留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预制铁酸钙技术对钒钛磁铁矿烧结行为的影响

谢皓 李刚 吕学伟 孙小东 何海熙

谢皓, 李刚, 吕学伟, 孙小东, 何海熙. 预制铁酸钙技术对钒钛磁铁矿烧结行为的影响[J]. 钢铁钒钛, 2023, 44(4): 117-124. doi: 10.7513/j.issn.1004-7638.2023.04.018
引用本文: 谢皓, 李刚, 吕学伟, 孙小东, 何海熙. 预制铁酸钙技术对钒钛磁铁矿烧结行为的影响[J]. 钢铁钒钛, 2023, 44(4): 117-124. doi: 10.7513/j.issn.1004-7638.2023.04.018
Xie Hao, Li Gang, Lv Xuewei, Sun Xiaodong, He Haixi. Effect of preformed calcium ferrite addition on sintering behavior of vanadium titanomagnetite[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 117-124. doi: 10.7513/j.issn.1004-7638.2023.04.018
Citation: Xie Hao, Li Gang, Lv Xuewei, Sun Xiaodong, He Haixi. Effect of preformed calcium ferrite addition on sintering behavior of vanadium titanomagnetite[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 117-124. doi: 10.7513/j.issn.1004-7638.2023.04.018

预制铁酸钙技术对钒钛磁铁矿烧结行为的影响

doi: 10.7513/j.issn.1004-7638.2023.04.018
基金项目: 国家自然科学基金(51974048)。
详细信息
    作者简介:

    谢皓,1984年出生,男,甘肃礼县人,硕士研究生,主要从事炼铁工艺及智能化方面的研究,E-mail:Hao.Xie@cisdi.com.cn

  • 中图分类号: TF046

Effect of preformed calcium ferrite addition on sintering behavior of vanadium titanomagnetite

  • 摘要: 针对钒钛磁铁矿在烧结过程中的成品率低、强度差、能耗高等问题,提出了预制铁酸钙烧结新技术,并通过压块焙烧试验和热分析测试揭示该技术的可行性及理论依据。结果表明,随着预制铁酸钙替代生石灰比例增加,焙烧产物微观形貌由粒状结构向熔蚀结构转变,四元复合铁酸钙(SFCA)含量增加,钙钛矿含量降低,有利于焙烧过程的液相生成,烧结孔洞熔合程度增大,平均孔隙率从42.9%下降到36.2%,促进基体的致密化。升温过程中铁酸钙液相的生成可分为三个反应,根据生成温度由低到高依次为CF+CF2→L的共熔反应,SFCA-I及SFCA的熔化分解反应;预制铁酸钙的加入可降低初始液相的产生温度,整体提高烧结液相量,提高比例约9%;预制铁酸钙技术可促进铁氧化物向初始液相中熔解,增加铁酸钙含量,促进固-液同化反应。
  • 图  1  不同替代比例下烧结压块的光学显微照片

    Figure  1.  Optical micrographs of sintered tablets at various substitution ratios

    (a)0; (b)20%; (c)50%

    图  2  不同替代比例烧结产品孔洞面积统计

    Figure  2.  Statistics of pore area of sintered products at various substitution ratios

    (a)(a')0; (b)(b')50%

    图  3  不同替代比例下烧结样品的物相转变

    Figure  3.  Phase transformation of sinter blends with the addition of preformed CF

    图  4  烧结混合料在升温过程中的TG-DSC曲线

    Figure  4.  TG-DSC curves of different sintering mixture samples during heating

    图  5  烧结混合料在降温过程中的TG-DSC曲线

    Figure  5.  TG-DSC curves of different sintering mixture samples during cooling

    表  1  钒钛磁铁矿烧结矿物相组成

    Table  1.   Phase compositions of VTM iron ore sinter %

    作者时间RTMTHPSFCATPATC2SG
    任允芙[1]198645.4523.237.315.852.3511.68
    蒋大军[6]201746~4912~151~320~231~313~58~11
    胡鹏[7]20171.8435~3711~134~829~314~716~18
    何木光[8]20152.1320~2232~346~820~2217~19
    李劲明[9]20082.426~2822~251~1.523~2816~18
    甘勤[10]20001.7283823236
    何木光[11]20122.422~2628~311.5~1.825~2812~16.51~1.5
    蒋大军[12]20122.232~3427~293~418~201~22~43~512~14
    何木光[13]201029~31.228~311.2~1.815~17.518~19.51~22.8~3
    何木光[14]20132.920~2321~244~530~331~36~81~37~10
    Yu [15]20152.0383574.5
    何木光[2]201633~3520~235~715~183~57~91~36~9
    * R-二元碱度,TM-钛磁铁矿,TH-钛赤铁矿,P-钙钛矿,SFCA-铁酸钙,TP-钛辉石,AT-钛榴石,C2S-硅酸二钙,G-玻璃体
    下载: 导出CSV

