Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Characteristics and Applications of Peptide Nucleic Acid in the Treatment of Infectious Diseases and the Effect of Antimicrobial Photodynamic Therapy on Treatment Effectiveness

Author(s): Zahra Javanmard, Maryam Pourhajibagher* and Abbas Bahador*

Volume 24, Issue 1, 2024

Published on: 22 August, 2023

Article ID: e240723219021 Pages: 18

DOI: 10.2174/1871526523666230724120957

Price: $65

Abstract

Antibiotic resistance is a growing global problem, so there is an urgent need for new antimicrobial agents and strategies. Peptide nucleic acid (PNA) oligomers could be designed and utilized as gene-specific oligonucleotides to target any infectious agents. Selectivity and high-affinity binding are the main properties of PNA. However, in therapeutic applications, intracellular delivery of peptide nucleic acids is still a challenge. In photodynamic therapy (PDT), which could be a useful adjunct to mechanical and antibiotics in removing pathogenic agents, low-power lasers are used in appropriate wavelength for killing the microorganisms that have been treated with a photosensitizer drug. Antimicrobial photodynamic therapy (aPDT) in combination with lipid-charged nanoparticles of PNA is a promising alternative therapy proposed to control infectious diseases. This review summarizes progress in the uptake of peptide nucleic acids at intracellular targets. In addition, we focus on recent nanoparticle- based strategies to efficiently deliver conventional and chemically modified peptide nucleic acids. The likely impact of using two treatment methods simultaneously, i.e., PNP and PDT, has already been discussed.

Keywords: Lipid nanoparticles, solid lipid nanoparticles, peptide nucleic acids, antisense therapy, photodynamic therapy, antibiotic resistance.

