留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C、N含量对钠冷快堆热交换器用316H奥氏体不锈钢组织和性能影响

宋广懂 李鑫 刘萌萌 李小兵 李昊泽 高明

宋广懂, 李鑫, 刘萌萌, 李小兵, 李昊泽, 高明. C、N含量对钠冷快堆热交换器用316H奥氏体不锈钢组织和性能影响[J]. 钢铁钒钛, 2023, 44(1): 135-141. doi: 10.7513/j.issn.1004-7638.2023.01.022
引用本文: 宋广懂, 李鑫, 刘萌萌, 李小兵, 李昊泽, 高明. C、N含量对钠冷快堆热交换器用316H奥氏体不锈钢组织和性能影响[J]. 钢铁钒钛, 2023, 44(1): 135-141. doi: 10.7513/j.issn.1004-7638.2023.01.022
Song Guangdong, Li Xin, Liu Mengmeng, Li Xiaobing, Li Haoze, Gao Ming. Effect of C and N content on the microstructure and performance of 316H austenitic stainless steel used in sodium-cooled fast reactor heat exchanger[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 135-141. doi: 10.7513/j.issn.1004-7638.2023.01.022
Citation: Song Guangdong, Li Xin, Liu Mengmeng, Li Xiaobing, Li Haoze, Gao Ming. Effect of C and N content on the microstructure and performance of 316H austenitic stainless steel used in sodium-cooled fast reactor heat exchanger[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 135-141. doi: 10.7513/j.issn.1004-7638.2023.01.022

C、N含量对钠冷快堆热交换器用316H奥氏体不锈钢组织和性能影响

doi: 10.7513/j.issn.1004-7638.2023.01.022
详细信息
    作者简介:

    宋广懂,1986年出生,男,山东济南人,高级工程师,研究方向:钠冷快中子反应堆换热器研发与设计,E-mail:songguangdong1986@163.com

  • 中图分类号: TF76,TG142.1

Effect of C and N content on the microstructure and performance of 316H austenitic stainless steel used in sodium-cooled fast reactor heat exchanger

  • 摘要: 316H不锈钢是我国四代先进钠冷快堆热交换器主体结构材料,获得C、N等关键微量元素的合理控制限是实现其国产化制造的前提。但是ASTM标准对316H合金中C的要求控制范围较宽,难以兼顾合金的耐晶间腐蚀和焊接性能,尤其对C极易出现偏析的大尺寸管板、法兰等部件。此外,该标准也并未给出N的控制范围。试验研究了C、N含量对合金的晶粒度、室温和580 ℃拉伸性能、室温冲击韧性和耐晶间腐蚀性能的影响。结果表明,C含量在0.04%~0.06%变化时,316H不锈钢晶粒度、拉伸性能、冲击韧性变化并不明显。尽管该范围的C含量合金热轧板材具有良好的耐晶间腐蚀性,但随着C含量的增加,合金腐蚀速率有所提高。N含量在0.05%~0.07%变化时,316H不锈钢晶粒度、拉伸性能、冲击性能变化并不明显,耐晶间腐蚀速率随着N含量的增加有降低的趋势。基于上述结果,综合分析并确定了工程化制造的大尺寸316H不锈钢部件C和N含量的推荐控制限,即C 0.04%~0.05%,N 0.06%~0.07%。
  • 图  1  不同碳含量对316H不锈钢晶粒度的影响

    Figure  1.  Effect of C contents on the grain size of 316H austenitic stainless steel

    (a) B1, w(C)=0.045%; (b) B2, w(C)=0.048%; (c) B3, w(C)=0.058%

    图  2  碳含量对316H试样的室温(a)、(b)、580 ℃ (c)、(d)拉伸性能影响

    Figure  2.  Effect of C content on the tensile properties of 316H austenitic stainless steel at room temperature(a)、(b) and 580 ℃ (c)、(d)

    图  3  不同碳含量的316H试样冲击吸收功对比

    Figure  3.  Comparison of the impact toughness of the 316H austenitic stainless steel with different C contents

    图  4  不同碳含量的316H试样固溶态、敏化态腐蚀后形貌

    (a)固溶态, B1(0.045% C); (b)固溶态, B2(0.048% C); (c) 固溶态, B3(0.058% C); (d)敏化态, B1(0.045 C); (e)敏化态, B2(0.048 C); (f)敏化态, B3(0.058% C)

    Figure  4.  Morphology of 316H samples with different C contents after solid solution and sensitization corrosion

    图  5  不同氮含量对316H不锈钢晶粒度的影响

    Figure  5.  Effect of N contents on grain size of 316H stainless steel

    (a) B1 (0.045%C,0.068%N);(b) B4(0.045%C,0.045%N)

