留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理工艺对近α高温钛基复合材料锻件组织性能的影响

杨栋杰 杨振博 孙永刚 冯弘 张树志 智少勇 张长江

杨栋杰, 杨振博, 孙永刚, 冯弘, 张树志, 智少勇, 张长江. 热处理工艺对近α高温钛基复合材料锻件组织性能的影响[J]. 钢铁钒钛, 2023, 44(1): 72-77. doi: 10.7513/j.issn.1004-7638.2023.01.013
引用本文: 杨栋杰, 杨振博, 孙永刚, 冯弘, 张树志, 智少勇, 张长江. 热处理工艺对近α高温钛基复合材料锻件组织性能的影响[J]. 钢铁钒钛, 2023, 44(1): 72-77. doi: 10.7513/j.issn.1004-7638.2023.01.013
Yang Dongjie, Yang Zhenbo, Sun Yonggang, Feng Hong, Zhang Shuzhi, Zhi Shaoyong, Zhang Changjiang. Effect of heat treatment on the microstructure and properties of TiBw reinforced high-temperature titanium matrix composite[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 72-77. doi: 10.7513/j.issn.1004-7638.2023.01.013
Citation: Yang Dongjie, Yang Zhenbo, Sun Yonggang, Feng Hong, Zhang Shuzhi, Zhi Shaoyong, Zhang Changjiang. Effect of heat treatment on the microstructure and properties of TiBw reinforced high-temperature titanium matrix composite[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 72-77. doi: 10.7513/j.issn.1004-7638.2023.01.013

热处理工艺对近α高温钛基复合材料锻件组织性能的影响

doi: 10.7513/j.issn.1004-7638.2023.01.013
基金项目: 山西省教育科学“十三五”规划课题项目 (GH-19228)
详细信息
    作者简介:

    杨栋杰,1985年出生,男,山西长治人,硕士,讲师,研究方向:材料加工,材料组织与性能控制,金属材料热处理,E-mail:407691526@qq.com

  • 中图分类号: TF823

Effect of heat treatment on the microstructure and properties of TiBw reinforced high-temperature titanium matrix composite

  • 摘要: 采用扫描电镜、电子万能材料试验机研究了整体锻造成形的TiBw增强高温钛基复合材料锻件的组织和性能,以及不同热处理工艺对锻件组织和性能的影响。结果表明:锻件组织为双态组织,在650 ℃时表现出优异的高温性能,但在700 ℃时其强度出现了大幅下降。对锻件进行了不同的热处理,发现随着固溶温度的升高,α相含量和尺寸逐渐降低。另外,其拉伸强度随着固溶温度的升高而升高,但其塑性则会降低。当固溶温度为1030 ℃时,可以得到等轴α相含量为18.58%的双态组织,此时高温性能最为优异。其屈服强度为514.0 MPa,极限抗拉强度最高为594.0 MPa,延伸率为13.9%。
  • 图  1  TiBw/Ti复合材料零件及热成型工艺

    Figure  1.  Parts of TiBw/Ti composite material and thermoforming process diagram

    图  2  复合材料盘件锻造后的微观组织

    Figure  2.  Microstructure of composite disc after forging

    图  3  复合材料锻件的力学性能

    Figure  3.  Mechanical properties of composite forgings

    图  4  TiBw/Ti锻件经热处理后的微观组织

    Figure  4.  Microstructure of TiBw/Ti forgings after heat treatment

    (a)(d) 970 ℃/0.5 h+650 ℃/6 h; (b)(e) 1000 ℃/0.5 h+650 ℃/6 h; (c)(f) 1030 ℃/0.5 h+650 ℃/6 h

