Volume 5, Issue 4 (12-2023)                   sjfst 2023, 5(4): 1-14 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saleshi Sichani A, Gharooni S, Fard F, Nejad A, Kordlashkenari A, Farokhimanesh S. Gold Nanoparticles in Anti-Aging Interventions: A Comprehensive Exploration of Skin Health and Cosmeceuticals. sjfst 2023; 5 (4) :1-14
URL: http://sjfst.srpub.org/article-6-196-en.html
Department of Medical Biotechnology, Faculty of Medical Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
Abstract:   (41 Views)
The aging population presents a significant challenge in modern society, with an increase in age-related diseases due to a longer life expectancy not matched by a similar extension in healthy lifespan. This situation demands focused medical research and healthcare advancements in treating aging-associated conditions. An integrated approach is recommended, encompassing lifestyle changes, diet, and mental and emotional health, to mitigate aging and its related diseases. In skin health, innovative nanoparticle-based formulations are being explored to enhance the anti-aging properties of active ingredients. Skin aging is influenced by intrinsic factors like metabolic slowdown, disease, mitochondrial DNA damage, hormonal changes, and extrinsic factors such as UV radiation, smoking, pollutants, and lifestyle choices. These factors lead to skin issues like dryness, uneven texture, and visible pores. UVB radiation and high blood sugar levels accelerate aging by increasing oxidative stress and collagen damage. Antioxidants are crucial in defending against reactive oxygen species (ROS). Nanoparticles, with sizes under 100 nm, include various types like carbon-based, inorganic, organic, and composite nanomaterials. They are used in skincare due to their enhanced skin penetration properties. These nanoparticles, both organic and inorganic, show promise as anti-aging agents, working at different stages of the skin aging process. Understanding the delivery mechanisms of anti-aging agents through the skin is key to creating effective anti-aging products. Nanotechnology in cosmeceuticals integrates biologically active ingredients with therapeutic benefits into cosmetics. This technology addresses the limitations of traditional products by reducing particle size and improving ingredient efficacy. Nanocosmeceuticals are being developed for anti-aging, sun protection, skin lightening, and hair growth. 
Overall, the article highlights the potential of gold nanotechnology in developing effective and safe anti-aging strategies. Further research is warranted to explore the long-term safety and efficacy of nanoparticle-based formulations for skin rejuvenation and to optimize their delivery for enhanced therapeutic outcomes.
Full-Text [PDF 298 kb]   (9 Downloads)    
Type of Study: Research | Subject: Nanotechnology
Received: 2023/09/11 | Revised: 2023/11/29 | Accepted: 2023/12/5 | Published: 2023/12/25

References
1. Martens, C.R., et al. (2020). Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. Geroscience, 42: p. 667-686. [DOI:10.1007/s11357-020-00156-6] [PMID] [PMCID]
2. Myers, A. and G.J. Lithgow. (2019). Drugs that target aging: how do we discover them? Expert opinion on drug discovery, 14(6): p. 541-548. [DOI:10.1080/17460441.2019.1597049] [PMID] [PMCID]
3. Vaiserman, A., et al. (2019). Nanodelivery of Natural Antioxidants: An Anti-aging Perspective. Front Bioeng Biotechnol, 7: p. 447. [DOI:10.3389/fbioe.2019.00447] [PMID] [PMCID]
4. Vaiserman, A. and O. Lushchak. (2017). Implementation of longevity-promoting supplements and medications in public health practice: achievements, challenges and future perspectives. Journal of Translational Medicine, 15: p. 1-9. [DOI:10.1186/s12967-017-1259-8] [PMID] [PMCID]
5. Mileyeva-Biebesheimer, O.N., A. Zaky, and C.L. Gruden. (2010). Assessing the impact of titanium dioxide and zinc oxide nanoparticles on bacteria using a fluorescent-based cell membrane integrity assay. Environmental engineering science 27(4): p. 329-335. [DOI:10.1089/ees.2009.0332]
6. Li X.(2015). Anti-aging cosmetics and its efficacy assessment methods. InIOP Conference Series: Materials Science and Engineering Jun 1 (Vol. 87, No. 1, p. 012043). IOP Publishing. [DOI:10.1088/1757-899X/87/1/012043]
7. Shanbhag S, Nayak A, Narayan R, Nayak UY. (2019). Anti-aging and sunscreens: paradigm shift in cosmetics. Advanced pharmaceutical bulletin. Aug;9(3):348. [DOI:10.15171/apb.2019.042] [PMID] [PMCID]
8. Dowling, A., et al., Nanoscience and Nanotechnologies: Opportunities and Uncertainties; The Royal Society & The Royal Academy of Engineering: London, UK. Google Scholar There is no corresponding record for this reference, 2004.
9. Nel A, Xia T, Madler L, Li N. (2006). Toxic potential of materials at the nanolevel. science. Feb 3;311(5761):622-7. [DOI:10.1126/science.1114397] [PMID]
10. Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR. (2008). Comparison of nanoscale and microscale bioactive glass on the properties of P (3HB)/Bioglass® composites. Biomaterials. Apr 1;29(12):1750-61. [DOI:10.1016/j.biomaterials.2007.12.040] [PMID]
11. Bhatia E, Kumari D, Sharma S, Ahamad N, Banerjee R. (2022). Nanoparticle platforms for dermal antiaging technologies: Insights in cellular and molecular mechanisms. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. Mar;14(2):e1746. [DOI:10.1002/wnan.1746] [PMID]
12. Effiong DE, Uwah TO, Jumbo EU, Akpabio AE. (2019). Nanotechnology in cosmetics: basics, current trends and safety concerns-A review. Advances in nanoparticles. Dec 16;9(1):1-22.
