• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    不同环境因子联接和预测模型的滑坡易发性建模不确定性

    李文彬 范宣梅 黄发明 武雪玲 殷坤龙 常志璐

    李文彬, 范宣梅, 黄发明, 武雪玲, 殷坤龙, 常志璐, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
    引用本文: 李文彬, 范宣梅, 黄发明, 武雪玲, 殷坤龙, 常志璐, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
    Li Wenbin, Fan Xuanmei, Huang Faming, Wu Xueling, Yin Kunlong, Chang Zhilu, 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
    Citation: Li Wenbin, Fan Xuanmei, Huang Faming, Wu Xueling, Yin Kunlong, Chang Zhilu, 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042

    不同环境因子联接和预测模型的滑坡易发性建模不确定性

    doi: 10.3799/dqkx.2021.042
    基金项目: 

    国家自然科学基金项目 41807285

    国家自然科学基金项目 41762020

    国家自然科学基金项目 51879127

    国家自然科学基金项目 51769014

    江西省自然科学基金项目 20192BAB216034

    江西省自然科学基金项目 20192ACB2102

    江西省自然科学基金项目 20192ACB20020

    中国博士后面上基金项目 2019M652287

    中国博士后面上基金项目 2020T130274

    江西省博士后基金项目 2019KY08

    详细信息
      作者简介:

      李文彬(1986-), 女, 博士研究生, 研究方向为滑坡易发性预测建模.ORCID: 0000-0001-7831-4120.E-mail: 351113619004@email.ncu.edu.cn

      通讯作者:

      黄发明, ORCID: 0000-0001-9307-9085.E-mail: faminghuang@ncu.edu.cn

    • 中图分类号: P642.22

    Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models

    • 摘要: 拟深入探讨滑坡与其环境因子间的非线性联接计算以及不同数据驱动模型等因素,对滑坡易发性预测建模不确定性的影响规律.以江西省瑞金市为例共获取370处滑坡和10种环境因子,通过概率统计(probability statistics,PS)、频率比(frequency ratio,FR)、信息量(information value,Ⅳ)、熵指数(index of entropy,IOE)和证据权(weight of evidence,WOE)等5种联接方法分别耦合逻辑回归(logistic regression,LR)、BP神经网络(BP neural networks,BPNN)、支持向量机(support vector machines,SVM)和随机森林(random forest,RF)模型共构建出20种耦合模型,同时构建无联接方法直接将原始数据作为输入变量的4种单独LR、BPNN、SVM和RF模型,预测出总计24种工况下的滑坡易发性;最后分别使用ROC曲线、均值、标准差和差异显著性等指标分析上述24种工况下易发性结果的不确定性.结果表明:(1)基于WOE的耦合模型预测滑坡易发性的平均精度最高且不确定性较低,基于PS的耦合模型预测精度最低且不确定性最高,基于FR、Ⅳ和IOE的耦合模型介于两者之间;(2)单独数据驱动模型易发性预测精度略低于耦合模型,且未能计算出环境因子各子区间对滑坡发育的影响规律,但其建模效率高于耦合模型;(3)RF模型预测精度最高且不确定性较低,其次分别为SVM、BPNN和LR模型.总之WOE是更优秀的联接法且RF模型预测性能最优,WOE-RF模型预测的滑坡易发性不确定性较低且更符合实际滑坡概率分布特征.

       

    • 图  1  建模流程

      Fig.  1.  Modeling flow chart

      图  2  瑞金市地理位置和滑坡编录图

      Fig.  2.  Location of the study area and landslide inventory map

      图  3  环境因子(a~h) (高度和地形起伏度未列入)

      Fig.  3.  The environmental factors (a-h) (elevation and topographic relief are not included)