    图  5  复合材料锻件经热处理后的力学性能

    Figure  5.  Mechanical properties of composite forgings after heat treatment

    表  1  锻后零件的三种热处理工艺参数

    Table  1.   Three heat treatment parameters of forged parts

    样品固溶温度/℃保温时间/h冷却方式时效温度/℃时效时间/h冷却方式
    HT19700.5空冷6506空冷
    HT210000.5空冷6506空冷
    HT310300.5空冷6506空冷
    下载: 导出CSV
  • [1] Tian Yongwu, Zhu Lele, Li Weidong, et al. Application and development of high temperature titanium alloys[J]. Hot Working Technology, 2020,49(8):17−20. (田永武, 朱乐乐, 李伟东, 等. 高温钛合金的应用及发展[J]. 热加工工艺, 2020,49(8):17−20. doi: 10.14158/j.cnki.1001-3814.20183380
    [2] Dong Guojun, Gao Shendong, Wang Lei. Three dimensional shape model of TiBw mesh reinforced titanium matrix composites in rotary ultrasonic grinding[J]. Journal of Manufacturing Processes, 2022,75:682−692. doi: 10.1016/j.jmapro.2022.01.039
    [3] Le Jianwen, Han Yuanfei, Qiu Peikun, et al. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites[J]. Journal of Materials Science & Technology, 2022,110:1−13.
    [4] Wang Qiang, Zhang Zhaohui, Su Tiejian, et al. A TiB whisker-reinforced titanium matrix composite with controllable orientation: A novel method and superior strengthening effect[J]. Materials Science and Engineering:A, 2022,830:142309. doi: 10.1016/j.msea.2021.142309
    [5] Cai Jianming, Tian Feng, Liu Dong, et al. Research progress in manufacturing technology of 600 ℃ high temperature titanium alloy dual property blisk forging[J]. Journal of Materials Engineering, 2018,46(5):36−43. (蔡建明, 田丰, 刘东, 等. 600 ℃高温钛合金双性能整体叶盘锻件制备技术研究进展[J]. 材料工程, 2018,46(5):36−43. doi: 10.11868/j.issn.1001-4381.2018.000004
    [6] Lv S. Effects of heat treatment on interfacial characteristics and mechanical properties of titanium matrix composites reinforced with discontinuous carbon fibers[J]. Journal of Alloys and Compounds, 2021,(877):160313.
    [7] Sun Yonggang, Zhang Changjiang, Ji Xiang, et al. Microstructure evolution of TiBw/Ti composites during severe plastic deformation: spheroidization behavior[J]. Materials Characterization, 2021,171:110725. doi: 10.1016/j.matchar.2020.110725
    [8] Wang Yichao, Xue Xiangyi, Kou Hongchao, et al. Improvement of microstructure homogenous and tensile properties of powder hot isostatic pressed TA15 titanium alloy via heat treatment[J]. Materials Letters, 2022,311:131585. doi: 10.1016/j.matlet.2021.131585
    [9] Pang Haoyu, Luo Jiao, Ye Peng. Effect of heat treatment temperature on the microstructure of deformed TC17 alloy[J]. Journal of Netshape Forming Engineering, 2020,12(6):28−36. (庞昊宇, 罗皎, 叶鹏. 热处理温度对变形后TC17合金微观组织的影响[J]. 精密成形工程, 2020,12(6):28−36. doi: 10.3969/j.issn.1674-6457.2020.06.004
    [10] Zhang Min, Shuai Meirong, Li Haibin, et al. Effect of heat treatment on microstructure and properties of titanium alloy bars prepared by different deformation processes[J]. Transactions of Materials and Heat Treatment, 2022,43(3):35−42. (张旻, 帅美荣, 李海斌, 等. 热处理对不同形变工艺钛合金棒材显微组织与性能的影响[J]. 材料热处理学报, 2022,43(3):35−42. doi: 10.13289/j.issn.1009-6264.2021-0434
    [11] Fu Binguo, Wang Hongwei, Zou Chunming, et al. The effects of Nb content on microstructure and fracture behavior of near α titanium alloys[J]. Materials & Design, 2015,66:267−273.
    [12] Ma Fengcang, Wang Chaohu, Liu Ping, et al. Microstructure and mechanical properties of Ti matrix composite reinforced with 5vol. % TiC after various thermo-mechanical treatments[J]. Journal of Alloys and Compounds, 2018,758:78−84. doi: 10.1016/j.jallcom.2018.05.134
    [13] Kato Masaharu, Fujii Toshiyuki, Onaka Susumu. Elastic strain energies of sphere, plate and needle inclusions[J]. Materials Science & Engineering A, 1996,211(1-2):95−103.
    [14] Wang Jiheng, Guo Xianglong, Qin Jining, et al. Microstructure and mechanical properties of investment casted titanium matrix composites with B4C additions[J]. Materials Science & Engineering:A, 2015,628:366−373.
    [15] Lonarelli I, Gey N, Wenk H R, et al. In situ observation of texture evolution during α→β and β→α phase transformations in titanium alloys investigated by neutron diffraction[J]. Acta Materialia, 2007,55(17):5718−5727. doi: 10.1016/j.actamat.2007.06.017
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  34
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回