Graphical Abstract
[1]
Oniszczuk A, Wojtunik-Kulesza KA, Oniszczuk T, Kasprzak K. The potential of photodynamic therapy (PDT)-Experimental investigations and clinical use. Biomed Pharmacother 2016; 83: 912-29.
[http://dx.doi.org/10.1016/j.biopha.2016.07.058] [PMID: 27522005]
[2]
Majumder MAA, Rahman S, Cohall D, et al. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect Drug Resist 2020; 13: 4713-38.
[http://dx.doi.org/10.2147/IDR.S290835] [PMID: 33402841]
[3]
Rahmati F. Impact of microencapsulation on two probiotic strains in alginate chitosan and Eudragit S100 under gastrointestinal and normal conditions. Open Biotechnol 2019; 13(1): 59-67.
[http://dx.doi.org/10.2174/1874070701913010059]
[4]
Farrokhifard A, Kheirollahi M. An overview of peptide nucleic acids: Structure, properties, and applications. J Isfahan Med Sch 2014; 31(270): 2390-402.
[5]
Singh RP, Oh BK, Choi JW. Application of peptide nucleic acid towards development of nanobiosensor arrays. Bioelectrochemistry 2010; 79(2): 153-61.
[http://dx.doi.org/10.1016/j.bioelechem.2010.02.004] [PMID: 20356802]
[6]
Sharma C, Awasthi SK. Versatility of peptide nucleic acids (PNAs): Role in chemical biology, drug discovery, and origins of life. Chem Biol Drug Des 2017; 89(1): 16-37.
[http://dx.doi.org/10.1111/cbdd.12833] [PMID: 27490868]
[7]
Monroig PC, Chen L, Zhang S, Calin GA. Small molecule compounds targeting miRNAs for cancer therapy. Adv Drug Deliv Rev 2015; 81: 104-16.
[http://dx.doi.org/10.1016/j.addr.2014.09.002] [PMID: 25239236]
[8]
Javanmard Z, Kalani BS, Razavi S, et al. Evaluation of cell-penetrating peptide–peptide nucleic acid effect in the inhibition of cag A in Helicobacter pylori. Acta Microbiol Immunol Hung 2020; 67(1): 1-7.
[http://dx.doi.org/10.1556/030.66.2019.032] [PMID: 32043369]
[9]
Farahani NN, Kalani BS, Monavari SH, et al. Therapeutic effects, immunogenicity and cytotoxicity of a cell penetrating peptide-peptide nucleic acid conjugate against cagA of Helicobacter pylori in cell culture and animal model. Iran J Microbiol 2021; 13(3): 360-71.
[PMID: 34540175]
[10]
Gupta A, Mishra A, Puri N. Peptide nucleic acids: Advanced tools for biomedical applications. J Biotechnol 2017; 259: 148-59.
[http://dx.doi.org/10.1016/j.jbiotec.2017.07.026] [PMID: 28764969]
[11]
Shakeel S, Karim S, Ali A. Peptide nucleic acid (PNA) — a review. J Chem Technol Biotechnol 2006; 81(6): 892-9.
[http://dx.doi.org/10.1002/jctb.1505]
[12]
Xue XY, Mao XG, Zhou Y, et al. Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. Nanomedicine 2018; 14(3): 745-58.
[http://dx.doi.org/10.1016/j.nano.2017.12.026] [PMID: 29341934]
[13]
Lee HT, Kim SK, Yoon JW. Antisense peptide nucleic acids as a potential anti-infective agent. J Microbiol 2019; 57(6): 423-30.
[http://dx.doi.org/10.1007/s12275-019-8635-4] [PMID: 31054136]
[14]
Wojciechowska M,. Równicki M, Mieczkowski A, Miszkiewicz J, Trylska J. Antibacterial peptide nucleic acids-Facts and perspectives. Molecules 2020; 25(3): 559.
[http://dx.doi.org/10.3390/molecules25030559] [PMID: 32012929]
[15]
Jani S, Ramirez MS, Tolmasky ME. Silencing antibiotic resistance with antisense oligonucleotides. Biomedicines 2021; 9(4): 416.
[http://dx.doi.org/10.3390/biomedicines9040416] [PMID: 33921367]
[16]
Siddiquee S, Rovina K, Azriah A. A review of peptide nucleic acid. Adv Tech Biol Med 2015; 3(2): 1-10.
[http://dx.doi.org/10.4172/2379-1764.1000131]
[17]
Kornman KS, Page RC, Tonetti MS. The host response to the microbial challenge in periodontitis: Assembling the players. Periodontol 2000 1997; 14(1): 33-53.
[http://dx.doi.org/10.1111/j.1600-0757.1997.tb00191.x] [PMID: 9567965]
[18]
Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B 1997; 39(1): 1-18.
[19]
Lui H, Anderson RR. Photodynamic therapy in dermatology. Shedding a different light on skin disease. Arch Dermatol 1992; 128(12): 1631-6.
[http://dx.doi.org/10.1001/archderm.1992.04530010069011] [PMID: 1456759]
[20]
