留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒作中间层的TC4钛合金与316L不锈钢双道激光焊接

余腾义 陈树海 刘珂 贾旭 陈容

余腾义, 陈树海, 刘珂, 贾旭, 陈容. 钒作中间层的TC4钛合金与316L不锈钢双道激光焊接[J]. 钢铁钒钛, 2023, 44(2): 92-97. doi: 10.7513/j.issn.1004-7638.2023.02.013
引用本文: 余腾义, 陈树海, 刘珂, 贾旭, 陈容. 钒作中间层的TC4钛合金与316L不锈钢双道激光焊接[J]. 钢铁钒钛, 2023, 44(2): 92-97. doi: 10.7513/j.issn.1004-7638.2023.02.013
Yu Tengyi, Chen Shuhai, Liu Ke, Jia Xu, Chen Rong. Two pass laser welding of TC4 titanium alloy and 316L stainless steel with vanadium interlayer[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 92-97. doi: 10.7513/j.issn.1004-7638.2023.02.013
Citation: Yu Tengyi, Chen Shuhai, Liu Ke, Jia Xu, Chen Rong. Two pass laser welding of TC4 titanium alloy and 316L stainless steel with vanadium interlayer[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 92-97. doi: 10.7513/j.issn.1004-7638.2023.02.013

钒作中间层的TC4钛合金与316L不锈钢双道激光焊接

doi: 10.7513/j.issn.1004-7638.2023.02.013
详细信息
  • 中图分类号: TF823,TG456.7

Two pass laser welding of TC4 titanium alloy and 316L stainless steel with vanadium interlayer

  • 摘要: 采用TC4钛合金和316L不锈钢作为母材,纯钒作为中间层材料,进行了双道激光焊接试验。研究了焊接速度、光束偏移量对焊缝成形、显微组织、力学性能的影响,并进行了分析测试。结果表明:在钛合金一侧的钒中间层可发生一定程度的熔化,但界面近域均为固溶体,对接头的力学性能影响较小。在钒与不锈钢一侧,钒中间层与不锈钢呈钎焊界面,钒发生一定程度的溶解与扩散,形成扩散层。随着钢侧光束偏移量的增加,V/Fe界面扩散层的厚度减小,偏移量为0.3 mm时,界面扩散层厚度达到35.8 μm,此时抗拉强度最高达到406.9 MPa,断裂位置为钒/不锈钢界面处,断口呈韧性断裂特征。
  • 图  1  不锈钢/钒/钛合金焊接示意

    Figure  1.  Welding schematic of stainless steel, vanadium and titanium alloy

    图  2  不同焊接速度下钛合金/钒焊缝界面成形

    Figure  2.  Weld interface forming of titanium alloy and vanadium at different welding speeds

    图  3  不同偏移量下钛/钒激光焊接接头组织形貌

    Figure  3.  Microstructure morphology of titanium/vanadium laser welded joint with different offsets

    图  4  偏移量对钢/钒焊接接头的影响(P=3500 W, v=1.0 m/min)

    Figure  4.  Effect of offsets on steel/vanadium welded joints

    图  5  钢侧不同偏移量下的焊缝抗拉强度

    Figure  5.  Tensile strength of weld at different offsets of steel side

    图  6  最佳工艺参数下的试样断口形貌

    Figure  6.  Fracture profile of the specimen with optimal process parameters

    图  7  不锈钢/钒/钛合金焊接试样的接头组织形貌

    (a)接头宏观形貌;(b)~(d)不锈钢/钒接头微观组织;(e)~(g)钒/钛合金接头微观组织

    Figure  7.  Joint morphology of stainless steel/vanadium/titanium alloy welding sample

    图  8  钢侧不同激光光束偏移量下V/Fe焊缝界面的显微组织照片

    Figure  8.  Microstructure of V/Fe weld interface at different laser beam offsets on steel side

    图  9  钒/钢焊缝界面EDS成分分析

    Figure  9.  EDS component analysis of vanadium/steel weld interface

    表  1  试验材料化学成分

    Table  1.   Chemical compositions of TC4 and 316L %

    材料FeCSiNiCrMnMoAlVTi
    TC40.30.10.150.0155.54.5余量
    316L余量≤0.03≤1.010.0~14.016.0~18.0≤2.02.0~3.0
    下载: 导出CSV

    表  2  不锈钢/钒焊接界面的元素含量

    Table  2.   Element content of stainless steel/vanadium welding interface %

    位置TiVCrFeNi
    A0.0628.4711.9851.617.88
    B0.0714.8016.5460.747.85
    下载: 导出CSV
  • [1] 王喆, 肖明颖, 高华兵, 等. 钛合金/钢异种连接接头组织与性能研究进展[J]. 材料工程, 2022, 50(5): 1-9.

