Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

Design and Performance Analysis of a Novel Hybrid PM Five-Phase Fault- Tolerant Switched-Flux Memory Motor

Author(s): Stephen Eduku*, Ebenezer Narh Odonkor, Mohammed Okoe Alhassan and Joseph Sekyi-Ansah

Volume 15, Issue 7, 2022

Published on: 19 September, 2022

Page: [544 - 554] Pages: 11

DOI: 10.2174/2352096515666220804150413

open access plus

Abstract

Background: The existing literature depicts that since the advent of the hybrid permanent magnet switched-flux memory motor (HPMSF-MM), comprehensive research is focused on the design of three (3)-phase HPMSF-MM topologies, which limits their practical safety crucial design application range or scope, namely, in electric vehicle (EV).

Objective: This research work aims to design a novel five (5)-phase fault-tolerant HPMFS-MM using the synergy of two key PMs, namely, a neodymium magnet (NdFeB) and Alnico magnet, also known as low coercive force (LCF) with an intrinsic overload fault detection capacity and excellent flux-regulation capacity to extend it practical application scope.

Methods: This research paper employs finite element analysis (FEA) via ANSYS Maxwell electromagnetic software in designing, simulation, and analyzing the proposed fault-tolerant HPMSF-MM.

Results: The key merit of the Proposed HPMSF-MM is the exhibition of an overload fault protection mechanism via an injection of a reversed temporary control pulse current into the field winding (FW) in the event of an overload fault condition to demagnetize the Alnico PM configuration to ensure that, almost all the generated flux are short-circuited via the design stator-core without linking the designed rotor as in the case of normal operation is effectively verified via the flux-linkage analysis in this paper.

Conclusion: The proposed HPMFS-MM can effectively demonstrate its intrinsic overload fault detection mechanism, due to its tremendous flux-regulating or weakening capacity, in addition to its fault-tolerant teeth implementation merit of ensuring physical motor winding phase isolation in an event of a fault.

Keywords: Hybrid PM switched-flux, memory motor, fault-tolerant, finite element analysis (FEA), overload fault protection, PMFS.