      图  4  基于数据驱动模型的滑坡易发性制图

      a1.单独LR模型;a2.单独BPNN模型;a3.单独SVM模型;a4.单独RF模型;b1~b4.FR-based模型;c1~c4.WOE-based模型

      Fig.  4.  Landslide susceptibility maps of data-based models

      图  5  基于RF模型的易发性制图

      a.单独RF模型;b. PS-RF模型;c.FR-RF模型;d.Ⅳ -RF模型;e.IOE-RF模型;f.WOE-RF模型

      Fig.  5.  Landslide susceptibility maps

      图  6  不同组合工况下的滑坡易发性建模ROC曲线

      Fig.  6.  ROC curves of LSP under different conditions

      a.LR; b.BPNN; c.SVM; d.RF models

      图  7  基于数据驱动模型和基于WOE-based模型的ROC曲线

      a.Data-based模型;b.WOE-based模型

      Fig.  7.  ROC curves of data-based and WOE-based models

      图  8  滑坡易发性分布

      a1~a3.单独模型;b1~b3.WOE-based模型

      Fig.  8.  Landslide susceptibility index distributions

      图  9  基于RF的滑坡易发指数分布

      a.单独RF;b.PS-RF;c.FR-RF;d.Ⅳ-RF;e.IOE-RF;f.WOE-RF

      Fig.  9.  Susceptibility index distributions

      表  1  瑞金市滑坡易发性预测数据源

      Table  1.   Ruijin landslide susceptibility prediction data source

      数据集 空间分辨率 时间 数据用途 数据来源
      滑坡编录数据库 2014-12-30 瑞金市滑坡分布 江西省自然资源厅
      DEM 30 m 2016-06-06 地形因子 来源于网站http://solargis.cn/imaps/
      Landsat 8 TM 多光谱30 m 2013-10-15 NDVI, MNDWI, NDBI 中科院对地观测中心http://ids.ceode.ac.cn/index.aspx
      地层岩性分布图 1∶50 000 2014-12-30 岩土类型 江西省自然资源厅
      下载: 导出CSV