    表  2  烧结原料主要化学成分

    Table  2.   Chemical compositions of sintering raw materials %

    原料TFeFeOAl2O3MgOSiO2CaOTiO2V2O5SP
    VTM55.6230.723.413.283.30.58710.30.680.5170.006
    铁矿A61.1228.30.1311.961.124.191.40.137
    铁矿 B43.751.296.660.62422.941.180.5820.1180
    铁矿 C61.319.330.7020.4279.230.7160.040.074
    石灰石0.350.891.122.3852.540.0115
    下载: 导出CSV

    表  3  不同替代比例下的烧结物料配比

    Table  3.   Material ratio under different substitution ratios %

    替代比例VTM铁矿A铁矿C铁矿B石灰石生石灰铁酸钙返矿
    063.1512.634.744.749.475.26015
    2061.6712.334.634.639.254.113.3815
    5059.5911.924.474.478.932.488.1315
    下载: 导出CSV

    表  4  烧结料在升温过程中的各阶段反应

    Table  4.   Reaction of sinter blend in each heating stage

    替代
    比例/%
    温度区间/ ℃峰值/
    曲线特征DSC峰面
    积分/(J·g−1)
    物理化学变化
    TGDSC
    045~200略有
    失重
    “V”型物理水蒸发
    20
    50
    0345~500440失重小吸热峰Ca(OH)2分解
    20
    50
    0525~600570略有
    增重
    小放热峰磁铁矿氧化
    20
    50
    0691~827785大幅
    失重
    吸热峰65.3石灰石分解
    20692~83579559.65
    50691~81577446.76
    0827~1160略有
    增重
    宽吸热段二元铁酸钙生成
    及磁铁矿氧化
    20835~1154
    50815~1153
    01160~12201186略有
    失重
    小吸热峰0.59CF+CF2共熔
    201154~121911904.32
    501153~121111873.18
    01220~12891277略有
    失重
    强吸热峰39.38SFCA-I熔化
    201219~1292127538.94
    501211~1288127139.11
    01289~13201302略有
    失重
    小吸热峰3.39SFCA熔化
    201292~131713032.32
    501288~131713012.11
    01320~14001361略有
    失重
    较强吸热峰18.16铁矿物熔化及
    赤铁矿分解
    201317~1400136221.66
    501317~1400136222.40
    下载: 导出CSV

    表  5  升温过程中铁酸钙及铁矿物熔化所吸收热量

    Table  5.   Heat absorbed by the melting of SFCA and iron ore in heating

    替代
    比例/%
    CF+CF2共熔
    /(J·g−1)
    SFCA-I熔化
    /(J·g−1)
    SFCA熔化
    /(J·g−1)
    铁矿物熔化
    /(J·g−1)
    总液相
    /(J·g−1)
    提高百分比/%
    00.5939.383.3918.1661.520
    204.3238.942.3221.6667.249.3
    503.1839.112.1122.4066.88.58
    下载: 导出CSV

    表  6  烧结料在降温过程中的各阶段反应

    Table  6.   Reaction of sinter blend in each stage of cooling

    替代比例/%温度区间/ ℃峰值/ ℃曲线特征DSC峰面积分/(J·g−1)物理化学变化
    TGDSC
    01336~12811313略有
    增重
    放热峰29.28铁氧化物析出及
    磁铁矿氧化
    201355~1288132627.25
    501360~1288132728.54
    01227~11951216略有
    增重
    放热峰7.77铁酸钙析出及磁铁矿氧化
    201228~119612179.27
    501226~1195121711.62
    下载: 导出CSV
  • [1] Ren Yunfu, Yang Lixiang. Agglomeration mechanism of Panzhihua titanomagnetite concentrate and the behavior of titanium in sintering process[J]. Iron and Steel, 1986,(9):11−17. (任允芙, 杨李香. 攀钢烧结矿的固结机理及钛在烧结过程中的行为[J]. 钢铁, 1986,(9):11−17.