13. Sharma N, Singh S, Kanojia N, Grewal AS, Arora S. (2018). Nanotechnology: a modern contraption in cosmetics and dermatology. Applied Clinical Research, Clinical Trials and Regulatory Affairs. Dec 1;5(3):147-58. https://doi.org/10.1088/1361-6528/aab226 [DOI:10.1088/1361-6528/aaab06]
14. AJeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology. Apr 3;9(1):1050-74. [DOI:10.3762/bjnano.9.98] [PMID] [PMCID]
15. Amini SM, Akbari A. (2019). Metal nanoparticles synthesis through natural phenolic acids. IET nanobiotechnology. Oct;13(8):771-7. [DOI:10.1049/iet-nbt.2018.5386] [PMID] [PMCID]
16. Mahato K, Nagpal S, Shah MA, Srivastava A, Maurya PK, Roy S, Jaiswal A, Singh R, Chandra P. (2019). Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech. Feb;9:1-9. [DOI:10.1007/s13205-019-1577-z] [PMID] [PMCID]
17. North BJ, Sinclair DA. (2012). The intersection between aging and cardiovascular disease. Circulation research. Apr 13;110(8):1097-108. [DOI:10.1161/CIRCRESAHA.111.246876] [PMID] [PMCID]
18. Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. (2018). Mechanisms of vascular aging. Circulation research. Sep 14;123(7):849-67. [DOI:10.1161/CIRCRESAHA.118.311378] [PMID] [PMCID]
19. Kida Y, Goligorsky MS. (2016). Sirtuins, cell senescence, and vascular aging. Canadian Journal of Cardiology. May 1;32(5):634-41. [DOI:10.1016/j.cjca.2015.11.022] [PMID] [PMCID]
20. Ungvari Z, Tarantini S, Sorond F, Merkely B, Csiszar A. (2020). Mechanisms of vascular aging, a geroscience perspective: JACC focus seminar. Journal of the American College of Cardiology. Mar 3;75(8):931-41. [DOI:10.1016/j.jacc.2019.11.061] [PMID] [PMCID]
21. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. (2011). Theranostic nanomedicine. Accounts of chemical research. Oct 18;44(10):1029-38. [DOI:10.1021/ar200019c] [PMID]
22. Mura S, Couvreur P. (2012). Nanotheranostics for personalized medicine. Advanced drug delivery reviews. Oct 1;64(13):1394-416. [DOI:10.1016/j.addr.2012.06.006] [PMID]
23. Ghasemiyeh P, Mohammadi-Samani S. (2020). Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug design, development and therapy. Aug 12:3271-89. [DOI:10.2147/DDDT.S264648] [PMID] [PMCID]
24. Gupta V, Mohapatra S, Mishra H, Farooq U, Kumar K, Ansari MJ, Aldawsari MF, Alalaiwe AS, Mirza MA, Iqbal Z. (2022). Nanotechnology in cosmetics and cosmeceuticals-A review of latest advancements. Gels. Mar 10;8(3):173. [DOI:10.3390/gels8030173] [PMID] [PMCID]
25. Sharma H, Mishra PK, Talegaonkar S, Vaidya B. (2015). Metal nanoparticles: a theranostic nanotool against cancer. Drug discovery today. Sep 1;20(9):1143-51. [DOI:10.1007/s11051-014-2835-y]
26. De Oliveira R, Zhao P, Li N, de Santa Maria LC, Vergnaud J, Ruiz J, Astruc D, Barratt G. (2013). Synthesis and in vitro studies of gold nanoparticles loaded with docetaxel. International journal of pharmaceutics. Oct 1;454(2):703-11. [DOI:10.1016/j.ijpharm.2013.05.031] [PMID]
27. Kodiha M, Wang YM, Hutter E, Maysinger D, Stochaj U. (2015). Off to the organelles-killing cancer cells with targeted gold nanoparticles. Theranostics. 5(4):357. [DOI:10.7150/thno.10657] [PMID] [PMCID]
28. Ryu JH, Lee S, Son S, Kim SH, Leary JF, Choi K, Kwon IC. (2014). Theranostic nanoparticles for future personalized medicine. Journal of Controlled Release. Sep 28;190:477-84. [DOI:10.1016/j.jconrel.2014.04.027] [PMID]
29. Boisselier E, Astruc D. (2009). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical society reviews. 38(6):1759-82. [DOI:10.1039/b806051g] [PMID]
30. Onaciu A, Braicu C, Zimta AA, Moldovan A, Stiufiuc R, Buse M, Ciocan C, Buduru S, Berindan-Neagoe I. (2019). Gold nanorods: From anisotropy to opportunity. An evolution update. Nanomedicine. Feb;14(9):1203-26. [DOI:10.2217/nnm-2018-0409] [PMID]
31. Vucic S, Kiernan MC, Menon P, Huynh W, Rynders A, Ho KS, Glanzman R, Hotchkin MT. (2021). Study protocol of RESCUE-ALS: A Phase 2, randomised, double-blind, placebo-controlled study in early symptomatic amyotrophic lateral sclerosis patients to assess bioenergetic catalysis with CNM-Au8 as a mechanism to slow disease progression. BMJ open. 11(1):e041479. [DOI:10.1136/bmjopen-2020-041479] [PMID] [PMCID]
32. Maysinger D, Gran ER, Bertorelle F, Fakhouri H, Antoine R, Kaul ES, Samhadaneh DM, Stochaj U. (2020). Gold nanoclusters elicit homeostatic perturbations in glioblastoma cells and adaptive changes of lysosomes. Theranostics. 10(4):1633. [DOI:10.7150/thno.37674] [PMID] [PMCID]
33. Grzincic EM, Murphy CJ. (2015). Gold nanorods indirectly promote migration of metastatic human breast cancer cells in three-dimensional cultures. ACS nano. Jul 28;9(7):6801-16. [DOI:10.1021/acsnano.5b03362] [PMID]
34. Cui X, Lai Y, Qin F, Shao L, Wang J, Lin HQ. (2020). Strengthening Fano resonance on gold nanoplates with gold nanospheres. Nanoscale. 12(3):1975-84. [DOI:10.1039/C9NR09976J] [PMID]
35. Abbasi J. (2019). Gold Nanoshells Ablate Prostate Tumors. JAMA. Oct 8;322(14):1343-. [DOI:10.1001/jama.2019.15868]