      表  2  各环境因子的联接值计算

      Table  2.   The connection values of environmental factors

      环境因子 变量值 全区栅格数 滑坡栅格数 PS FR WOE IOE
      高度(m)
      (连续性)
      139~293 730 572 1 939 0.354 1.332 0.124 0.414 0.035
      293~308 647 032 1 563 0.285 1.212 0.084 0.260
      308~373 558 257 964 0.176 0.866 -0.062 -0.178
      373~446 369 863 587 0.107 0.796 -0.099 -0.260
      446~534 231 817 254 0.046 0.550 -0.260 -0.640
      534~642 121 414 98 0.018 0.405 -0.393 -0.932
      642~780 66 004 44 0.008 0.334 -0.476 -1.113
      780~1118 25 732 33 0.006 0.643 -0.191 -0.445
      坡度(°)
      (连续性)
      0~3.6 569 695 51 0.009 0.045 -1.348 -3.328 0.083
      3.6~7.0 490 091 537 0.098 0.550 -0.260 -0.693
      7.0~10.6 532 865 1 396 0.255 1.315 0.119 0.352
      10.6~14.0 438 190 1 442 0.263 1.651 0.218 0.634
      14.0~17.6 338 424 1 074 0.196 1.592 0.202 0.553
      17.6~21.6 221 097 613 0.112 1.391 0.143 0.366
      21.6~26.8 121 534 300 0.055 1.239 0.093 0.225
      26.8~52.0 38 795 69 0.013 0.892 -0.049 -0.116
      坡向
      (连续性)
      -1.0 499 0 0 0 0 0 0.054
      0~22.5
      337.5~360.0
      324 822 668 0.122 1.032 0.014 0.035
      22.5~67.5 297 924 585 0.107 0.985 -0.006 -0.017
      67.5~112.5 354 479 943 0.172 1.335 0.125 0.340
      112.5~157.5 359 791 816 0.149 1.138 0.056 0.150
      157.5~202.5 332 830 695 0.127 1.048 0.020 0.053
      202.5~247.5 332 143 620 0.113 0.937 -0.028 -0.075
      247.5~292.5 378 011 655 0.119 0.869 -0.061 -0.161
      292.5~337.5 370 192 500 0.091 0.678 -0.169 -0.439
      平面曲率
      (连续性)
      0~10.2 448 550 1 544 0.282 1.727 0.237 0.700 0.07
      10.2~18.8 523 511 1 430 0.261 1.371 0.137 0.407
      18.8~27.8 429 580 1 002 0.183 1.170 0.068 0.189
      27.8~37.7 347 255 632 0.115 0.913 -0.039 -0.104
      37.7~48.2 272 547 343 0.063 0.631 -0.200 -0.500
      48.2~59.1 223 692 126 0.023 0.283 -0.549 -1.327
      59.1~70.6 205 059 121 0.022 0.296 -0.529 -1.274
      70.6~81.4 300 497 284 0.052 0.474 -0.324 -0.810
      剖面曲率
      (连续性)
      0~1.5 671 767 858 0.157 0.641 -0.193 -0.556 0.009
      1.5~3.2 695 534 1 628 0.297 1.174 0.070 0.221
      3.2~4.8 534 972 1 244 0.227 1.167 0.067 0.195
      4.8~6.6 378 519 827 0.151 1.096 0.040 0.107
      6.6~8.7 243 529 507 0.092 1.045 0.019 0.048
      8.7~11.0 138 110 258 0.047 0.937 -0.028 -0.068
      11.0~14.4 68 229 134 0.024 0.985 -0.006 -0.015
      14.4~30.4 20 031 26 0.005 0.651 -0.186 -0.432
      地形起伏度(°)
      (连续性)
      0~5.5 588 993 151 0.028 0.129 -0.891 -2.266 0.061
      5.5~11.0 611 553 1 116 0.204 0.916 -0.038 -0.113
      11.0~16.1 562 924 1 572 0.287 1.401 0.147 0.447
      16.1~21.3 428 304 1 289 0.235 1.510 0.179 0.512
      21.3~26.8 287 508 718 0.131 1.253 0.098 0.256
      26.8~33.4 170 550 411 0.075 1.209 0.082 0.204
      33.4~42.6 80 923 204 0.037 1.265 0.102 0.244
      42.6~93.8 19 936 21 0.004 0.529 -0.277 -0.642
      地层岩性
      (离散型)
      变质岩 1 218 584 3 249 0.593 1.338 0.126 0.603 0.259
      碎屑岩 503 748 1 593 0.291 1.587 0.201 0.603
      岩浆岩 899 363 359 0.065 0.200 -0.698 -1.939
      碳酸盐 107 442 136 0.025 0.635 -0.197 -0.469
      水域 21 554 145 0.026 3.376 0.528 1.240
      NDVI
      (连续性)
      0~0.014 15 215 13 0.002 0.429 -0.368 -0.851 0.029
      0.014~0.120 51 765 38 0.007 0.368 -0.434 -1.012
      0.120~0.190 104 953 144 0.026 0.688 -0.162 -0.386
      0.190~0.243 233 124 546 0.100 1.175 0.070 0.178
      0.243~0.284 487 817 1 149 0.210 1.182 0.073 0.207
      0.284~0.322 723 461 1 508 0.275 1.046 0.019 0.061
      0.322~0.363 734 588 1 503 0.274 1.027 0.011 0.035
      0.363~1 399 768 581 0.106 0.729 -0.137 -0.362
      NDBI
      (连续性)
      < 0 473 698 651 0.119 0.690 -0.161 -0.435 0.009
      0~0.061 820 803 1 550 0.283 0.948 -0.023 -0.077
      0.061~0.126 616 979 1 541 0.281 1.253 0.098 0.302
      0.126~0.201 339 466 873 0.159 1.290 0.111 0.297
      0.201~0.286 225 388 496 0.090 1.104 0.043 0.109
      0.286~0.374 145 844 262 0.048 0.901 -0.045 -0.110
      0.374~0.482 90 590 95 0.017 0.526 -0.279 -0.659
      0.482~1 37 923 14 0.003 0.185 -0.732 -1.699
      距水系距离(m)
      (离散型)
      < 150 508 453 2 135 0.389 2.107 0.324 1.036 0.150
      150~300 464 069 1 573 0.287 1.701 0.231 0.685
      300~450 420 058 480 0.088 0.573 -0.242 -0.632
      > 450 1 358 111 1 294 0.236 0.478 -0.320 -1.152
      下载: 导出CSV

      表  3  各工况下LR系数和常数项

      Table  3.   Logistic regression coefficients and constant terms

      环境因子 单独LR PS-LR FR-LR Ⅳ-LR IOE-LR WOE-LR
      高度 -0.005 4.103 1.534 3.093 11.803 1.166
      坡度 0.139 5.187 1.238 1.843 13.144 0.724
      坡向 -0.001 5.366 1.074 2.384 10.451 0.911
      剖面曲率 -0.015 4.798 0.775 1.553 6.533 0.588
      平面曲率 0.017 1.124 0.663 0.872 6.062 0.319
      地形起伏度 -0.019 0.031 0.299 0.288 2.850 0.105
      地层岩性 -0.434 1.977 1.135 1.848 10.465 0.616
      NDVI 0.807 -0.767 0.170 -0.224 1.259 -0.085
      NDBI 2.579 1.723 1.160 2.554 9.973 0.987
      水系距离 0 5.191 0.794 2.012 5.474 0.594
      常数 2.598 -6.018 -9.805 -0.003 -10.337 -0.178
      下载: 导出CSV