    Ren Yunfu, Yang Lixiang. Agglomeration mechanism of Panzhihua titanomagnetite concentrate and the behavior of titanium in sintering process[J]. Iron and Steel, 1986(9): 11-17.
    [2] He Muguang. Effect of w(TiO2) on sintering properties of high titanium vanadium-titanium magnetite[J]. Iron and Steel, 2016,51(5):9−16. (何木光. w(TiO2)对高钛钒钛磁铁烧结矿性能的影响[J]. 钢铁, 2016,51(5):9−16.

    He Muguang. Effect of w(TiO2) on sintering properties of high titanium vanadium-titanium magnetite[J]. Iron and Steel, 2016, 51(5): 9-16.
    [3] Paananen T, Kinnunen K. Effect of TiO2-content on reduction of iron ore agglomerates[J]. Steel Research International, 2009,80(6):408−414.
    [4] Webster N A S, Pownceby M I, Madsen I C, et al. Effect of oxygen partial pressure on the formation mechanisms of complex Ca-rich ferrites[J]. ISIJ International, 2013,53(5):774−781. doi: 10.2355/isijinternational.53.774
    [5] Ding C, Lv X, Chen Y, et al. Reaction sequence and formation kinetics of perovskite by calcium ferrite–titania reaction[J]. Journal of Alloys and Compounds, 2019,789:537−546. doi: 10.1016/j.jallcom.2019.02.325
    [6] Jiang Dajun, Du Sihong, He Muguang, et al. Experimental research on sintering performance influence of blue carbon as a new type of fuel[J]. Energy for Metallurgical Industry, 2017,36(6):16−20. (蒋大军, 杜斯宏, 何木光, 等. 兰炭用作燃料对烧结性能影响的试验研究[J]. 冶金能源, 2017,36(6):16−20.

    Jiang Dajun, Du Sihong, He Muguang, et al. Experimental research on sintering performance influence of blue carbon as a new type of fuel[J]. Energy for Metallurgical Industry, 2017, 36(6): 16-20.
    [7] Hu Peng, Rao Jiating, Fu Weiguo, et al. Effect of SiO2 and CaO content on the high-titanium V-Ti sinter's performance[J]. Sintering and Pelletizing, 2017,42(3):16−20. (胡鹏, 饶家庭, 付卫国, 等. 高钛型钒钛烧结矿不同硅钙水平研究[J]. 烧结球团, 2017,42(3):16−20.

    Hu Peng, Rao Jiating, Fu Weiguo, et al. Effect of SiO2 and CaO content on the high-titanium V-Ti sinter's performance[J]. Sintering and Pelletizing, 2017, 42(3): 16-20.
    [8] He Muguang, Yi Kai, He Xuan, et al. Sintering performance research on sinters of different basicity preparation by high titanium magnetite[J]. Research on Iron and Steel, 2015,43(2):5−9. (何木光, 易凯, 何宣, 等. 高钛磁铁矿制备的不同碱度烧结矿的性能研究[J]. 钢铁研究, 2015,43(2):5−9.

    He Muguang, Yi Kai, He Xuan, et al. Sintering performance research on sinters of different basicity preparation by high titanium magnetite[J]. Research on Iron and Steel, 2015, 43(2): 5-9.
    [9] Li Jinming, Zhang Yixian, Li Yuanying. The research of agglomeration of 59-grade magnetic mineral concentrate with V-Ti made in Baima[J]. Sichuan Metallurgy, 2008,(3):9−14. (李劲明, 张义贤, 李媛英. 高品位白马钒钛磁铁精矿烧结试验研究[J]. 四川冶金, 2008,(3):9−14.

    Li Jinming, Zhang Yixian, Li Yuanying. The research of agglomeration of 59-grade magnetic mineral concentrate with V-Ti made in Baima[J]. Sichuan Metallurgy, 2008(3): 9-14.
    [10] Gan Qin, He Qingli, Deng Jun. The reasonable content of FeO in vanadium-titanium sinter[J]. Yunnan Metallurgy, 2000,(6):19−23. (甘勤, 何庆莉, 邓君. 钒钛烧结矿适宜FeO含量的研究[J]. 云南冶金, 2000,(6):19−23.

    Gan Qin, He Qingli, Deng Jun. The reasonable content of FeO in vanadium-titanium sinter[J]. Yunnan Metallurgy, 2000(6): 19-23.
    [11] He Muguang, Zhang Yixian, Song Jian, et al. Sintering of V-Ti magnetite concentrate particles prefabricated[J]. China Metallurgy, 2012,22(11):35−38. (何木光, 张义贤, 宋剑, 等. 钒钛磁铁精矿预制粒烧结研究[J]. 中国冶金, 2012,22(11):35−38.