36. Wang C, Wang Y, Zhang L, Miron RJ, Liang J, Shi M, Mo W, Zheng S, Zhao Y, Zhang Y. (2018). Pretreated macrophage‐membrane‐coated gold nanocages for precise drug delivery for treatment of bacterial infections. Advanced Materials. Nov;30(46):1804023. [DOI:10.1002/adma.201804023] [PMID]
37. Spedalieri C, Szekeres GP, Werner S, Guttmann P, Kneipp J. (2021). Probing the Intracellular Bio-Nano Interface in Different Cell Lines with Gold Nanostars. Nanomaterials. Apr 30;11(5):1183. [DOI:10.3390/nano11051183] [PMID] [PMCID]
38. Zouboulis CC. (2000). Human skin: an independent peripheral endocrine organ. Hormone research. Jul 1;54(5-6):230-42. [DOI:10.1159/000053265] [PMID]
39. Lee DE, Huh CS, Ra J, Choi ID, Jeong JW, Kim SH, Ryu JH, Seo YK, Koh JS, Lee JH, Sim JH. (2015). Clinical evidence of effects of Lactobacillus plantarum HY7714 on skin aging: a randomized, double blind, placebo-controlled study. Journal of Microbiology and Biotechnology. 25(12):2160-8. [DOI:10.4014/jmb.1509.09021] [PMID]
40. Honigman R, Castle DJ. (2006). Aging and cosmetic enhancement. Clinical interventions in aging. Jan 1;1(2):115-9. [DOI:10.2147/ciia.2006.1.2.115] [PMID] [PMCID]
41. Lordan R. (2021). Dietary supplements and nutraceuticals market growth during the coronavirus pandemic-Implications for consumers and regulatory oversight. PharmaNutrition. Dec;18:100282. [DOI:10.1016/j.phanu.2021.100282] [PMID] [PMCID]
42. Uitto J. (1986). Connective tissue biochemistry of the aging dermis: age-related alterations in collagen and elastin. Dermatologic clinics. Jul 1;4(3):433-46. [DOI:10.1016/S0733-8635(18)30806-4] [PMID]
43. Shoulders MD, Raines RT. (2009). Collagen structure and stability. Annual review of biochemistry. Jul 7;78:929-58. [DOI:10.1146/annurev.biochem.77.032207.120833] [PMID] [PMCID]
44. Frantz C, Stewart KM, Weaver VM. (2010). The extracellular matrix at a glance. Journal of cell science. Dec 15;123(24):4195-200. [DOI:10.1242/jcs.023820] [PMID] [PMCID]
45. Calleja-Agius J, Muscat-Baron Y, Brincat MP. (2007). Skin ageing. Menopause international. Jun 1;13(2):60-4. [DOI:10.1258/175404507780796325] [PMID]
46. Bolognia JL, Braverman IM, Rousseau ME, Sarrel PM. (1989). Skin changes in menopause. Maturitas. Dec 1;11(4):295-304. [DOI:10.1016/0378-5122(89)90026-1] [PMID]
47. Castelo-Branco C, Duran M, Gonzalez-Merlo J. (1992). Skin collagen changes related to age and hormone replacement therapy. Maturitas. Oct 1;15(2):113-9. [DOI:10.1016/0378-5122(92)90245-Y] [PMID]
48. Robins SP. (2007). Biochemistry and functional significance of collagen cross-linking. Biochemical Society Transactions. Nov 1;35(5):849-52. [DOI:10.1042/BST0350849] [PMID]
49. Schagen SK, Zampeli VA, Makrantonaki E, Zouboulis CC. (2012). Discovering the link between nutrition and skin aging. Dermato-endocrinology. Jul 1;4(3):298-307. [DOI:10.4161/derm.22876] [PMID] [PMCID]
50. Lee YI, Lee SG, Jung I, Suk J, Lee MH, Kim DU, Lee JH. (2022). Effect of a topical collagen tripeptide on antiaging and inhibition of glycation of the skin: A pilot study. International journal of molecular sciences. Jan 20;23(3):1101. [DOI:10.3390/ijms23031101] [PMID] [PMCID]
51. León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. (2019). Hydrolyzed collagen-Sources and applications. Molecules. Nov 7;24(22):4031. [DOI:10.3390/molecules24224031] [PMID] [PMCID]
52. de Miranda RB, Weimer P, Rossi RC. (2021). Effects of hydrolyzed collagen supplementation on skin aging: a systematic review and meta‐analysis. International Journal of Dermatology. Dec;60(12):1449-61. [DOI:10.1111/ijd.15518] [PMID]
53. Ohara H, Matsumoto H, Ito K, Iwai K, Sato K. (2007). Comparison of quantity and structures of hydroxyproline-containing peptides in human blood after oral ingestion of gelatin hydrolysates from different sources. Journal of agricultural and food chemistry. Feb 21;55(4):1532-5. [DOI:10.1021/jf062834s] [PMID]
54. Proksch E, Segger D, Degwert J, Schunck M, Zague V, Oesser S. (2013). Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: a double-blind, placebo-controlled study. Skin pharmacology and physiology. Aug 1;27(1):47-55. [DOI:10.1159/000351376] [PMID]
55. Oesser S, Adam M, Babel W, Seifert J. (1999). Oral administration of 14C labeled gelatin hydrolysate leads to an accumulation of radioactivity in cartilage of mice (C57/BL). The Journal of nutrition. Oct 1;129(10):1891-5. [DOI:10.1093/jn/129.10.1891] [PMID]
56. Wang H. (2021). A review of the effects of collagen treatment in clinical studies. Polymers. Nov 9;13(22):3868. [DOI:10.3390/polym13223868] [PMID] [PMCID]
57. Güngör S, Kahraman E. (2021). Nanocarriers mediated cutaneous drug delivery. European Journal of Pharmaceutical Sciences. Mar 1;158:105638. [DOI:10.1016/j.ejps.2020.105638] [PMID]
58. Szumała P, Macierzanka A. (2022). Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. International Journal of Pharmaceutics. Mar 5;615:121488. [DOI:10.1016/j.ijpharm.2022.121488] [PMID]
