O5PAs
    5.8314.0020.660.021.220.4637.860.380.550.090.15<0.1
    下载: 导出CSV

    表  2  响应曲面中心组合设计(药剂用量)

    Table  2.   Response surface center combination design factors and level code g/t

    因素 编码 水平
    −1 0 1
    水玻璃 A 100 200 300
    油酸钠 B 50 90 130
    亚氯酸钠 C 0 200 400
    下载: 导出CSV

    表  3  试验设计与结果

    Table  3.   Test design and results

    试验编号 因素 响应值
    A: 水玻璃用量/(g·t−1 B:油酸钠用量/(g·t−1 C: 亚氯酸钠用量/(g·t−1 TiO2品位/ % TiO2回收率/ %
    1 300 130 200 32.67 82.69
    2 300 90 0 30.75 80.52
    3 300 50 200 31.18 80.83
    4 100 90 400 33.07 84.48
    5 200 90 200 33.78 85.84
    6 100 90 0 31.81 83.17
    7 100 50 200 32.85 83.47
    8 200 50 0 30.52 80.38
    9 200 90 200 33.82 86.04
    10 200 90 200 33.81 86.24
    11 300 90 400 32.87 83.06
    12 200 50 400 32.12 83.12
    13 200 90 200 33.80 85.96
    14 200 130 0 31.42 81.66
    15 200 90 200 32.98 85.14
    16 200 130 400 33.76 85.28
    17 100 130 200 33.57 85.07
    下载: 导出CSV

    表  4  TiO2品位模型回归方差分析

    Table  4.   Regression analysis of variance for TiO2 grade

    来源 平方和 自由度 均方差 F P
    模型 19.76 9 2.20 18.99 0.0004 显著
    A 1.83 1 1.83 15.86 0.0053
    B 2.82 1 2.82 24.39 0.0017
    C 6.70 1 6.70 57.92 0.0001
    AB 0.15 1 0.15 1.28 0.2948
    AC 0.18 1 0.18 1.60 0.2465
    BC 0.14 1 0.14 1.18 0.3126
    A2 0.85 1 0.85 7.38 0.0299
    B2 1.62 1 1.62 14.01 0.0072
    C2 4.76 1 4.76 41.13 0.0004
    残差 0.81 7 0.12
    失拟项 0.27 3 0.09 0.66 0.6195 不显著
    绝对误差 0.54 4 0.14
    总和 20.57 16
    标准差 0.34 拟合优度 0.9607
    平均值 32.63 调整拟合优度 0.9101
    变异系数(C.V.%) 1.04 预测拟合优度 0.7509
    信噪比 12.0111
    下载: 导出CSV

    表  5  TiO2回收率模型回归方差分析

    Table  5.   Regression analysis of variance for TiO2 recovery

    来源 平方和 自由度 均方差 F P
    模型 68.54 9 7.61 43.36 <0.0001 显著
    A 3.24 1 3.24 19.74 0.0030
    B 1.25 1 1.25 7.61 0.0282
    C 24.40 1 24.40 148.69 <0.0001
    AB 1.48 1 1.48 9.00 0.0200
    AC 1.69 1 1.69 10.30 0.0149
    BC 0.93 1 0.93 5.68 0.0487
    A2 14.36 1 14.36 87.50 <0.0001
    B2 14.55 1 14.55 88.69 <0.0001
    C2 3.23 1 3.23 19.72 0.0030
    残差 1.15 7 0.16
    失拟项 0.39 3 0.13 0.68 0.6079 不显著
    绝对误差 0.76 4 0.19
    总和 69.60 16
    标准差 0.41 拟合优度 0.9835
    平均值 83.89 调整拟合优度 0.9623
    变异系数(C.V.%) 0.48 预测拟合优度 0.8936
    信噪比 18.1992
    下载: 导出CSV

    表  6  预测最优试验和实际试验对比

    Table  6.   Comparison of predicted optimal test and actual test

    试验方案药剂用量/(g·t−1TiO2品位/%TiO2回收率/%
    水玻璃油酸钠亚氯酸钠
    预测162.59108.67220.9633.9586.26
    实际160.00110.00220.0033.9286.30
    下载: 导出CSV