    Wang Zhe, Xiao Mingying, Gao Huabing, et al. Research progress on microstructure and properties of titanium alloy/steel dissimilar joints[J]. Journal of Materials Engineering, 2022, 50(5): 1-9.
    [2] Liu Fu, Li Shikai, Jiang Peng, et al. Research progress of titanium/steel dissimilar metal welding technology[J]. Journal of Materials Development and Application, 2020,35(2):67−74. (刘夫, 李士凯, 蒋鹏, 等. 钛/钢异种金属焊接技术的研究进展[J]. 材料开发与应用, 2020,35(2):67−74. doi: 10.19515/j.cnki.1003-1545.2020.02.014
    [3] Song Tingfeng, Jiang Xiaosong, Mo Defeng, et al. Progress in welding of stainless steel and titanium alloy dissimilar metals[J]. Materials Review, 2015,29(11):81−87. (宋庭丰, 蒋小松, 莫德锋, 等. 不锈钢和钛合金异种金属焊接研究进展[J]. 材料导报, 2015,29(11):81−87.
    [4] Zhang Y, Zhou J P, Sun D Q, et al. Nd: YAG laser welding of dissimilar metals of titanium alloy to stainless steel without filler metal based on a hybrid connection mechanism[J]. Journal of Materials Research and Technology, 2020,9(2):1662−1672. doi: 10.1016/j.jmrt.2019.12.001
    [5] Ananthakumar K, Kumaran S. Plasma assisted diffusion joining of CP-titanium-304L stainless steel: Attributes of temperature and time[J]. Materials Today:Proceedings, 2020,33:3174−3176. doi: 10.1016/j.matpr.2020.04.099
    [6] Chu Q, Tong X, Xu S, et al. Interfacial investigation of explosion-welded titanium/steel bimetallic plates[J]. Journal of Materials Engineering and Performance, 2020,29(1):78−86. doi: 10.1007/s11665-019-04535-9
    [7] Li S, Chen Y, Zhou X, et al. High-strength titanium alloy/steel butt joint produced via friction stir welding[J]. Materials Letters, 2019,234:155−158. doi: 10.1016/j.matlet.2018.09.094
    [8] Tomashchuk I, Sallamand P, Belyavina N, et al. Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer[J]. Materials Science and Engineering:A, 2013,585:114−122. doi: 10.1016/j.msea.2013.07.050
    [9] Zhang Yifu, Zhang Hua, Su Zhanzhan. Effect of Zr-Ni interlayer on microstructure and properties of laser welded TC4 titanium alloy /304SS stainless steel[J]. Rare Metals, 2020,44(11):1137−1145. (张义福, 张华, 苏展展. Zr-Ni中间层对TC4钛合金/304SS不锈钢激光焊接头组织性能的影响[J]. 稀有金属, 2020,44(11):1137−1145.
    [10] Yu J, Zhang H, Wang B, et al. Dissimilar metal joining of Q235 mild steel to Ti6Al4V via resistance spot welding with Ni–Cu interlayer[J]. Journal of Materials Research and Technology, 2021,15:4086−4101. doi: 10.1016/j.jmrt.2021.10.039
    [11] Tomashchuk I, Grevey D, Sallamand P. Dissimilar laser welding of AISI 316L stainless steel to Ti6–Al4–6V alloy via pure vanadium interlayer[J]. Materials Science and Engineering:A, 2015,622:37−45. doi: 10.1016/j.msea.2014.10.084
    [12] Zhang Y, Zhou J, Sun D Q, et al. Two pass laser welding of TC4 titanium alloy to 301L stainless steel via pure V interlayer[J]. Journal of Materials Research and Technology, 2020,9(2):1400−1404. doi: 10.1016/j.jmrt.2019.11.066
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  35
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-25
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回