59. Chen Y, Feng X, Meng S. (2019). Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert opinion on drug delivery. Aug 3;16(8):847-67. [DOI:10.1080/17425247.2019.1645119] [PMID]
60. Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. (2022). The technology of transdermal delivery nanosystems: from design and development to preclinical studies. International Journal of Pharmaceutics. Jan 5;611:121290. [DOI:10.1016/j.ijpharm.2021.121290] [PMID]
61. Kalave S, Chatterjee B, Shah P, Misra A. (2021). Transdermal delivery of macromolecules using nano lipid carriers. Current Pharmaceutical Design. Nov 1;27(42):4330-40. [DOI:10.2174/1381612827666210820095330] [PMID]
62. Chandrakala V, Aruna V, Angajala G. (2022). Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Materials. Dec;5(6):1593-615. [DOI:10.1007/s42247-021-00335-x] [PMID] [PMCID]
63. Nicol JR, Dixon D, Coulter JA. (2015). Gold nanoparticle surface functionalization: A necessary requirement in the development of novel nanotherapeutics. Nanomedicine. Apr;10(8):1315-26. [DOI:10.2217/nnm.14.219] [PMID]
64. Feng X, Chen Y. (2018). Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. Journal of drug targeting. Nov 26;26(10):845-57. [DOI:10.1080/1061186X.2018.1433680] [PMID]
65. Kim HS, Lee DY. (2021). Smart engineering of gold nanoparticles to improve intestinal barrier penetration. Journal of Industrial and Engineering Chemistry. Oct 25;102:122-34. [DOI:10.1016/j.jiec.2021.06.032]
66. Jeong EH, Jung G, Hong CA, Lee H. (2014). Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Archives of pharmacal research. Jan;37:53-9. [DOI:10.1007/s12272-013-0273-5] [PMID]
67. Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N, Hasan A, El-Sayed MA, Falahati M. (2019). Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. Journal of Controlled Release. Oct 1;311:170-89. [DOI:10.1016/j.jconrel.2019.08.032] [PMID]
68. Marwah H, Garg T, Goyal AK, Rath G. (2016). Permeation enhancer strategies in transdermal drug delivery. Drug delivery. Feb 12;23(2):564-78. [DOI:10.3109/10717544.2014.935532] [PMID]
69. Pastore MN, Kalia YN, Horstmann M, Roberts MS. (2015). Transdermal patches: history, development and pharmacology. British journal of pharmacology. May;172(9):2179-209. [DOI:10.1111/bph.13059] [PMID] [PMCID]
70. Iqbal B, Ali J, Baboota S. (2018). Recent advances and development in epidermal and dermal drug deposition enhancement technology. International Journal of Dermatology. Jun;57(6):646-60. [DOI:10.1111/ijd.13902] [PMID]
71. Chen Y, Wang M, Fang L. (2013). Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems. Drug delivery. Jun 1;20(5):199-209. [DOI:10.3109/10717544.2013.801533] [PMID]
72. Zhang H, Liao W, Chao W, Chen Q, Zeng H, Wu C, Wu S, Ho HI. (2008). Risk factors for sebaceous gland diseases and their relationship to gastrointestinal dysfunction in Han adolescents. The Journal of dermatology. Sep;35(9):555-61. [DOI:10.1111/j.1346-8138.2008.00523.x] [PMID]
73. Bos JD, Meinardi MM. (2000). The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Experimental Dermatology: Viewpoint. Jun;9(3):165-9. [DOI:10.1034/j.1600-0625.2000.009003165.x] [PMID]
74. Su R, Fan W, Yu Q, Dong X, Qi J, Zhu Q, Zhao W, Wu W, Chen Z, Li Y, Lu Y. (2017). Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization. Oncotarget. Jun 6;8(24):38214. [DOI:10.18632/oncotarget.17130] [PMID] [PMCID]
75. Patzelt A, Lademann J. (2013). Drug delivery to hair follicles. Expert opinion on drug delivery. Jun 1;10(6):787-97. [DOI:10.1517/17425247.2013.776038] [PMID]
76. Patzelt A, Mak WC, Jung S, Knorr F, Meinke MC, Richter H, Rühl E, Cheung KY, Tran NB, Lademann J. (2017). Do nanoparticles have a future in dermal drug delivery?. Journal of Controlled Release. Jan 28;246:174-82. [DOI:10.1016/j.jconrel.2016.09.015] [PMID]
77. Auría-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Almendral Parra MJ, Manzano-Roman R, Fuentes M. (2019). Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials. Sep 24;9(10):1365. [DOI:10.3390/nano9101365] [PMID] [PMCID]
78. Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. (2016). Application of liposomes in medicine and drug delivery. Artificial cells, nanomedicine, and biotechnology. Jan 2;44(1):381-91. [DOI:10.3109/21691401.2014.953633] [PMID]
79. Zhang L, Gu FX, Chan AZ, Wang RL, Langer R, Farokhzad O. (2007). Therapeutic, Nanoparticles in Medicine: Applications and Developments. Education Policy Analysis Archives.;8(5):761-9. [DOI:10.1038/sj.clpt.6100400] [PMID]
80. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, Weiss B, Schaefer UF, Lehr CM, Wepf R, Sterry W. (2007). Nanoparticles-an efficient carrier for drug delivery into the hair follicles. European Journal of Pharmaceutics and Biopharmaceutics. May 1;66(2):159-64. [DOI:10.1016/j.ejpb.2006.10.019] [PMID]