    He Muguang, Zhang Yixian, Song Jian, et al. Sintering of V-Ti magnetite concentrate particles prefabricated[J]. China Metallurgy, 2012, 22(11): 35-38.
    [12] Jiang Dajun, He Muguang, Guo Gang, et al. Experimental research on sintering of vanadium and titanium magnetite concentrate with addition of boride[J]. Sintering and Pelletizing, 2012,37(1):6−11. (蒋大军, 何木光, 郭刚, 等. 钒钛磁铁精矿添加硼化物烧结试验研究[J]. 烧结球团, 2012,37(1):6−11. doi: 10.3969/j.issn.1000-8764.2012.01.002

    Jiang Dajun, He Muguang, Guo Gang, et al. Experimental research on sintering of vanadium and titanium magnetite concentrate with addition of boride[J]. Sintering and Pelletizing, 2012, 37(1): 6-11. doi: 10.3969/j.issn.1000-8764.2012.01.002
    [13] He Muguang, Lin Qiangu, Zhang Yixian. Influence of size distribution of vanadium titanium magnetite concentrate on sintering performance[J]. Iron and Steel, 2010,45(3):27−31. (何木光, 林千谷, 张义贤. 钒钛磁铁精矿粒度对烧结性能的影响[J]. 钢铁, 2010,45(3):27−31.

    He Muguang, Lin Qiangu, Zhang Yixian. Influence of size distribution of vanadium titanium magnetite concentrate on sintering performance[J]. Iron and Steel, 2010, 45(3): 27-31.
    [14] He Muguang, Xiao Jun, Guo Gang, et al. Study on sintering large ratio of high-grade ore of alkaline titanium vanadium[J]. China Metallurgy, 2013,23(2):21−25. (何木光, 肖均, 郭刚, 等. 大富矿配比高碱度钒钛矿烧结制度研究[J]. 中国冶金, 2013,23(2):21−25.

    He Muguang, Xiao Jun, Guo Gang, et al. Study on sintering large ratio of high-grade ore of alkaline titanium vanadium[J]. China Metallurgy, 2013, 23(2): 21-25.
    [15] Yu Zhengwei, Li Guanghui, Jiang Tao, et al. Effect of basicity on titanomagnetite concentrate sintering[J]. Transactions of the Iron & Steel Institute of Japan, 2015,55(4):907−909.
    [16] Li Gang, Ding Chengyi, Xuan Senwei, et al. Non-isothermal reduction kinetics of calcium ferrite and hematite[J]. Chinese Journal of Engineering, 2018,40(11):1317-1324. (李刚, 丁成义, 宣森炜, 等. 铁酸钙与赤铁矿非等温还原动力学[J]. 工程科学学报, 2018,40(11):1317-1324.

    Li Gang, Ding Chengyi, Xuan Senwei, et al. Non-isothermal reduction kinetics of calcium ferrite and hematite[J]. Chinese Journal of Engineering, 2018, 40(11): 8.
    [17] Liu D, Evans G, Loo C E. Iron ore sinter structure development under realistic thermal conditions[J]. Chemical Engineering Research and Design, 2018,130:129−137. doi: 10.1016/j.cherd.2017.09.025
    [18] Harvey T, Honeyands T, O'Dea D, et al. Sinter strength and pore structure development using analogue tests[J]. ISIJ International, 2020,60(1):73−83. doi: 10.2355/isijinternational.ISIJINT-2019-247
    [19] Scarlett N, Pownceby M I, Madsen I C, et al. Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter[J]. Metallurgical & Materials Transactions B, 2004,35(5):929−936.
    [20] Yang N, Guo X M, Saito N, et al. Effect of MgO on formation and crystallization behaviors of calcium ferrite during heating and cooling processes[J]. ISIJ International, 2018,58(8):1406−1412. doi: 10.2355/isijinternational.ISIJINT-2018-028
    [21] Guo Xingmin, Zhang Yunmao, Zhang Mei, et al. Study of TG-DSC method on sintering performance of iron ores imported in Laiwu steel[J]. Iron and Steel, 2004,39(8):34-37. (郭兴敏, 张允茂, 张梅, 等. TG-DSC法对莱钢进口铁矿粉烧结性能的研究[J]. 钢铁, 2004,39(8):34-37. doi: 10.3321/j.issn:0449-749X.2004.08.005

    Guo Xingmin, Zhang Yunmao, Zhang Mei, et al. Study of TG-DSC method on sintering performance of iron ores imported in Laiwu steel[J]. Iron and Steel, 2004, 39(8): 4. doi: 10.3321/j.issn:0449-749X.2004.08.005
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  43
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-23
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回