    表  7  闭路试验结果

    Table  7.   Results of the flotation closed circuit test

    产品产率/%TiO2品位/%TiO2回收率/%
    精矿21.2048.2462.55
    尾矿78.807.7737.45
    钛粗精矿(浮选给矿)100.0016.35100.00
    下载: 导出CSV
  • [1] Zhai Jihua, Chen Pan, Sun Wei, et al. A review of mineral processing of ilmenite by flotation[J]. Minerals Engineering, 2020,157:106558. doi: 10.1016/j.mineng.2020.106558
    [2] Chai Xujian, Lin Shangyong, Zhai Jihua, et al. A new combined collector for flotation separation of ilmenite from titanaugite in acidic pulp[J]. Separation and Purification Technology, 2022,278:119647.
    [3] Zhao Xuan, Meng Qingyou, Yuan Zhitao, et al. Effect of sodium silicate on the magnetic separation of ilmenite from titanaugite by magnetite selective coating[J]. Powder Technology, 2018,344:233−241.
    [4] Purcell Walter, Sinha Manish Kumar, Vilakazi Amanda Qinisile, et al. Selective precipitation study for the separation of iron and titanium from ilmenite[J]. Hydrometallurgy, 2020,191:105242. doi: 10.1016/j.hydromet.2019.105242
    [5] Xiao Wei, Shao Yanhai, Yu Jiayi, et al. Research status and prospect of ilmenite flotation reagents[J]. Conservation and Utilization of Mineral Resources, 2021,41(5):160−167. (肖玮, 邵延海, 尉佳怡, 等. 钛铁矿浮选药剂研究现状及展望[J]. 矿产保护与利用, 2021,41(5):160−167.

    Xiao Wei, Shao Yanhai, Yu Jiayi, et al. Research status and prospect of ilmenite flotation reagents[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 160−167.
    [6] Cai Jiaozhong, Deng Jiushuai, Wang Liang, et al. Reagent types and action mechanisms in ilmenite flotation: A review[J]. International Journal of Minerals, Metallurgy and Materials, 2022,29(9):1656−1669. doi: 10.1007/s12613-021-2380-5
    [7] Zhai Jihua, Lu Xiaolong, Chen Pan, et al. A new collector scheme for strengthening ilmenite floatability in acidic pulp[J]. Journal of Materials Research and Technology, 2019,8(5):5053−5056. doi: 10.1016/j.jmrt.2019.07.019
    [8] Yu Qingyao, Tian Fuqiang, Cao Yijun, et al. Application of waste engine oil for improving ilmenite flotation combined with sodium oleate collector[J]. Minerals, 2021,11(11):1242. doi: 10.3390/min11111242
    [9] Chen Pan, Chai Xujian, Tian Mengjie, et al. The performance and adsorption mechanism of a novel collector, dodecyl dimethyl betaine (BS-12), for the flotation separation of ilmenite and titanaugite[J]. Minerals, 2020,10(2):116. doi: 10.3390/min10020116
    [10] Deng Lanqing, Zhu Liangdi, Fei Lingyun, et al. Froth flotation of ilmenite by using the dendritic surfactant 2-decanoylamino-pentanedioic acid[J]. Minerals Engineering, 2021,165:106861. doi: 10.1016/j.mineng.2021.106861
    [11] Yu Li, Xu Xinyang, Yuan Zhitao, et al. Effect of lead ions on the selective flotation of ilmenite against titanaugite using octyl hydroxamic acid as collector[J]. Applied Surface Science, 2022,603:154458. doi: 10.1016/j.apsusc.2022.154458
    [12] Meng Qingyou, Yuan Zhitao, Yu Li, et al. Selective depression of titanaugite in the ilmenite flotation with carboxymethyl starch[J]. Applied Surface Science, 2018,440:955−962. doi: 10.1016/j.apsusc.2018.01.234
    [13] Liu Xing, Xie Jianguo, Huang Guangyao, et al. Low-temperature performance of cationic collector undecyl propyl ether amine for ilmenite flotation[J]. Minerals Engineering, 2017,114:50−56. doi: 10.1016/j.mineng.2017.09.005
    [14] Liao Runpeng, Wen Shuming, Liu Jian, et al. Flotation behavior and mechanism of ilmenite using ferrate as activator[J]. Minerals Engineering, 2022,178:107400. doi: 10.1016/j.mineng.2022.107400
    [15] Du Yusheng, Meng Qingyou, Yuan Zhitao, et al. Study on the flotation behavior and mechanism of ilmenite and titanaugite with sodium oleate[J]. Minerals Engineering, 2020,152:106366. doi: 10.1016/j.mineng.2020.106366
    [16] Yang Yaohui, Xu Longhua, Tian Jia, et al. Selective flotation of ilmenite from olivine using the acidified water glass as depressant[J]. International Journal of Mineral Processing, 2016,157:73−79. doi: 10.1016/j.minpro.2016.10.001
    [17] Wu Houqin, Luo Liping, Zhang Yongde, et al. New insight into adsorption of novel ternary mixed collector in ilmenite–titanaugite flotation system[J]. Minerals Engineering, 2022,176:107319. doi: 10.1016/j.mineng.2021.107319
    [18] Chen Pan, Zhai Jihua, Sun Wei, et al. The activation mechanism of lead ions in the flotation of ilmenite using sodium oleate as a collector[J]. Minerals Engineering, 2017,111:100−107. doi: 10.1016/j.mineng.2017.06.009
    [19] Cai Jiaozhong, Wu Bozeng, Wang Guoyong, et al. Improvement of ilmenite flotation via the benzohydroxamic acid synergistic mechanical activation[J]. Minerals Engineering, 2022,189:107898. doi: 10.1016/j.mineng.2022.107898
    [20] Zhang Chaofan, Yu Qingyao, Cao Yijun, et al. Research progress of ilmenite flotation reagents and their surface modification methods[J]. The Chinese Journal of Nonferrous Metals, 2021,31(12):3675−3689. (张超凡, 余青瑶, 曹亦俊, 等. 钛铁矿浮选药剂及其表面改性的研究进展[J]. 中国有色金属学报, 2021,31(12):3675−3689.