81. Sahle FF, Giulbudagian M, Bergueiro J, Lademann J, Calderón M. (2017). Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. Nanoscale. 9(1):172-82. [DOI:10.1039/C6NR06435C] [PMID]
82. Yazdani-Arazi SN, Ghanbarzadeh S, Adibkia K, Kouhsoltani M, Hamishehkar H. (2017). Histological evaluation of follicular delivery of arginine via nanostructured lipid carriers: a novel potential approach for the treatment of alopecia. Artificial Cells, Nanomedicine, and Biotechnology. Oct 3;45(7):1379-87. [DOI:10.1080/21691401.2016.1241794] [PMID]
83. Vogt A, Mandt N, Lademann J, Schaefer H, Blume-Peytavi U. (2005). Follicular targeting-a promising tool in selective dermatotherapy. InJournal of Investigative Dermatology Symposium Proceedings Dec 1 (Vol. 10, No. 3, pp. 252-255). Elsevier. [DOI:10.1111/j.1087-0024.2005.10124.x] [PMID]
84. Patzelt A, Richter H, Knorr F, Schäfer U, Lehr CM, Dähne L, Sterry W, Lademann J. (2011). Selective follicular targeting by modification of the particle sizes. Journal of controlled release. Feb 28;150(1):45-8. [DOI:10.1016/j.jconrel.2010.11.015] [PMID]
85. Radtke M, Patzelt A, Knorr F, Lademann J, Netz RR. (2017). Ratchet effect for nanoparticle transport in hair follicles. European Journal of Pharmaceutics and Biopharmaceutics. Jul 1;116:125-30. [DOI:10.1016/j.ejpb.2016.10.005] [PMID]
86. Wang M, Lai X, Shao L, Li L. (2018). Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. International journal of nanomedicine. Aug 1:4445-59. [DOI:10.2147/IJN.S170745] [PMID] [PMCID]
87. Monica JC. (2012). FDA's evolving approach to nanotechnology. Food and Drug Law Journal. Jan 1;67(4):405-11.
88. Filon FL, Mauro M, Adami G, Bovenzi M, Crosera M. (2015). Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regulatory Toxicology and Pharmacology. Jul 1;72(2):310-22. [DOI:10.1016/j.yrtph.2015.05.005] [PMID]
89. Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Filon Larese F. (2009). Nanoparticle dermal absorption and toxicity: a review of the literature. International archives of occupational and environmental health. Oct;82:1043-55. [DOI:10.1007/s00420-009-0458-x] [PMID]
90. Singh P, Pandit S, Mokkapati VR, Garg A, Ravikumar V, Mijakovic I. (2018). Gold nanoparticles in diagnostics and therapeutics for human cancer. International journal of molecular sciences. Jul 6;19(7):1979. [DOI:10.3390/ijms19071979] [PMID] [PMCID]
91. Xu Q, Jalilian E, Fakhoury JW, Manwar R, Michniak‐Kohn B, Elkin KB, Avanaki K. (2020). Monitoring the topical delivery of ultrasmall gold nanoparticles using optical coherence tomography. Skin Research and Technology. Mar;26(2):263-8. [DOI:10.1111/srt.12789] [PMID] [PMCID]
92. Gole A, Murphy CJ. (2004). Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chemistry of Materials. Sep 21;16(19):3633-40. [DOI:10.1021/cm0492336]
93. Li N, Zhao P, Astruc D. (2014). Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angewandte Chemie International Edition. Feb 10;53(7):1756-89. [DOI:10.1002/anie.201300441] [PMID]
94. Nikoobakht B, El-Sayed MA. (2003). Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials. May 20;15(10):1957-62. [DOI:10.1021/cm020732l]
95. Friedman N, Dagan A, Elia J, Merims S, Benny O. (2021). Physical properties of gold nanoparticles affect skin penetration via hair follicles. Nanomedicine: Nanotechnology, Biology and Medicine. Aug 1;36:102414. [DOI:10.1016/j.nano.2021.102414] [PMID]
96. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL. (2001). Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature. Nov 22;414(6862):454-7. [DOI:10.1038/35106587] [PMID]
97. Qiao Y, Ma F, Liu C, Zhou B, Wei Q, Li W, Zhong D, Li Y, Zhou M. (2018). Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing. ACS applied materials & interfaces. Jan 10;10(1):193-206. [DOI:10.1021/acsami.7b15251] [PMID]
98. Wei T, Yu Q, Chen H. (2019). Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Advanced healthcare materials. Feb;8(3):1801381. [DOI:10.1002/adhm.201801381] [PMID]
99. Walsh C. (2000). Molecular mechanisms that confer antibacterial drug resistance. Nature. Aug 17;406(6797):775-81. [DOI:10.1038/35021219] [PMID]
100. Smith PA, Romesberg FE. (2007). Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nature chemical biology. Sep;3(9):549-56. [DOI:10.1038/nchembio.2007.27] [PMID]
101. [101] Hao L, Jiang R, Fan Y, Xu JN, Tian L, Zhao J, Ming W, Ren L. (2020). Formation and antibacterial performance of metal-organic framework films via dopamine-mediated fast assembly under visible light. ACS Sustainable Chemistry & Engineering. Sep 16;8(42):15834-42. [DOI:10.1021/acssuschemeng.0c03384]
102. Jiang R, Hao L, Song L, Tian L, Fan Y, Zhao J, Liu C, Ming W, Ren L. (2020). Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances. Chemical Engineering Journal. Oct 15;398:125609. [DOI:10.1016/j.cej.2020.125609]
103. Stulberg DL, Penrod MA, Blatny RA. (2002). Common bacterial skin infections. American family physician. Jul 1;66(1):119-25.