    图  6  不同氮含量的316H试样固溶、敏化态腐蚀后形貌

    (a) 固溶态,B4(0.045% N); (b)固溶态,B1(0.068% N); (c) 敏化态,B4(0.045% N); (d) 敏化态,B1(0.068% N)

    Figure  6.  Morphology of 316H samples with different N contents after solid solution and sensitization corrosion

    表  1  316H试验钢化学成分

    Table  1.   Chemical compositions of the 316H steels %

    炉号CSiMnNiCrMoAlPSBCoVNHO
    B10.0450.451.4711.9917.522.58<0.02<0.005<0.0005<0.001<0.02<0.020.0680.00050.0012
    B20.0480.431.4912.0117.532.590.019<0.005<0.0005<0.001<0.005<0.0050.0660.00040.0005
    B30.0580.431.4812.0217.532.600.045<0.005<0.0005<0.001<0.005<0.0050.0680.00040.0005
    B40.0450.411.4912.0317.512.600.036<0.005<0.0005<0.001<0.005<0.0050.0450.00050.0007
    下载: 导出CSV

    表  2  不同C含量的316H不锈钢固溶态和敏化态经腐蚀后单位面积腐蚀速率

    Table  2.   Corrosion rate per unit area of 316H stainless steel with different C content in solid solution and sensitized state after corrosion

    状态样品号w(C)/%单位面积腐蚀速率/(g·h−1·mm−2)
    固溶态B10.0451.40E-07
    B20.0481.44E-07
    B30.0581.54E-07
    敏化态B10.0451.71E-07
    B20.0481.90E-07
    B30.0581.97E-07
    下载: 导出CSV

    表  3  N含量对316H试样的室温、580 ℃拉伸性能影响

    Table  3.   Effect of N content on the tensile properties of 316H austenitic stainless steel at room temperature and 580 ℃

    样品号w(N)/%Rm/MPaRp0.2/MPaZ/%A/%
    室温580 ℃室温580 ℃室温580 ℃室温580 ℃
    B40.04560242730617487826344
    B10.06862643630218188846544
    下载: 导出CSV

    表  4  不同N含量的316H固溶态和敏化态经腐蚀后单位面积腐蚀速率

    Table  4.   Corrosion rate per unit area of 316H with different N content in solid solution and sensitized state after corrosion

    状态样品号w(N)/%单位面积腐蚀速率/(g·h−1·mm−2)
    固溶态B40.0451.49E-07
    B10.0681.40E-07
    敏化态B40.0451.78E-07
    B10.0681.71E-07
    下载: 导出CSV
  • [1] Xu Mi. Present situation and prospect of fast reactor technology development in China[J]. Engineering Sciences, 2008,(1):70. (徐銤. 我国快堆技术发展的现状和前景[J]. 中国工程科学, 2008,(1):70.
    [2] Michiuchi M, Kokawa H, Wang Z J, et al. Twin-induced grain boundary engineering for 316 austenitic stainless steel[J]. Acta Materialia, 2006,54(19):5179. doi: 10.1016/j.actamat.2006.06.030
    [3] Li Xiaobing, Gao Ming, Li Haoze, et al. Effect of residual hydrogen content on the tensile properties and crack propagation behavior of a type 316 stainless steel[J]. International Journal of Hydrogen Energy, 2019,44:25054. doi: 10.1016/j.ijhydene.2019.07.131
    [4] Gao Yan, Zhang Chunlei, Xiong Xiahua, et al. Intergranular corrosion susceptibility of a novel super 304H stainless steel[J]. Engineering Failure Analysis, 2012,24:26. doi: 10.1016/j.engfailanal.2012.03.004
    [5] Wang Wei. Effect of nitrogen on microstructure of cold deformed high nitrogen austenitic stainless steel[J]. Ransactions of Metal Heat Treatment, 2010,31(7):59. (王威. 氮对冷变形高氮奥氏体不锈钢微观结构的作用[J]. 材料热处理学报, 2010,31(7):59.
    [6] Sumita M, Hanawa T, Teoh S H. Development of nitrogen-containing nical-free austenitic stainless steels for metallic biomaterials-review[J]. Materials Science and Engineering C, 2004,24:753. doi: 10.1016/j.msec.2004.08.030
    [7] Wu Yongjun. Study on improving intergranular corrosion resistance of 00Cr21Ni6Mn9N stainless steel tube[J]. Special Steel Technology, 2008,(2):15. (吴勇军. 改善00Cr21Ni6Mn9N不锈钢管晶间腐蚀性能的研究[J]. 特钢技术, 2008,(2):15.
    [8] Briant C L, Mulford R A, Hall E L. Sensitization of austenitic stainless steels, I. Controlled purity alloys[J]. Corrosion, 1982,38(9):468. doi: 10.5006/1.3577362
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  30
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回