留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫酸法钛白废酸浓缩工艺研究

王海波 孙科

王海波, 孙科. 硫酸法钛白废酸浓缩工艺研究[J]. 钢铁钒钛, 2023, 44(5): 116-121. doi: 10.7513/j.issn.1004-7638.2023.05.018
引用本文: 王海波, 孙科. 硫酸法钛白废酸浓缩工艺研究[J]. 钢铁钒钛, 2023, 44(5): 116-121. doi: 10.7513/j.issn.1004-7638.2023.05.018
Wang Haibo, Sun Ke. Study on concentration process of titanium white waste acid by sulfuric acid method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 116-121. doi: 10.7513/j.issn.1004-7638.2023.05.018
Citation: Wang Haibo, Sun Ke. Study on concentration process of titanium white waste acid by sulfuric acid method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 116-121. doi: 10.7513/j.issn.1004-7638.2023.05.018

硫酸法钛白废酸浓缩工艺研究

doi: 10.7513/j.issn.1004-7638.2023.05.018
详细信息
  • 中图分类号: TQ111,X758

Study on concentration process of titanium white waste acid by sulfuric acid method

  • 摘要: 为了提升废酸浓缩效率,以现场废酸为原料,在实验室采用真空旋转蒸发仪模拟现场废酸真空蒸发浓缩,开展废酸浓缩工艺单因素试验及正交试验,然后以实验室研究结果为依据,在现场开展了废酸浓缩工艺优化工业试验。结果表明,在相同的硫酸浓度条件下,废酸相对纯硫酸密度大,且随着硫酸浓度的增加,两者密度差逐渐减少;随着废酸浓缩时间、浓缩温度及浓缩真空度的增加,废酸浓缩浓度均逐渐增加,影响废酸浓缩浓度的关键影响因素为浓缩时间、浓缩真空度、浓缩时间×浓缩真空度、浓缩温度,重要度排序为浓缩时间>浓缩真空度>浓缩真空度×浓缩时间>浓缩温度。工业试验结果表明,当废酸浓缩时间、浓缩温度及浓缩真空度分别由2.06 h、108 ℃及30 kPa提升至2.68 h、112 ℃及45 kPa时,一级浓缩酸浓度均值由29.5%提升至38.5%。研究结果为硫酸法钛白生产企业提升废酸浓缩效率提供了重要的数据及理论支撑。
  • 图  1  废酸及硫酸的浓度与密度对应关系

    Figure  1.  Relationship between density, concentration of waste acid and sulfuric acid

    图  2  废酸浓度、沸点及真空度之间关系

    Figure  2.  Relationship between the concentration of waste acid, boiling point and the vacuum degree

    图  3  废酸浓缩时间对废酸浓缩效率的影响

    Figure  3.  Effect of concentration time on concentration effect of waste acid

    图  4  废酸浓缩真空度对废酸浓缩效率的影响

    Figure  4.  Effect of vacuum degree on concentration effect of waste acid

    图  5  废酸浓缩温度对废酸浓缩效率的影响

    Figure  5.  Effect of concentration temperature of waste acid on concentration effect of waste acid

    图  6  废酸浓缩正交试验帕累托图

    Figure  6.  Pareto diagram of orthogonal test of waste acid concentration

    表  1  废酸主要化学成分

    Table  1.   Main chemical components of waste acid g/L

    H2SO4CaSO4FeSO4TiOSO4MgSO4MnSO4Al2(SO4)3H2SiO3
    245.001.26126.2910.766.360.649.991.64
    下载: 导出CSV

    表  2  废酸浓缩工艺正交试验设计及结果

    Table  2.   Orthogonal experimental design and results of waste acid concentration process

    标准序运行序中心点区组温度/ ℃负压/kPa时间/min酸浓度/%
    910110852.52030.79
    1211103401024.25
    8311113653053.32
    5411103403026.63
    6511113403032.78
    2611113401025.42
    7711103653040.58
    4811113651029.33
    1090110852.52031.09
    31011103651026.7
    下载: 导出CSV

