留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛液水解过程中偏钛酸的结构演变对硫含量的影响研究

田从学 王青鸿 练宗鑫 刘稷 李玫

田从学, 王青鸿, 练宗鑫, 刘稷, 李玫. 钛液水解过程中偏钛酸的结构演变对硫含量的影响研究[J]. 钢铁钒钛, 2023, 44(1): 4-9. doi: 10.7513/j.issn.1004-7638.2023.01.002
引用本文: 田从学, 王青鸿, 练宗鑫, 刘稷, 李玫. 钛液水解过程中偏钛酸的结构演变对硫含量的影响研究[J]. 钢铁钒钛, 2023, 44(1): 4-9. doi: 10.7513/j.issn.1004-7638.2023.01.002
Tian Congxue, Wang Qinghong, Lian Zongxin, Liu Ji, Li Mei. Effect of structural evolution of metatitanic acid on sulfur content during hydrolysis of industrial TiOSO4 solution[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 4-9. doi: 10.7513/j.issn.1004-7638.2023.01.002
Citation: Tian Congxue, Wang Qinghong, Lian Zongxin, Liu Ji, Li Mei. Effect of structural evolution of metatitanic acid on sulfur content during hydrolysis of industrial TiOSO4 solution[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 4-9. doi: 10.7513/j.issn.1004-7638.2023.01.002

钛液水解过程中偏钛酸的结构演变对硫含量的影响研究

doi: 10.7513/j.issn.1004-7638.2023.01.002
基金项目: 四川省自然科学基金项目(2022NSFSC0307);四川省科技成果转化示范项目(23ZHSF0237);四川省钒钛材料工程技术研究中心开放基金项目(2021-FTGC-Z-10);省级、市级人才培养项目
详细信息
    作者简介:

    田从学,1973年出生,男,四川广汉人,博士(后),教授,通讯作者,长期从事二氧化钛的制备与应用研究工作,E-mail:tcx7311@163.com

    通讯作者:

    田从学,1973年出生,男,四川广汉人,博士(后),教授,通讯作者,长期从事二氧化钛的制备与应用研究工作,E-mail:tcx7311@163.com

  • 中图分类号: TQ621.1,TF823

Effect of structural evolution of metatitanic acid on sulfur content during hydrolysis of industrial TiOSO4 solution

  • 摘要: 采用外加晶种热水解工艺从工业钛液制得偏钛酸,研究了偏钛酸结构演变过程对硫含量的影响。水解过程分为快速水解段和慢速成熟阶段,水解率变化满足Boltzmann模型。随着水解进行,偏钛酸结构变化明显,颗粒聚集与调整使其结构更紧凑,胶体性质减弱,TiO2含量增大。偏钛酸颗粒的微孔与介孔结构由其一次聚集体聚集、堆积形成,孔道由硫酸盐与水等填充。硫酸根通过溶解于吸附水、吸附、键合等形式存在于偏钛酸中,硫含量随TiO2含量增大而逐渐减小,二者呈线性关系。
  • 图  1  水解率变化曲线

    Figure  1.  The variation curve of the hydrolysis degree

    图  2  不同水解时间时偏钛酸的XRD谱

    Figure  2.  XRD patterns of the metatitanic acid samples from different hydrolysis time

    图  3  偏钛酸的SEM照片

    Figure  3.  SEM photographs of metatitanic acid

    图  4  样品11#的N2吸附-脱附等温线

    Figure  4.  Nitrogen isotherms of sample 11#

    图  5  样品11#的孔径分布曲线

    Figure  5.  Pore size distribution curve of sample 11#

    图  6  样品2#与11#的拉曼光谱

    Figure  6.  Raman spectra of sample 2# and 11#

    图  7  样品11#的红外光谱

    Figure  7.  FT-IR spectrum of sample 11#

    图  8  偏钛酸中硫含量与TiO2含量的关系

    Figure  8.  Relationship between the S content and TiO2 content in metatitanic acid

    表  1  不同水解时间对水解率及偏钛酸结构与硫含量的影响

    Table  1.   Effect of hydrolysis time on hydrolysis degree, structure and S content of metatitanic acid