104. Ibrahim F, Khan T, Pujalte GG. (2015). Bacterial skin infections. Primary Care: Clinics in Office Practice. Dec 1;42(4):485-99. [DOI:10.1016/j.pop.2015.08.001] [PMID]
105. Hill PB, Imai A. (2016). The immunopathogenesis of staphylococcal skin infections-A review. Comparative Immunology, Microbiology and Infectious Diseases. Dec 1;49:8-28. [DOI:10.1016/j.cimid.2016.08.004] [PMID]
106. Russo A, Concia E, Cristini F, De Rosa FG, Esposito S, Menichetti F, Petrosillo N, Tumbarello M, Venditti M, Viale P, Viscoli C. (2016). Current and future trends in antibiotic therapy of acute bacterial skin and skin-structure infections. Clinical Microbiology and Infection. Apr 1;22:S27-36. [DOI:10.1016/S1198-743X(16)30095-7] [PMID]
107. Wang J, Chen XY, Zhao Y, Yang Y, Wang W, Wu C, Yang B, Zhang Z, Zhang L, Liu Y, Du X. (2019). pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS nano. Sep 6;13(10):11686-97. [DOI:10.1021/acsnano.9b05608] [PMID]
108. Moet GJ, Jones RN, Biedenbach DJ, Stilwell MG, Fritsche TR. (2007). Contemporary causes of skin and soft tissue infections in North America, Latin America, and Europe: report from the SENTRY Antimicrobial Surveillance Program (1998-2004). Diagnostic microbiology and infectious disease. Jan 1;57(1):7-13. [DOI:10.1016/j.diagmicrobio.2006.05.009] [PMID]
109. Petkovšek Z, Eleršič K, Gubina M, Zgur-Bertok D, Starčič Erjavec M. (2009). Virulence potential of Escherichia coli isolates from skin and soft tissue infections. Journal of clinical microbiology. Jun;47(6):1811-7. [DOI:10.1128/JCM.01421-08] [PMID] [PMCID]
110. De Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, Ravensbergen E, Franken M, van der Heijde T, Boekema BK, Kwakman PH. (2018). The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Science translational medicine. Jan 10;10(423):eaan4044. [DOI:10.1126/scitranslmed.aan4044] [PMID]
111. Porto WF, Irazazabal L, Alves ES, Ribeiro SM, Matos CO, Pires ÁS, Fensterseifer IC, Miranda VJ, Haney EF, Humblot V, Torres MD. (2018). In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nature communications. Apr 16;9(1):1490. [DOI:10.1038/s41467-018-03746-3] [PMID] [PMCID]
112. Rajchakit U, Sarojini V. (2017). Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjugate chemistry. Nov 15;28(11):2673-86. [DOI:10.1021/acs.bioconjchem.7b00368] [PMID]
113. Mohid SA, Ghorai A, Ilyas H, Mroue KH, Narayanan G, Sarkar A, Ray SK, Biswas K, Bera AK, Malmsten M, Midya A. (2019). Application of tungsten disulfide quantum dot-conjugated antimicrobial peptides in bio-imaging and antimicrobial therapy. Colloids and Surfaces B: Biointerfaces. Apr 1;176:360-70. [DOI:10.1016/j.colsurfb.2019.01.020] [PMID]
114. Piras AM, Maisetta G, Sandreschi S, Gazzarri M, Bartoli C, Grassi L, Esin S, Chiellini F, Batoni G. (2015). Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Frontiers in Microbiology. Apr 28;6:372. [DOI:10.3389/fmicb.2015.00372] [PMID] [PMCID]
115. Elahi N, Kamali M, Baghersad MH. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta. Jul 1;184:537-56. [DOI:10.1016/j.talanta.2018.02.088] [PMID]
116. Aminabad NS, Farshbaf M, Akbarzadeh A. (2019). Recent advances of gold nanoparticles in biomedical applications: state of the art. Cell biochemistry and biophysics. Jun 15;77:123-37. [DOI:10.1007/s12013-018-0863-4] [PMID]
117. Qiu L, Wang C, Lan M, Guo Q, Du X, Zhou S, Cui P, Hong T, Jiang P, Wang J, Xia J. (2021). Antibacterial photodynamic gold nanoparticles for skin infection. ACS Applied Bio Materials. Mar 19;4(4):3124-32. [DOI:10.1021/acsabm.0c01505] [PMID]
118. Che Marzuki NH, Wahab RA, Abdul Hamid M. (2019). An overview of nanoemulsion: Concepts of development and cosmeceutical applications. Biotechnology & biotechnological equipment. Jan 1;33(1):779-97. [DOI:10.1080/13102818.2019.1620124]
119. Aziz ZA, Mohd-Nasir H, Ahmad A, Mohd. Setapar SH, Peng WL, Chuo SC, Khatoon A, Umar K, Yaqoob AA, Mohamad Ibrahim MN. (2019). Role of nanotechnology for design and development of cosmeceutical: application in makeup and skin care. Frontiers in chemistry. Nov 13;7:739. [DOI:10.3389/fchem.2019.00739] [PMID] [PMCID]
120. Fakhravar Z, Ebrahimnejad P, Daraee H, Akbarzadeh A. (2016). Nanoliposomes: Synthesis methods and applications in cosmetics. Journal of cosmetic and laser therapy. Apr 2;18(3):174-81. [DOI:10.3109/14764172.2015.1039040] [PMID]
121. Tadros TF. (1992). Future developments in cosmetic formulations. International journal of cosmetic science. Jun;14(3):93-111. [DOI:10.1111/j.1467-2494.1992.tb00045.x] [PMID]
122. Lee J, Kwon KH. (2022). The significant value of sustainable cosmetics fragrance in the spotlight after COVID‐19. Journal of Cosmetic Dermatology. Dec;21(12):6540-8. [DOI:10.1111/jocd.15166] [PMID]