    表  3  工业试验结果

    Table  3.   Industrial test results

    No.t/hT/℃P/kPa一级酸浓度/%
    测试值平均
    优化前1-12.061083029.029.5
    1-230.2
    1-329.4
    优化后2-12.681124537.838.5
    2-239.2
    2-338.6
    下载: 导出CSV
  • [1] Karimia L, Yazdanshenas M E, Khajavi R, et al. Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric[J]. Applied Surface Science, 2015,332:665−673. doi: 10.1016/j.apsusc.2015.01.184
    [2] Romanovska N I, Manoryk P A, Ermokhina N I, et al. Effect of structural and dimensional characteristics of TiO2 and its photocatalytic activity in the oxidation of tetracycline[J]. Theoretical and Experimental Chemistry, 2019,55(5):345−353. doi: 10.1007/s11237-019-09627-0
    [3] Sobczyk-guzenda Anna, Szymanski Witold, Jedrzejczak Anna, et al. Bactericidal and photowetting effects of titanium dioxide coatings doped with iron and copper/fluorine deposited on stainless steel substrates[J]. Surface & Coatings Technology, 2018,347:66−75.
    [4] Matsukura A, Onoda H. Influences of additives on phosphoric acid treatment of titanium dioxide as a novel white pigment[J]. Journal of Advanced Ceramics, 2015,4(3):211−216. doi: 10.1007/s40145-015-0151-3
    [5] Kang J, Okabe T H. Removal of iron from titanium ore by selective chlorination using TiCl4 under oxygen content atmosphere[J]. International Journal of Mineral Processing, 2016,149:111−118. doi: 10.1016/j.minpro.2016.02.014
    [6] Bi Sheng. Basic situation and development prospect of titanium dioxide industry in China in recent years[J]. Iron Steel Vanadium Titanium, 2021,42(2):1−4. (毕胜. 近年中国钛白粉行业基本状况及发展展望[J]. 钢铁钒钛, 2021,42(2):1−4.

    Bi Sheng. Basic situation and development prospect of titanium dioxide industry in China in recent years [J]. Iron Steel Vanadium Titanium , 2021, 42 (2) : 1-4.
    [7] Wei Q F, Ren X L, Guo J J, et al. Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping[J]. Journal of Hazardous Materials, 2016,304:1−9. doi: 10.1016/j.jhazmat.2015.10.049
    [8] 毕胜. 2022年中国钛白粉行业发展及分析[J]. 钢铁钒钛, 2023, 44(1): 1-3.

    Bi Sheng. Development and analysis on 2022 titanium dioxide industry in China[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 1-3.
    [9] 朱家骅, 叶世超, 夏素兰. 化工原理 [M]. 北京: 科学出版社, 2005.

    Zhu Jiahua, Ye Shichao, Xia Sulan. Principles of chemical engineering [M]. Beijing: Science Press, 2005.
    [10] 项双龙, 吴有丽, 唐明亮, 等. 750 kt/a湿法磷酸二级浓缩工艺研究 [J]. 硫磷设计与粉体工程, 2017 (4): 46-47.

    Xiang Shuanglong, Wu Youli, Tang Minglaing, et al. Research on secondary concentration process of 750 kt/a wet-process phosphoric acid [J]. Thiophosphate Design and Powder Engineering, 2017 (4): 46-47.
    [11] Nian Meiling, Ruan Qi, Jiang Hao, et al. Energy-efficient heat pump cocurrent multi-effect evaporation system for concentrated sucrose juice[J]. Journal of Food and Biotechnology, 2015,34(3):274−282. (念美玲, 阮奇, 江浩, 等. 浓缩蔗糖汁的高效节能热泵并流多效蒸发系统[J]. 食品与生物技术学报, 2015,34(3):274−282.

    Nian Meiling, Ruan Qi, Jiang Hao, et al. Energy-efficient heat pump cocurrent multi-effect evaporation system for concentrated sucrose juice [J]. Journal of Food and Biotechnology, 2015, 34 (3): 274-282.
    [12] 朱自强, 徐汛合. 化工热力学(第二版) [M]. 北京: 化学工业出版社, 1991.

    Zhu Ziqiang, Xu Xunhe. Chemical engineering thermodynamics ( Second edition ) [M]. Beijing: Chemical Industry Press, 1991.
    [13] Wang Haibo, Wang Kui, Sun Ke, et al. Cause analysis of blockage in heat exchanger of titanium dioxide waste acid concentration by sulfuric acid method[J]. Iron Steel Vanadium Titanium, 2021,42(5):115−125. (王海波, 王奎, 孙科, 等. 硫酸法钛白废酸浓缩换热器堵塞成因分析[J]. 钢铁钒钛, 2021,42(5):115−125.

    Wang Haibo, Wang Kui, Sun Ke, et al. Cause analysis of blockage in heat exchanger of titanium dioxide waste acid concentration by sulfuric acid method [J]. Iron Steel Vanadium Titanium, 2021, 42 (5): 115-125.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  18
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-29
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回