    编号水解时间/min水解率/ %TiO2含量/ %L(101),MA /nmC轴的晶格应力/%DAV,MA /µmSBET /(m2.g−1)平均孔径 /nmS含量/%
    1#4944.2349.929.31.6661.49259.33.39412.07
    2#6057.3661.119.71.6641.53264.83.3998.83
    3#7064.8265.7210.11.6621.60267.93.4087.88
    4#8076.4171.2311.01.5061.52256.33.4076.34
    5#9588.6972.0411.61.4451.53277.73.4016.13
    6#12592.4374.5612.21.4431.57302.13.3965.35
    7#15593.9478.4512.31.4281.62300.03.4003.61
    8#18594.3279.1213.11.3241.70288.93.4013.49
    9#21594.4580.0113.91.3281.43298.63.3513.41
    10#24596.4677.6714.41.3461.31286.63.3924.29
    11#27596.7879.0415.31.2851.26276.03.4053.78
    下载: 导出CSV
  • [1] Cui W, Wang Y, He Z J, et al. A sol-gel route to prepare CeOx dot-decorated TiO2 pigment with improved weatherability[J]. Mater. Today Commun., 2022,31:103752. doi: 10.1016/j.mtcomm.2022.103752
    [2] Bai Y, Mora-Sero I, Angelis F De, et al. Titanium dioxide nanomaterials for photovoltaic applications[J]. Chem. Rev., 2014,114:10095−10130. doi: 10.1021/cr400606n
    [3] Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J]. Chem. Rev., 2007,107:2891−2959. doi: 10.1021/cr0500535
    [4] Santacesatia E, Tonello M, Storti G, et al. Kinetics of titanium dioxide precipitation by thermal hydrolysis[J]. J. Colloid Interf. Sci., 1986,111:44−53. doi: 10.1016/0021-9797(86)90005-6
    [5] Sathyamoorthy S, Moggridge G D, Hounslow M J. Particle formation during anatase precipitation of seeded titanyl sulfate solution[J]. Cryst. Growth Des., 2001,(1):123−129. doi: 10.1021/cg0000013
    [6] Sathyamoorthy S, Moggridge G D, Hounslow M J. Controlling particle size during anatase precipitation[J]. AICHE J., 2001,47:2012−2024. doi: 10.1002/aic.690470912
    [7] Tian C X. Internal influences of hydrolysis conditions on rutile TiO2 pigment production via short sulfate process[J]. Mater. Res. Bull., 2018,103:83−88. doi: 10.1016/j.materresbull.2018.03.025
    [8] Sathyamoorthy S, Hounslow M J, Moggridge G D. Influence of stirrer speed on the precipitation of anatase particles from titanyl sulphate solution[J]. J. Cryst. Growth, 2001,223:225−234. doi: 10.1016/S0022-0248(01)00619-4
    [9] Szilagyi I, Konigsberger E, May P M. Characterization of chemical speciation of titanyl sulfate solutions for production of titanium dioxide precipitates[J]. Inorg. Chem., 2009,48:2200−2204. doi: 10.1021/ic801722r
    [10] Grzmil B, Grela D, Kic B. Effects of processing parameters on hydrolysis of TiOSO4[J]. Pol. J. Chem. Technol., 2009,11(3):15−21. doi: 10.2478/v10026-009-0030-1
    [11] Grzmil B, Grela D, Kic B. Formation of hydrated titanium dioxide from seeded titanyl sulphate solution[J]. Chem. Pap., 2009,63(2):217−225. doi: 10.2478/s11696-009-0009-7
    [12] Hanaor D A H, Sorrell C C. Review of the anatase to rutile phase transformation[J]. J. Mater. Sci., 2011,46:855−874. doi: 10.1007/s10853-010-5113-0
    [13] Grzmil B, Rabe M, Kic B, et al. Influence of phosphate, potassium, lithium, and aluminium on the anatase-rutile phase transition[J]. Ind. Eng. Chem. Res., 2007,46:1018−1024. doi: 10.1021/ie060188g
    [14] Gennari F C, Pasquevich D M. Enhancing effect of iron chlorides on the anatase-rutile transition in titanium dioxide[J]. J. Am. Ceram. Soc., 1999,82:1915−1921. doi: 10.1111/j.1151-2916.1999.tb02016.x
    [15] Chen K, Yan X H, Wu P S, et al. Effect of sulfate on crystal phase transition and crystal growth of titanium dioxide in metatitanic acid calcination[J]. Phase Transit., 2021,94(5):353−365. doi: 10.1080/01411594.2021.1934467
    [16] Tian C X, Du J Q, Chen X H, et al. Influence of hydrolysis in sulfate process on titania pigment producing[J]. Trans. Nonferrous Met. Soc. China, 2009,(s3):829−833. doi: 10.1016/S1003-6326(10)60160-4
    [17] Bavykin V D, Vera P, Alerxander V, et al. Effect of TiOSO4 hydrothermal hydrolysis conditions on TiO2 morphology and gas-phase oxidative activity[J]. Res. Chem. Intermediat., 2007,33:449−464. doi: 10.1163/156856707779238702
    [18] Yang Xuan, Xue Tianyan, Wang Lina, et al. Preparation and hydrolysis of titanyl sulfate in novel process for production of titanium dioxide[J]. Wet Metallurgy, 2010,29(4):277−281. (杨轩, 薛天艳, 王丽娜, 等. 碱法钛白粉生产工艺中硫酸钛溶液的制备和水解[J]. 湿法冶金, 2010,29(4):277−281. doi: 10.13355/j.cnki.sfyj.2010.04.003
    [19] Grzmil B U, Grela D, Kic B. Hydrolysis of titanium sulphate compounds[J]. Chem. Pap., 2008,62:18−25. doi: 10.2478/s11696-007-0074-8
    [20] Zhu K R, Zhang M S, Chen Q, et al. Size and phonon confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal[J]. Phys. Lett. A, 2005,340:220−227. doi: 10.1016/j.physleta.2005.04.008
    [21] Mandjoub N, Allen N, Kelly P, et al. SEM and Raman study of thermally treated TiO2 anatase nanopowders: Influence of calcination on photocatalytic activity[J]. J. of Photoch. Photobio. A, 2010,211:59−64. doi: 10.1016/j.jphotochem.2010.02.002
    [22] Sivakumar S, Pillai P K, Mukundan P, et al. Sol-gel synthesis of nanosized anatase from titanyl sulfate[J]. Mater. Lett., 2002,57:330−335. doi: 10.1016/10.1016/S0167-577X(02)00786-3
    [23] Yamaguchi T, Jin T, Ishida T, et al. Structural identification of acid sites of sulfur-promoted solid super acid and construction of its structure on silica support[J]. Mater. Chem. Phys., 1987,17:3−19. doi: 10.1016/0254-0584(87)90045-9
    [24] Li X B, Nagaoka K, Lercher J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures[J]. J. Catal., 2004,227:130−137. doi: 10.1016/j.jcat.2004.07.003
    [25] Yang Y, Zhong H, Tian C X, et al. Single-step preparation and characterization of mesoporous Fe-doped sulfated titania[J]. Surf. Sci., 2011,605:1281−1286. doi: 10.1016/j.susc.2011.04.016
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  63
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-21
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回