Koshi E, Mohan A, Rajesh S, Philip K. Antimicrobial photodynamic therapy: An overview. J Indian Soc Periodontol 2011; 15(4): 323-7.
[http://dx.doi.org/10.4103/0972-124X.92563] [PMID: 22368354]
[21]
Sahu B, Behera SK, Das R, et al. Design and in-silico screening of Peptide Nucleic Acid (PNA) inspired novel pronucleotide scaffolds targeting COVID-19. Curr Comput Aided Drug Des 2022; 18(1): 26-40.
[http://dx.doi.org/10.2174/1573409916666200923143935] [PMID: 32964827]
[22]
Nielsen PE, Egholm M. An introduction to peptide nucleic acid. Curr Issues Mol Biol 1999; 1(1-2): 89-104.
[PMID: 11475704]
[23]
Rahmati F, Hosseini S S, Mahuti Safai S, Asgari Lajayer B, Hatami M. New insights into the role of nanotechnology in microbial food safety. 3 Biotech 2020; 10(10): 425.
[http://dx.doi.org/10.1007/s13205-020-02409-9.] [PMID: 32968610]
[24]
Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O, Henry CS. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal Chem 2017; 89(10): 5428-35.
[http://dx.doi.org/10.1021/acs.analchem.7b00255] [PMID: 28394582]
[25]
Rajasekaran P, Alexander JC, Seleem MN, et al. Peptide nucleic acids inhibit growth of Brucella suis in pure culture and in infected murine macrophages. Int J Antimicrob Agents 2013; 41(4): 358-62.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.11.017] [PMID: 23305655]
[26]
Ryoo SR, Lee J, Yeo J, et al. Quantitative and multiplexed microRNA sensing in living cells based on Peptide Nucleic Acid and Nano Graphene Oxide (PANGO). ACS Nano 2013; 7(7): 5882-91.
[http://dx.doi.org/10.1021/nn401183s] [PMID: 23767402]
[27]
Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMP R3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 2016; 44(D1): D1094-7.
[http://dx.doi.org/10.1093/nar/gkv1051] [PMID: 26467475]
[28]
Lächelt U, . Wagner E. Nucleic acid therapeutics using polyplexes: A journey of 50 years (and beyond). Chem Rev 2015; 115(19): 11043-78.
[http://dx.doi.org/10.1021/cr5006793] [PMID: 25872804]
[29]
Christopher JA, Stadler C, Martin CE, et al. Subcellular proteomics. Nat Rev Methods Primers 2021; 1(1): 32.
[http://dx.doi.org/10.1038/s43586-021-00029-y] [PMID: 34549195]
[30]
Xu Y, Wei Y, Cheng N, et al. Nucleic acid biosensor synthesis of an all-in-one universal blocking linker recombinase polymerase amplification with a peptide nucleic acid-based lateral flow device for ultrasensitive detection of food pathogens. Anal Chem 2018; 90(1): 708-15.
[http://dx.doi.org/10.1021/acs.analchem.7b01912] [PMID: 29202232]
[31]
Sridharan K, Gogtay NJ. Therapeutic nucleic acids: Current clinical status. Br J Clin Pharmacol 2016; 82(3): 659-72.
[http://dx.doi.org/10.1111/bcp.12987] [PMID: 27111518]
[32]
Sugiyama T, Kittaka A. Chiral peptide nucleic acids with a substituent in the N-(2-aminoethy)glycine backbone. Molecules 2012; 18(1): 287-310.
[http://dx.doi.org/10.3390/molecules18010287] [PMID: 23271467]
[33]
Saarbach J, Sabale PM, Winssinger N. Peptide Nucleic Acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics. Curr Opin Chem Biol 2019; 52: 112-24.
[http://dx.doi.org/10.1016/j.cbpa.2019.06.006] [PMID: 31541865]
[34]
Cirmena G, Dameri M, Ravera F, Fregatti P, Ballestrero A, Zoppoli G. Assessment of circulating nucleic acids in cancer: From current status to future perspectives and potential clinical applications. Cancers 2021; 13(14): 3460.
[http://dx.doi.org/10.3390/cancers13143460] [PMID: 34298675]
[35]
Demidov VV, Potaman VN, Frank-Kamenetskil MD, et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 1994; 48(6): 1310-3.
[http://dx.doi.org/10.1016/0006-2952(94)90171-6] [PMID: 7945427]
[36]
Wroblewski LE, Peek RM Jr, Wilson KT. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin Microbiol Rev 2010; 23(4): 713-39.
[http://dx.doi.org/10.1128/CMR.00011-10] [PMID: 20930071]
[37]
Roesler B M, Rabelo-Gonçalves E M A, Zeitune J M R. Helicobacter pylori and upper gastrointestinal diseases: A review. Health 2014; 6(4): 11.
[38]
Kole R, Krainer AR, Altman S. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012; 11(2): 125-40.