Graphical Abstract
[1]
H. Yang, H. Lin, S. Fang, Z.Q. Zhu, and Y. Huang, "Flux-regulatable characteristics analysis of a novel switched-flux surface-mounted PM memory machine", IEEE Trans. Magn., vol. 50, no. 11, pp. 1-4, 2014.
[http://dx.doi.org/10.1109/TMAG.2014.2323331]
[2]
K.T. Chau, C.C. Chan, and C. Liu, "Overview of permanent-magnet brushless drive for electric and hybrid electric vehicles", IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2246-2257, 2008.
[http://dx.doi.org/10.1109/TIE.2008.918403]
[3]
X. Liu, D. Wu, and Z.Q. Zhu, "Efficiency improvement of switched flux pm memory machine over interior PM machine for EV/HEV applications", IEEE Trans. Magn., vol. 50, no. 11, pp. 1-4, 2014.
[http://dx.doi.org/10.1109/TMAG.2014.2323556]
[4]
A.A. Afinowi, Z.Q. Zhu, Y. Guan, J.C. Mipo, and P. Farah, "Performance analysis of switched-flux machines with hybrid NdFeB and ferrite magnets", In 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 22-25 Oct, 2014, p. Hangzhou, China, 2014, pp. 3110-3116, .
[http://dx.doi.org/10.1109/ICEMS.2014.7014029]
[5]
M.M.J. Al-Ani, and Z.Q. Zhu, "Novel switched flux machine with radial and circumferential permanent magnets", In International Conference on Electrical Machines and Systems (ICEMS), 2014, pp. 2903-2909
[http://dx.doi.org/10.1109/ICEMS.2014.7013993]
[6]
H. Yang, H. Lin, Y. Li, H. Wang, S. Fang, and Y. Huang, "Analytical modeling of switched flux memory machine", IEEE Trans. Magn., vol. 54, no. 3, pp. 1-5, 2018.
[http://dx.doi.org/10.1109/TMAG.2017.2766442]
[7]
N. Li, M. Lin, and G. Yang, "Design and analysis of a hybrid permanent magnet axial field flux-switching memory machine", In 2016 IEEE Conference on Electromagnetic Field Computation (CEFC)., 13-16 Nov, 2016, p. Miami, FL, USA, 2016, pp. 1-1, .
[http://dx.doi.org/10.1109/CEFC.2016.7816318]
[8]
S. Maekawa, K. Yuki, M. Matsushita, I. Nitta, Y. Hasegawa, T. Shiga, T. Hosoito, K. Nagai, and H. Kubota, "Study of the magnetization method suitable for fractional-slot concentrated-winding variable magnetomotive-force memory motor", IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4877-4887, 2014.
[http://dx.doi.org/10.1109/TPEL.2013.2288635]
[9]
K. Sakai, K. Yuki, Y. Hashiba, N. Takahashi, and K. Yasui, "Principle of the variable-magnetic-force memory motor", In 2009 International Conference on Electrical Machines and Systems, 15- 18 Nov 2009,, p. Tokyo, Japan, 2009, pp. 1-6., .
[10]
H. Yang, H. Lin, and Z.Q. Zhu, "Recent advances in variable flux memory machines for traction applications: A review", CES Trans. Electr. Mach. Syst., vol. 2, no. 1, pp. 34-50, 2018.
[11]
Z.Q. Zhu, and D. Howe, "Electrical machines and drives for electric, hybrid, and fuel cell vehicles", Proc. IEEE, vol. 95, no. 4, pp. 746-765, 2007.
[http://dx.doi.org/10.1109/JPROC.2006.892482]
[12]
Z.Q. Zhu, Permanent Magnet Machines for Traction Applications. Encyclopedia of Automotive Engineering., John Wiley & Sons, Ltd, 2014.
[13]
A.M. El-Refaie, "Motors/generators for traction/propulsion applications: A review", IEEE Veh. Technol. Mag., vol. 8, no. 1, pp. 90-99, 2013.
[http://dx.doi.org/10.1109/MVT.2012.2218438]
[14]
I. Boldea, L.N. Tutelea, L. Parsa, and D. Dorrell, "Automotive electric propulsion systems with reduced or no permanent magnets: An overview", IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5696-5711, 2014.
[http://dx.doi.org/10.1109/TIE.2014.2301754]
[15]
I. Boldea, "Electric generators and motors: An overview", CES Trans. Electr. Mach. Syst., vol. 1, no. 1, pp. 3-14, 2017.
[http://dx.doi.org/10.23919/TEMS.2017.7911104]
[16]
D. Wu, X. Liu, Z.Q. Zhu, A. Pride, R. Deodhar, and T. Sasaki, "Novel switched flux hybrid magnet memory motor", In IET International Conference on Power Electronics, Machines, and Drives (PEMD), 2014, pp. 1-6
[http://dx.doi.org/10.1049/cp.2014.0318]
[17]
G. Yang, M. Lin, N. Li, G. Tan, and B. Zhang, "Comparative study of a flux-regulation method for stator permanent magnet memory machine", In 2017 International Conference on Electrical Machines and Systems (ICEMS), 11-14 Aug, 2017, p. Sydney, NSW, Australia, 2017, pp. 1-5, .
[http://dx.doi.org/10.1109/ICEMS.2017.8056093]
[18]
L.I.N. Heyun, and Y.A.N.G. Hui, "Overview and recent development of memory machines", Proc. CSEE, vol. 33, no. 33, pp. 57-67, 2013.
[19]
Y. Chen, and W. Ying, "Magnetic circuit design and finite element analysis of wide-speed controllable-flux PMSM", Proc. CSEE, vol. 25, no. 20, pp. 157-161, 2005.