      表  4  基于不同联接方法和数据驱动模型的AUC值

      Table  4.   AUC values of different connection methods and original value under different data-based models

      预测模型 AUC值
      RF模型 SVM模型 BPNN模型 LR模型 平均AUC
      无联接 0.922 0.809 0.838 0.781 0.838
      PS 0.906 0.817 0.806 0.779 0.827
      FR 0.905 0.836 0.840 0.832 0.853
      0.907 0.838 0.838 0.838 0.855
      IOE 0.905 0.837 0.839 0.833 0.854
      WOE 0.896 0.839 0.843 0.838 0.857
      下载: 导出CSV

      表  5  基于不同连接方式和不同数据模型下的平均值和标准差

      Table  5.   Mean and standard deviation of different connection methods and original value under data-based models

      预测模型 RF模型 SVM模型 BPNN模型 LR模型
      平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差
      原始 0.263 0.240 0.355 0.233 0.358 0.189 0.385 0.215
      PS 0.279 0.250 0.344 0.247 0.398 0.161 0.383 0.211
      FR 0.278 0.254 0.331 0.252 0.376 0.173 0.337 0.242
      0.278 0.255 0.335 0.249 0.367 0.182 0.331 0.251
      IOE 0.278 0.254 0.330 0.250 0.367 0.189 0.336 0.246
      WOE 0.283 0.261 0.334 0.249 0.359 0.193 0.331 0.251
      下载: 导出CSV

      表  6  各建模工况下易发性指数的平均秩

      Table  6.   Mean rank of different connection methods under different data-based models