[http://dx.doi.org/10.1038/nrd3625] [PMID: 22262036]
[39]
White S, Szewczyk JW, Turner JM, Baird EE, Dervan PB. Recognition of the four Watson–Crick base pairs in the DNA minor groove by synthetic ligands. Nature 1998; 391(6666): 468-71.
[http://dx.doi.org/10.1038/35106] [PMID: 9461213]
[40]
Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991; 254(5037): 1497-500.
[http://dx.doi.org/10.1126/science.1962210] [PMID: 1962210]
[41]
Christensen L, Fitzpatrick R, Gildea B, et al. Solid-Phase synthesis of peptide nucleic acids. J Pept Sci 1995; 1(3): 175-83.
[http://dx.doi.org/10.1002/psc.310010304] [PMID: 9222994]
[42]
Ratilainen T, Holmén A, Tuite E, Nielsen PE, Nordén B. Thermodynamics of sequence-specific binding of PNA to DNA. Biochemistry 2000; 39(26): 7781-91.
[http://dx.doi.org/10.1021/bi000039g] [PMID: 10869183]
[43]
Thomas SM, Sahu B, Rapireddy S, et al. Antitumor effects of EGFR antisense guanidine-based peptide nucleic acids in cancer models. ACS Chem Biol 2013; 8(2): 345-52.
[http://dx.doi.org/10.1021/cb3003946] [PMID: 23113581]
[44]
Cheng CJ, Bahal R, Babar IA, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 2015; 518(7537): 107-10.
[http://dx.doi.org/10.1038/nature13905] [PMID: 25409146]
[45]
Hanvey JC, Peffer NJ, Bisi JE, et al. Antisense and antigene properties of peptide nucleic acids. Science 1992; 258(5087): 1481-5.
[http://dx.doi.org/10.1126/science.1279811] [PMID: 1279811]
[46]
Montazersaheb S, Hejazi MS, Nozad Charoudeh H. Potential of peptide nucleic acids in future therapeutic applications. Adv Pharm Bull 2018; 8(4): 551-63.
[http://dx.doi.org/10.15171/apb.2018.064] [PMID: 30607328]
[47]
Govindaraju T, Kumar VA. Backbone extended pyrrolidine PNA (bepPNA): A chiral PNA for selective RNA recognition. Tetrahedron 2006; 62(10): 2321-30.
[http://dx.doi.org/10.1016/j.tet.2005.12.002]
[48]
Uhlmann E, Peyman A, Breipohl G, Will DW. PNA: Synthetic polyamide nucleic acids with unusual binding properties. Angew Chem Int Ed 1998; 37(20): 2796-823.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981102)37:20<2796:AID-ANIE2796>3.0.CO;2-K] [PMID: 29711102]
[49]
Kumar VA. Structural preorganization of peptide nucleic acids: Chiral cationic analogues with five‐or six‐membered ring structures. Eur J Org Chem 2002; 2002(13): 2021-32.
[http://dx.doi.org/10.1002/1099-0690(200207)2002:13<2021:AID-EJOC2021>3.0.CO;2-9]
[50]
Giesen U, Kleider W, Berding C, Geiger A. Ørum H, Nielsen PE. A formula for thermal stability (Tm) prediction of PNA/DNA duplexes. Nucleic Acids Res 1998; 26(21): 5004-6.
[http://dx.doi.org/10.1093/nar/26.21.5004] [PMID: 9776766]
[51]
Sugimoto N, Nakano S, Yoneyama M, Honda K. Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res 1996; 24(22): 4501-5.
[http://dx.doi.org/10.1093/nar/24.22.4501] [PMID: 8948641]
[52]
SantaLucia J Jr, Allawi HT, Seneviratne PA. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 1996; 35(11): 3555-62.
[http://dx.doi.org/10.1021/bi951907q] [PMID: 8639506]
[53]
Marky LA, Breslauer KJ. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 1987; 26(9): 1601-20.
[http://dx.doi.org/10.1002/bip.360260911] [PMID: 3663875]
[54]
Brodyagin N, Katkevics M, Kotikam V, Ryan CA, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem 2021; 17(1): 1641-88.
[http://dx.doi.org/10.3762/bjoc.17.116] [PMID: 34367346]
[55]
Massaro M, Licandro E, Cauteruccio S, et al. Nanocarrier based on halloysite and fluorescent probe for intracellular delivery of peptide nucleic acids. J Colloid Interface Sci 2022; 620: 221-33.
[http://dx.doi.org/10.1016/j.jcis.2022.03.151] [PMID: 35428004]
[56]
Teengam P, Siangproh W, Tuantranont A, Henry CS, Vilaivan T, Chailapakul O. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. Anal Chim Acta 2017; 952: 32-40.
[http://dx.doi.org/10.1016/j.aca.2016.11.071] [PMID: 28010840]
[57]
Kulkarni P, Datta D, Ramabhadran RO, Ganesh K. Gem-dimethyl peptide nucleic acid (α/β/γ- gdm -PNA) monomers: Synthesis and the role of gdm -substituents in preferential stabilisation of Z/ E -rotamers. Org Biomol Chem 2021; 19(29): 6534-45.