[20]
X. Zhu, L. Quan, D. Chen, M. Cheng, Z. Wang, and W. Li, "Design and analysis of a new flux memory doubly salient motor capable of online flux control", IEEE Trans. Magn., vol. 47, no. 10, pp. 3220-3223, 2011.
[http://dx.doi.org/10.1109/TMAG.2011.2154358]
[21]
G. Yang, M. Lin, N. Li, X. Fu, and K. Liu, "Maximum torque output control of hybrid permanent magnet axial field flux-switching memory machine", In 2017 IEEE Energy Conversion Congress and Exposition. (ECCE),: 1-5 Oct, 2017, p. Cincinnati, OH, USA, 2017, pp. 1212-1219, .
[22]
V. Ostovic, "Memory motors-a new class of controllable flux PM machines for a true wide speed operation", In Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), 30 Sept 2001- 4 Oct, 2001, p. Chicago, IL, USA, vol. 4, 2001, pp. 2577-2584, .
[http://dx.doi.org/10.1109/IAS.2001.955983]
[23]
S. Eduku, Q. Chen, G. Xu, G. Liu, J. Liao, and X. Zhang, "A new fault-tolerant rotor permanent magnet flux-switching motor", IEEE Trans. Transp. Electrif., pp. 1-1, 2022.
[http://dx.doi.org/10.1109/TTE.2022.3143097]
[24]
R. Zheng, K. Wang, J. Li, G. Zhang, and J. Kong, "Permanent magnet machine with stator tooth offset to improve fault-tolerant capability", In 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 29 Nov- 02 Dec 2020, p. Nanjing, China, 2020, pp. 1957-1961, .
[http://dx.doi.org/10.1109/IPEMC-ECCEAsia48364.2020.9367925]
[25]
W. Zhao, L. Xu, and G. Liu, "Overview of permanent-magnet fault-tolerant machines: Topology and design", CES Trans. Electr. Mach. Syst., vol. 2, no. 1, pp. 51-64, 2018.
[http://dx.doi.org/10.23919/TEMS.2018.8326451]
[26]
Q. Chen, G. Liu, W. Zhao, L. Sun, M. Shao, and Z. Liu, "Design and comparison of two fault-tolerant interior-permanent-magnet motors", IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6615-6623, 2014.
[http://dx.doi.org/10.1109/TIE.2014.2314070]
[27]
A. Nobahari, M. Aliahmadi, and J. Faiz, "Performance modifications and design aspects of rotating flux switching permanent magnet machines: A review", IET Electr. Power Appl., vol. 14, no. 1, pp. 1-15, 2020.
[http://dx.doi.org/10.1049/iet-epa.2019.0339]
[28]
X. Xue, W. Zhao, J. Zhu, G. Liu, X. Zhu, and M. Cheng, "Design of five-phase modular flux-switching permanent-magnet machines for high-reliability applications", IEEE Trans. Magn., vol. 49, no. 7, pp. 3941-3944, 2013.
[http://dx.doi.org/10.1109/TMAG.2013.2244201]
[29]
Q. Chen, S. Eduku, and W. Zhao, "A new fault-tolerant switched flux machine with hybrid permanent magnets", CES Trans. Electr. Mach. Syst., vol. 4, no. 2, pp. 79-86, 2020.
[http://dx.doi.org/10.30941/CESTEMS.2020.00012]
[30]
Q. Chen, Y. Yan, G. Liu, and G. Xu, "Design of a new fault-tolerant permanent magnet machine with optimized salient ratio and reluctance torque ratio", IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 6043-6054, 2020.
[http://dx.doi.org/10.1109/TIE.2019.2956381]
[31]
N. Bianchi, and M. Dai Pre, "Use of the star of slots in designing fractional-slot single-layer synchronous motors", IEE Proc., Electr. Power Appl., vol. 153, no. 3, pp. 459-466, 2006.
[http://dx.doi.org/10.1049/ip-epa:20050284]
[32]
H. Kang, L. Zhou, and J. Wang, "Harmonic winding factors and MMF analysis for five-phase fractional-slot concentrated winding PMSM", In 2013 International Conference on Electrical Machines and Systems (ICEMS), 26-29 Oct, 2013, p. Busan, Korea (South), 2013, pp. 1236-1241, .
[http://dx.doi.org/10.1109/ICEMS.2013.6713375]
[33]
A. Ivany, Hysteresis Models in Electromagnetic Computation., Akadémiai Kiadó: Budapest, Hungary, 1997.
[34]
Q. Chen, G. Xu, F. Zhai, and G. Liu, "A novel spoke-type pm motor with auxiliary salient poles for low torque pulsation", IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 4762-4773, 2020.
[http://dx.doi.org/10.1109/TIE.2019.2924864]
[35]
D.Y. Kim, J.K. Nam, and G.H. Jang, "Reduction of magnetically induced vibration of a spoke-type IPM motor using magnetomechanical coupled analysis and optimization", IEEE Trans. Magn., vol. 49, no. 9, pp. 5097-5105, 2013.
[http://dx.doi.org/10.1109/TMAG.2013.2255307]
[36]
K. Atallah, J. Wang, and D. Howe, "Torque-ripple minimization in modular permanent-magnet brushless machines", IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1689-1695, 2003.
[http://dx.doi.org/10.1109/TIA.2003.818986]

© 2024 Bentham Science Publishers | Privacy Policy