Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/110739
Title: Genome-wide identification of loci modifying spike-branching in tetraploid wheat
Author(s): Wolde, Gizaw M.
Schreiber, MonaLook up in the Integrated Authority File of the German National Library
Trautewig, Corinna
Himmelbach, Axel
Sakuma, Shun
Mascher, MartinLook up in the Integrated Authority File of the German National Library
Schnurbusch, ThorstenLook up in the Integrated Authority File of the German National Library
Issue Date: 2021
Type: Article
Language: English
Abstract: The wheat (Triticum ssp.) inflorescence, also known as a spike, forms an unbranched inflorescence in which the inflorescence meristem generates axillary spikelet meristems (SMs) destined to become sessile spikelets. Previously, we identified the putatively causative mutation in the branched headt (bht) gene (TtBH-A1) of tetraploid wheat (T. turgidum convar. compositum (L.f.) Filat.) responsible for the loss of SM identity, converting the non-branching spike to a branched wheat spike. In the current study, we performed whole-genome quantitative trait loci (QTL) analysis using 146 recombinant inbred lines (RILs) derived from a cross between spike-branching wheat (‘Miracle wheat’) and an elite durum wheat cultivar showing broad phenotypic variation for spike architecture. Besides the previously found gene at the bht-A1 locus on the short arm of chromosome 2A, we also mapped two new modifier QTL for spike-branching on the short arm of chromosome 1A, termed bht-A2, and 2BS. Using biparental mapping population and GWAS in 302 diverse accessions, the 2BS locus was highly associated with coding sequence variation found at the homoeo-allele of TtBH-B1 (bht-B1). Thus, RILs that combined both bht-A1 and bht-B1 alleles showed additive genetic effects leading to increased penetrance and expressivity of the supernumerary spikelet and/or mini-spike formation.
URI: https://opendata.uni-halle.de//handle/1981185920/112694
http://dx.doi.org/10.25673/110739
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Theoretical and applied genetics
Publisher: Springer
Publisher Place: Berlin
Volume: 134
Original Publication: 10.1007/s00122-020-03743-5
Page Start: 1925
Page End: 1943
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s00122-020-03743-5.pdf3.83 MBAdobe PDFThumbnail
View/Open