      预测模型 平均秩
      RF模型 SVM模型 BPNN模型 LR模型
      PS 8.77 13.12 16.87 15.82
      FR 8.69 11.87 16.08 12.58
      8.64 12.38 15.39 11.90
      IOE 8.64 11.85 15.30 12.43
      WOE 8.97 12.48 14.79 12.06
      原始数据 8.08 13.74 14.65 14.90
      下载: 导出CSV
    • Chang, Z. L., Du, Z., Zhang, F., et al., 2020a. Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS: Comparisons of Supervised and Unsupervised Machine Learning Models. Remote Sensing, 12(3): 502. https://doi.org/10.3390/rs12030502
      Chang, Z. L., Gao, H. X., Huang, F. M., et al., 2020b. Study on the Creep Behaviours and the Improved Burgers Model of a Loess Landslide Considering Matric Suction. Natural Hazards, 103(1): 1479-1497. https://doi.org/10.1007/s11069-020-04046-0
      Chen, W., Li, W. P., Hou, E. K., et al., 2015. Application of Frequency Ratio, Statistical Index, and Index of Entropy Models and Their Comparison in Landslide Susceptibility Mapping for the Baozhong Region of Baoji, China. Arabian Journal of Geosciences, 8(4): 1829-1841. https://doi.org/10.1007/s12517-014-1554-0
      Chen, W., Xie, X. S., Peng, J. B., et al., 2018. GIS-Based Landslide Susceptibility Evaluation Using a Novel Hybrid Integration Approach of Bivariate Statistical Based Random Forest Method. CATENA, 164: 135-149. https://doi.org/10.1016/j.catena.2018.01.012
      Chen, W., Xie, X. S., Wang, J. L., et al., 2017. A Comparative Study of Logistic Model Tree, Random Forest, and Classification and Regression Tree Models for Spatial Prediction of Landslide Susceptibility. CATENA, 151: 147-160. https://doi.org/10.1016/j.catena.2016.11.032
      Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., et al., 2013. Landslide Susceptibility Mapping Using Certainty Factor, Index of Entropy and Logistic Regression Models in GIS and Their Comparison at Mugling-Narayanghat Road Section in Nepal Himalaya. Natural Hazards, 65(1): 135-165. https://doi.org/10.1007/s11069-012-0347-6
      Feng, H.J., Zhou, A.G., Yu, J.J., et al., 2016. A Comparative Study on Plum-Rain-Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province. Earth Science, 41(3): 403-415(in Chinese with English abstract).
      Guo, Z.Z., Yin, K.L., Fu, S., et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12): 4299-4312(in Chinese with English abstract).
      Guo, Z. Z., Yin, K. L., Gui, L., et al., 2019. Regional Rainfall Warning System for Landslides with Creep Deformation in Three Gorges Using a Statistical Black Box Model. Scientific Reports, 9: 8962. https://doi.org/10.1038/s41598-019-45403-9
      Hong, H. Y., Chen, W., Xu, C., et al., 2017. Rainfall-Induced Landslide Susceptibility Assessment at the Chongren Area (China) Using Frequency Ratio, Certainty Factor, and Index of Entropy. Geocarto International, 32(2): 139-154. https://doi.org/10.1080/10106049.2015.1130086
      Huang, F. M., Cao, Z. S., Guo, J. F., et al., 2020a. Comparisons of Heuristic, General Statistical and Machine Learning Models for Landslide Susceptibility Prediction and Mapping. CATENA, 191: 104580. https://doi.org/10.1016/j.catena.2020.104580
      Huang, F. M., Cao, Z. S., Jiang, S. H., et al., 2020b. Landslide Susceptibility Prediction Based on a Semi-Supervised Multiple-Layer Perceptron Model. Landslides, 17(12): 2919-2930. https://doi.org/10.1007/s10346-020-01473-9
      Huang, F. M., Chen, J. W., Du, Z., et al., 2020c. Landslide Susceptibility Prediction Considering Regional Soil Erosion Based on Machine-Learning Models. ISPRS International Journal of Geo-Information, 9(6): 377. https://doi.org/10.3390/ijgi9060377
      Huang, F.M., Wang, Y., Dong, Z.L., et al., 2019. Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model. Earth Science, 44(2): 664-676(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201902027.htm
      Huang, F. M., Ye, Z., Jiang, S. H., et al., 2021. Uncertainty Study of Landslide Susceptibility Prediction Considering the Different Attribute Interval Numbers of Environmental Factors and Different Data-Based Models. CATENA, 202: 105250. https://doi.org/10.1016/j.catena.2021.105250
      Huang, Y., Zhao, L., 2018. Review on Landslide Susceptibility Mapping Using Support Vector Machines. CATENA, 165: 520-529. https://doi.org/10.1016/j.catena.2018.03.003