123. [123] Fu X, Gao Y, Yan W, Zhang Z, Sarker S, Yin Y, Liu Q, Feng J, Chen J. (2022). Preparation of eugenol nanoemulsions for antibacterial activities. RSC advances. 12(6):3180-90. [DOI:10.1039/D1RA08184E] [PMID] [PMCID]
124. Mihranyan A, Ferraz N, Strømme M. (2012). Current status and future prospects of nanotechnology in cosmetics. Progress in materials science. Jun 1;57(5):875-910. [DOI:10.1016/j.pmatsci.2011.10.001]
125. Pastrana H, Avila A, Tsai CS. (2018). Nanomaterials in cosmetic products: The challenges with regard to current legal frameworks and consumer exposure. Nanoethics. Aug;12:123-37. [DOI:10.1007/s11569-018-0317-x]
126. Patel V, Sharma OP, Mehta T. (2018). Nanocrystal: A novel approach to overcome skin barriers for improved topical drug delivery. Expert opinion on drug delivery. Apr 3;15(4):351-68. [DOI:10.1080/17425247.2018.1444025] [PMID]
127. Nohynek GJ, Dufour EK, Roberts MS. (2008). Nanotechnology, cosmetics and the skin: is there a health risk?. Skin pharmacology and physiology. Jun 3;21(3):136-49. [DOI:10.1159/000131078] [PMID]
128. Katz, L.M., K. Dewan, and R.L. (2015). Bronaugh, Nanotechnology in cosmetics. Food and Chemical Toxicology; 85: p. 127-137. [DOI:10.1016/j.fct.2015.06.020] [PMID]
129. Kumar V, Yadav SC, Yadav SK. (2010). Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. Journal of Chemical Technology & Biotechnology. Oct;85(10):1301-9. [DOI:10.1002/jctb.2427]
130. Akhtar MS, Panwar J, Yun YS. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering. Jun 3;1(6):591-602. [DOI:10.1021/sc300118u]
131. Haddada MB, Gerometta E, Chawech R, Sorres J, Bialecki A, Pesnel S, Spadavecchia J, Morel AL. (2020). Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids and Surfaces B: Biointerfaces. May 1;189:110855. [DOI:10.1016/j.colsurfb.2020.110855] [PMID]
132. Morel AL, Giraud S, Bialecki A, Moustaoui H, de La Chapelle ML, Spadavecchia J. (2017). Green extraction of endemic plants to synthesize gold nanoparticles for theranostic applications. Frontiers in Laboratory Medicine. Sep 1;1(3):158-71. [DOI:10.1016/j.flm.2017.10.003]
133. Adsersen A, Adsersen H. (1997). Plants from Re:union: Island with alleged antihypertensive and diuretic effects-an experimental and ethnobotanical evaluation. Journal of Ethnopharmacology. Nov 1;58(3):189-206. [DOI:10.1016/S0378-8741(97)00100-1] [PMID]
134. Aruoma OI, Bahorun T, Jen LS. (2003). Neuroprotection by bioactive components in medicinal and food plant extracts. Mutation Research/Reviews in Mutation Research. Nov 1;544(2-3):203-15. [DOI:10.1016/j.mrrev.2003.06.017] [PMID]
135. Poullain C, Girard-Valenciennes E, Smadja J. (2004). Plants from re:union: island: evaluation of their free radical scavenging and antioxidant activities. Journal of ethnopharmacology. Nov 1;95(1):19-26. [DOI:10.1016/j.jep.2004.05.023] [PMID]
136. [Burke KE. (2018). Mechanisms of aging and development-A new understanding of environmental damage to the skin and prevention with topical antioxidants. Mechanisms of ageing and development. Jun 1;172:123-30. [DOI:10.1016/j.mad.2017.12.003] [PMID]
137. Burke KE. (2004). Photodamage of the skin: protection and reversal with topical antioxidants. Journal of Cosmetic Dermatology. Jul;3(3):149-55. [DOI:10.1111/j.1473-2130.2004.00067.x] [PMID]
138. Ahmad IZ, Ahmad A, Tabassum H, Kuddus M. (2020). A cosmeceutical perspective of engineered nanoparticles. InHandbook of nanomaterials for manufacturing applications Jan 1 (pp. 191-223). Elsevier. [DOI:10.1016/B978-0-12-821381-0.00008-9]
139. Ibrahim NA, Zaini MA. (2020). Nanomaterials in detergents and cosmetics products: the mechanisms and implications. InHandbook of nanomaterials for manufacturing applications Jan 1 (pp. 23-49). Elsevier. [DOI:10.1016/B978-0-12-821381-0.00002-8]
140. Séby F. (2021). Metal and metal oxide nanoparticles in cosmetics and skin care products. InComprehensive Analytical Chemistry Jan 1 (Vol. 93, pp. 381-427). Elsevier. [DOI:10.1016/bs.coac.2021.02.009]
141. Fytianos G, Rahdar A, Kyzas GZ. (2020). Nanomaterials in cosmetics: Recent updates. Nanomaterials. May 20;10(5):979. [DOI:10.3390/nano10050979] [PMID] [PMCID]
142. Dreno B, Alexis A, Chuberre B, Marinovich M. (2019). Safety of titanium dioxide nanoparticles in cosmetics. Journal of the European academy of dermatology and venereology. Nov;33:34-46. [DOI:10.1111/jdv.15943] [PMID]
143. Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, Borschneck D, Chaneac C, Botta C, Chaurand P, Labille J, Bottero JY. (2010). Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environmental science & technology. Apr 1;44(7):2689-94. [DOI:10.1021/es903757q] [PMID]