    Zhang Chaofan, Yu Qingyao, Cao Yijun, et al. Research progress of ilmenite flotation reagents and their surface modification methods[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(12): 3675−3689.
    [21] Chen Pan, Zhai Jihua, Sun wei, et al. Adsorption mechanism of lead ions at ilmenite/water interface and its influence on ilmenite flotability[J]. Journal of Industrial and Engineering Chemistry, 2017,53:285−293. doi: 10.1016/j.jiec.2017.04.037
    [22] Liu Weijun, Zhang Jie, Wang Weiqing, et al. Flotation behaviors of ilmenite, titanaugite, and forsterite using sodium oleate as the collector[J]. Minerals Engineering, 2015,72:1−9. doi: 10.1016/j.mineng.2014.12.021
    [23] Deng Chuanhong, Ma Jun'er, Zhang Guofan, et al. Effect of water glass on floatation of ilmenite[J]. The Chinese Journal of Nonferrous Metals, 2010,20(3):551−556. (邓传宏, 马军二, 张国范, 等. 水玻璃在钛铁矿浮选中的作用[J]. 中国有色金属学报, 2010,20(3):551−556.

    Deng Chuanhong, Ma Jun'er, Zhang Guofan, et al. Effect of water glass on floatation of ilmenite[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(3): 551−556.
    [24] Qin Xiaoyuan, Liu Jian, Xian Fengxue, et al. Experiment study on quality improvement and impurity reduction of a high intensity magnetic separation rough concentrate of ilmenite ore from Iran using flotation[J]. Metal Mine, 2021(12):83−88. (秦晓艳, 刘建, 先凤学, 等. 伊朗某钛铁矿强磁选粗精矿浮选提质降杂试验研究[J]. 金属矿山, 2021(12):83−88.

    Qin Xiaoyuan, Liu Jian, Xian Fengxue, et al. Experiment study on quality improvement and impurity reduction of a high intensity magnetic separation rough concentrate of ilmenite ore from Iran using flotation[J]. Metal Mine, 2021(12): 83−88.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-05
  • 网络出版日期:  2024-05-14
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回