      Jacobs, L., Kervyn, M., Reichenbach, P., et al., 2020. Regional Susceptibility Assessments with Heterogeneous Landslide Information: Slope Unit- vs. Pixel-Based Approach. Geomorphology, 356: 107084. https://doi.org/10.1016/j.geomorph.2020.107084
      Li, W. B., Fan, X. M., Huang, F. M., et al., 2020. Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors. Remote Sensing, 12(24): 4134. https://doi.org/10.3390/rs12244134
      Li, Y., Huang, J., Jiang, S. H., et al., 2017. A Web-Based GPS System for Displacement Monitoring and Failure Mechanism Analysis of Reservoir Landslide. Scientific Reports, 7(1): 17171. https://doi.org/10.1038/s41598-017-17507-7
      Li, Y.L., Zhang, Q., Li, M., et al., 2015. Using BP Neural Networks for Water Level Simulation in Poyang Lake. Resources and Environment in the Yangtze Basin, 24(2): 233-240(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CJLY201502008.htm
      Liu, W. P., Luo, X. Y., Huang, F. M., et al., 2019. Prediction of Soil Water Retention Curve Using Bayesian Updating from Limited Measurement Data. Applied Mathematical Modelling, 76: 380-395. https://doi.org/10.1016/j.apm.2019.06.028
      Ma, S.Y., Xu, C., Tian, Y.Y., et al., 2019. Application of Logistic Regression Model for Hazard Assessment of Earthquake-Triggered Landslides: A Case Study of 2017 Jiuzhaigou (China) MS7.0 Event. Seismology and Geology, 41(1): 162-177 (in Chinese with English abstract). http://www.researchgate.net/publication/333249215_Application_of_logistic_regression_model_for_hazard_assessment_of_earthquake-triggered_landslides_a_case_study_of_2017_jiuzhaigouchinaM_S_70_event
      Merghadi, A., Yunus, A. P., Dou, J., et al., 2020. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Science Reviews, 207: 103225. https://doi.org/10.1016/j.earscirev.2020.103225
      Pham, B. T., Tien Bui, D., Prakash, I., et al., 2017. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. CATENA, 149: 52-63. https://doi.org/10.1016/j.catena.2016.09.007
      Qiu, H.J., Cao, M.M., Liu, W., et al., 2014. The Susceptibility Assessment of Landslide and Its Calibration of the Models Based on Three Different Models. Scientia Geographica Sinica, 34(1): 110-115(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DLKX201401016&dbcode=CJFD&year=2014&dflag=pdfdown
      Qiu, H.J., Ma, S.Y., Cui, Y.F., et al., 2020. Reconsider the Role of Landslides. Journal of Northwest University (Natural Science Edition), 50(3): 377-385(in Chinese with English abstract).
      Regmi, A. D., Devkota, K. C., Yoshida, K., et al., 2014. Application of Frequency Ratio, Statistical Index, and Weights-of-Evidence Models and Their Comparison in Landslide Susceptibility Mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2): 725-742. https://doi.org/10.1007/s12517-012-0807-z
      Saha, S., Saha, M., Mukherjee, K., et al., 2020. Predicting the Deforestation Probability Using the Binary Logistic Regression, Random Forest, Ensemble Rotational Forest, REPTree: A Case Study at the Gumani River Basin, India. Science of the Total Environment, 730: 139197. https://doi.org/10.1016/j.scitotenv.2020.139197
      Sun, D. L., Wen, H. J., Wang, D. Z., et al., 2020. A Random Forest Model of Landslide Susceptibility Mapping Based on Hyperparameter Optimization Using Bayes Algorithm. Geomorphology, 362: 107201. https://doi.org/10.1016/j.geomorph.2020.107201
      Wang, P., Bai, X. Y., Wu, X. Q., et al., 2018. GIS-Based Random Forest Weight for Rainfall-Induced Landslide Susceptibility Assessment at a Humid Region in Southern China. Water, 10(8): 1019. https://doi.org/10.3390/w10081019
      Wang, Z.W., Wang, L., Huang, G.W., et al., 2020. Research on Multi-Source Heterogeneous Data Fusion Algorithm of Landslide Monitoring Based on BP Neural Network. Journal of Geomechanics, 26(4): 575-582(in Chinese with English abstract).
      Wu, R.Z., Hu, X.D., Mei, H.B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330(in Chinese with English abstract).
      Wu, Y.P., Zhang, Q.X., Tang, H.M., et al., 2014. Landslide Hazard Warning Based on Effective Rainfall Intensity. Earth Science, 39(7): 889-895(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201407011.htm
      Xu, C., Dai, F. C., Xu, X. W., et al., 2012. GIS-Based Support Vector Machine Modeling of Earthquake-Triggered Landslide Susceptibility in the Jianjiang River Watershed, China. Geomorphology, 145/146: 70-80. https://doi.org/10.1016/j.geomorph.2011.12.040