144. Catalano R, Masion A, Ziarelli F, Slomberg D, Laisney J, Unrine JM, Campos A, Labille J. (2020). Optimizing the dispersion of nanoparticulate TiO2-based UV filters in a non-polar medium used in sunscreen formulations-The roles of surfactants and particle coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Aug 20;599:124792. [DOI:10.1016/j.colsurfa.2020.124792]
145. Labille J, Catalano R, Slomberg D, Motellier S, Pinsino A, Hennebert P, Santaella C, Bartolomei V. (2020). Assessing sunscreen lifecycle to minimize environmental risk posed by nanoparticulate UV-filters-a review for safer-by-design products. Frontiers in Environmental Science. Jul 10;8:101. [DOI:10.3389/fenvs.2020.597861]
146. Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F. (2015). Understanding the fate and biological effects of Ag-and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Science of the Total Environment. Dec 1;535:3-19. [DOI:10.1016/j.scitotenv.2014.10.035] [PMID]
147. Corson R, Glavan J, Norcross BG. (2019). Stage makeup. Routledge; May 14. [DOI:10.4324/9781315312217]
148. Sahu D, Kannan GM, Vijayaraghavan R. (2014). Carbon black particle exhibits size dependent toxicity in human monocytes. International journal of inflammation. Feb 5;2014. [DOI:10.1155/2014/827019] [PMID] [PMCID]
149. Bianco C, Visser MJ, Pluut OA, Svetličić V, Pletikapić G, Jakasa I, Riethmuller C, Adami G, Larese Filon F, Schwegler-Berry D, Stefaniak AB. (2016). Characterization of silver particles in the stratum corneum of healthy subjects and atopic dermatitis patients dermally exposed to a silver-containing garment. Nanotoxicology. Nov 25;10(10):1480-91. [DOI:10.1080/17435390.2016.1235739] [PMID] [PMCID]
150. Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: nanotechnology, biology and medicine. Apr 1;12(3):789-99. [DOI:10.1016/j.nano.2015.11.016] [PMID]
151. Rujido-Santos I, Naveiro-Seijo L, Herbello-Hermelo P, del Carmen Barciela-Alonso M, Bermejo-Barrera P, Moreda-Piñeiro A. (2019). Silver nanoparticles assessment in moisturizing creams by ultrasound assisted extraction followed by sp-ICP-MS. Talanta. May 15;197:530-8. [DOI:10.1016/j.talanta.2019.01.068] [PMID]
152. Jiménez-Pérez ZE, Singh P, Kim YJ, Mathiyalagan R, Kim DH, Lee MH, Yang DC. (2018). Applications of Panax ginseng leaves-mediated gold nanoparticles in cosmetics relation to antioxidant, moisture retention, and whitening effect on B16BL6 cells. Journal of ginseng research. Jul 1;42(3):327-33. [DOI:10.1016/j.jgr.2017.04.003] [PMID] [PMCID]
153. Haddada MB, Gerometta E, Chawech R, Sorres J, Bialecki A, Pesnel S, Spadavecchia J, Morel AL. (2020). Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids and Surfaces B: Biointerfaces. May 1;189:110855. [DOI:10.1016/j.colsurfb.2020.110855] [PMID]
154. Radauceanu A, Guichard Y, Grzebyk M. (2019). Toxicité des silices amorphes nanostructurées: état des connaissances et intérêt des biomarqueurs d'effets précoces dans la recherche. Références en santé au travail. Dec 31(160):163-74.
155. Sharma N, Jha S. (2020). Amorphous nanosilica induced toxicity, inflammation and innate immune responses: A critical review. Toxicology. Aug 1;441:152519. [DOI:10.1016/j.tox.2020.152519] [PMID]
156. Contado C, Mejia J, Lozano García O, Piret JP, Dumortier E, Toussaint O, Lucas S. (2016). Physicochemical and toxicological evaluation of silica nanoparticles suitable for food and consumer products collected by following the EC recommendation. Analytical and bioanalytical chemistry. Jan;408:271-86. [DOI:10.1007/s00216-015-9101-8] [PMID]
157. Ryu HJ, Seong NW, So BJ, Seo HS, Kim JH, Hong JS, Park MK, Kim MS, Kim YR, Cho KB, Seo MY. (2014). Evaluation of silica nanoparticle toxicity after topical exposure for 90 days. International journal of nanomedicine. Dec 15;9(sup2):127-36. [DOI:10.2147/IJN.S57929] [PMID] [PMCID]
158. Rowenczyk L, Duclairoir-Poc C, Barreau M, Picard C, Hucher N, Orange N, Grisel M, Feuilloley M. (2017). Impact of coated TiO2-nanoparticles used in sunscreens on two representative strains of the human microbiota: Effect of the particle surface nature and aging. Colloids and Surfaces B: Biointerfaces. Oct 1;158:339-48. [DOI:10.1016/j.colsurfb.2017.07.013] [PMID]
159. Reed RB, Martin DP, Bednar AJ, Montaño MD, Westerhoff P, Ranville JF. (2017). Multi-day diurnal measurements of Ti-containing nanoparticle and organic sunscreen chemical release during recreational use of a natural surface water. Environmental Science: Nano. 4(1):69-77. [DOI:10.1039/C6EN00283H]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.