      Xu, Q., Dong, X.J., Li, W.L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957-966(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-WHCH201907002.htm
      Xu, S.H., Liu, J.P., Wang, X.H., et al., 2020. Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province. Geomatics and Information Science of Wuhan University, 45(8): 1214-1222(in Chinese with English abstract).
      Yu, X.Y., Hu, Y.J., Niu, R.Q., 2016. Research on the Method to Select Landslide Susceptibility Evaluation Factors Based on RS-SVM Model. Geography and Geo-Information Science, 32(3): 23-28, 2(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DLGT201603005.htm
      Zhang, J., Yin, K.L., Wang, J.J., et al., 2016. Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35(2): 284-296(in Chinese with English abstract).
      Zhang, Q.K., Ling, S.X., Li, X.N., et al., 2020. Comparison of Landslide Susceptibility Mapping Rapid Assessment Models in Jiuzhaigou County, Sichuan Province, China. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1595-1610(in Chinese with English abstract). http://www.researchgate.net/publication/340330642_Distribution_Pattern_of_Coseismic_Landslides_Triggered_by_the_2017_Jiuzhaigou_Ms_70_Earthquake_of_China_Control_of_Seismic_Landslide_Susceptibility
      Zhang, S.H., Wu, G., 2019. Debris Flow Susceptibility and Its Reliability Based on Random Forest and GIS. Earth Science, 44(9): 3115-3134(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909025.htm
      Zhu, A.X., Lü, G.N., Zhou, C.H., et al., 2020. Geographic Similarity: Third Law of Geography? Journal of Geo-Information Science, 22(4): 673-679(in Chinese with English abstract).
      Zhu, L., Huang, L. H., Fan, L. Y., et al., 2020. Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network. Sensors, 20(6): 1576. https://doi.org/10.3390/s20061576
      Zhu, L., Wang, G. J., Huang, F. M., et al., 2021. Landslide Susceptibility Prediction Using Sparse Feature Extraction and Machine Learning Models Based on GIS and Remote Sensing. IEEE Geoscience and Remote Sensing Letters, 1-5. https://doi.org/10.1109/LGRS.2021.3054029
      冯杭建, 周爱国, 俞剑君, 等, 2016. 浙西梅雨滑坡易发性评价模型对比. 地球科学, 41(3): 403-415. doi: 10.3799/dqkx.2016.032
      郭子正, 殷坤龙, 付圣, 等, 2019. 基于GIS与WOE-BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312. doi: 10.3799/dqkx.2018.555
      黄发明, 汪洋, 董志良, 等, 2019. 基于灰色关联度模型的区域滑坡敏感性评价. 地球科学, 44(2): 664-676. doi: 10.3799/dqkx.2018.175
      李云良, 张奇, 李淼, 等, 2015. 基于BP神经网络的鄱阳湖水位模拟. 长江流域资源与环境, 24(2): 233-240. doi: 10.11870/cjlyzyyhj201502008
      马思远, 许冲, 田颖颖, 等, 2019. 基于逻辑回归模型的九寨沟地震滑坡危险性评估. 地震地质, 41(1): 162-177. doi: 10.3969/j.issn.0253-4967.2019.01.011
      邱海军, 曹明明, 刘闻, 等, 2014. 基于三种不同模型的区域滑坡灾害敏感性评价及结果检验研究. 地理科学, 34(1): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201401016.htm
      邱海军, 马舒悦, 崔一飞, 等, 2020. 重新认识滑坡作用. 西北大学学报(自然科学版), 50(3): 377-385. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202003009.htm
      王智伟, 王利, 黄观文, 等, 2020. 基于BP神经网络的滑坡监测多源异构数据融合算法研究. 地质力学学报, 26(4): 575-582. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004014.htm
      吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
      吴益平, 张秋霞, 唐辉明, 等, 2014. 基于有效降雨强度的滑坡灾害危险性预警. 地球科学, 39(7): 889-895. doi: 10.3799/dqkx.2014.083
      许强, 董秀军, 李为乐, 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警. 武汉大学学报·信息科学版, 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm
      徐胜华, 刘纪平, 王想红, 等, 2020. 熵指数融入支持向量机的滑坡灾害易发性评价方法: 以陕西省为例. 武汉大学学报·信息科学版, 45(8): 1214-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008012.htm
      于宪煜, 胡友健, 牛瑞卿, 2016. 基于RS-SVM模型的滑坡易发性评价因子选择方法研究. 地理与地理信息科学, 32(3): 23-28, 2. doi: 10.3969/j.issn.1672-0504.2016.03.005
      张俊, 殷坤龙, 王佳佳, 等, 2016. 三峡库区万州区滑坡灾害易发性评价研究. 岩石力学与工程学报, 35(2): 284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
      张玘恺, 凌斯祥, 李晓宁, 等, 2020. 九寨沟县滑坡灾害易发性快速评估模型对比研究. 岩石力学与工程学报, 39(8): 1595-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008009.htm
      张书豪, 吴光, 2019. 随机森林与GIS的泥石流易发性及可靠性. 地球科学, 44(9): 3115-3134. doi: 10.3799/dqkx.2019.081
      朱阿兴, 闾国年, 周成虎, 等, 2020. 地理相似性: 地理学的第三定律?. 地球信息科学学报, 22(4): 673-679. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202004005.htm
    • 加载中
    图(9) / 表(6)
    计量
    • 文章访问数:  1418
    • HTML全文浏览量:  717
    • PDF下载量:  99
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-11-28
    • 网络出版日期:  2021-11-03
    • 刊出日期:  2021-11-03

    目录

      /

      返回文章
      返回