[http://dx.doi.org/10.1039/D1OB01097B] [PMID: 34259296]
[58]
Aiba Y, Shibata M, Shoji O. Sequence-specific recognition of double-stranded DNA by peptide nucleic acid forming double-duplex invasion complex. Appl Nanosci 2022; 12(7): 3677.
[59]
Narenji H, Gholizadeh P, Aghazadeh M, Rezaee MA, Asgharzadeh M, Kafil HS. Peptide nucleic acids (PNAs): Currently potential bactericidal agents. Biomed Pharmacother 2017; 93: 580-8.
[http://dx.doi.org/10.1016/j.biopha.2017.06.092] [PMID: 28686972]
[60]
Paterson BM, Roberts BE, Kuff EL. Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci 1977; 74(10): 4370-4.
[http://dx.doi.org/10.1073/pnas.74.10.4370] [PMID: 270678]
[61]
Knudsen H, Nielsen PE. Antisense properties of duplex- and triplex-forming PNAs. Nucleic Acids Res 1996; 24(3): 494-500.
[http://dx.doi.org/10.1093/nar/24.3.494] [PMID: 8602363]
[62]
Nielsen PE. Gene targeting and expression modulation by Peptide Nucleic Acids (PNA). Curr Pharm Des 2010; 16(28): 3118-23.
[http://dx.doi.org/10.2174/138161210793292546] [PMID: 20687874]
[63]
D’Agata R, Giuffrida M, Spoto G. Peptide nucleic acid-based biosensors for cancer diagnosis. Molecules 2017; 22(11): 1951.
[http://dx.doi.org/10.3390/molecules22111951] [PMID: 29137122]
[64]
Amirkhanov RN, Zarytova VF, Amirkhanov NV. Smart titanium dioxide nanocomposites for cellular delivery of the antisense peptide nucleic acids. Smart Nano Com 2011; 2(1): 29.
[65]
Cartwright IL, Hertzberg RP, Dervan PB, Elgin SC. Cleavage of chromatin with methidiumpropyl-EDTA. iron(II). Proc Natl Acad Sci 1983; 80(11): 3213-7.
[http://dx.doi.org/10.1073/pnas.80.11.3213] [PMID: 6407008]
[66]
Van Dyke MW, Hertzberg RP, Dervan PB. Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II). Proc Natl Acad Sci 1982; 79(18): 5470-4.
[http://dx.doi.org/10.1073/pnas.79.18.5470] [PMID: 6291045]
[67]
Galvagnion C, Brown JWP, Ouberai MM, et al. Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein. Proc Natl Acad Sci 2016; 113(26): 7065-70.
[http://dx.doi.org/10.1073/pnas.1601899113] [PMID: 27298346]
[68]
Rahmati F. Characterization of Lactobacillus, Bacillus and Saccharomyces isolated from Iranian traditional dairy products for potential sources of starter cultures. AIMS Microbiol 2017; 3(4): 815-25.
[http://dx.doi.org/10.3934/microbiol.2017.4.815] [PMID: 31294191]
[69]
Peffer NJ, Hanvey JC, Bisi JE, et al. Strand-invasion of duplex DNA by peptide nucleic acid oligomers. Proc Natl Acad Sci 1993; 90(22): 10648-52.
[http://dx.doi.org/10.1073/pnas.90.22.10648] [PMID: 8248156]
[70]
Kuhn H, Demidov VV, Nielsen PE, Frank-Kamenetskii MD. An experimental study of mechanism and specificity of peptide nucleic acid (PNA) binding to duplex DNA. J Mol Biol 1999; 286(5): 1337-45.
[http://dx.doi.org/10.1006/jmbi.1998.2578] [PMID: 10064701]
[71]
Demidov VV. PD-loop technology: PNA openers at work. Expert Rev Mol Diagn 2001; 1(3): 343-51.
[http://dx.doi.org/10.1586/14737159.1.3.343] [PMID: 11901840]
[72]
Tedeschi T, Sforza S, Dossena A, Corradini R, Marchelli R. Lysine-based peptide nucleic acids (PNAs) with strong chiral constraint: Control of helix handedness and DNA binding by chirality. Chirality 2005; 17(S1): S196-204.
[http://dx.doi.org/10.1002/chir.20128] [PMID: 15952136]
[73]
Sacui I, Hsieh WC, Manna A, Sahu B, Ly DH. Gamma peptide nucleic acids: As orthogonal nucleic acid recognition codes for organizing molecular self-assembly. J Am Chem Soc 2015; 137(26): 8603-10.
[http://dx.doi.org/10.1021/jacs.5b04566] [PMID: 26079820]
[74]
Topham CM, Smith JC. Peptide nucleic acid Hoogsteen strand linker design for major groove recognition of DNA thymine bases. J Comput Aided Mol Des 2021; 35(3): 355-69.
[http://dx.doi.org/10.1007/s10822-021-00375-9] [PMID: 33624202]
[75]
Galbiati S, Foglieni B, Travi M, et al. Peptide-nucleic acid-mediated enriched polymerase chain reaction as a key point for non-invasive prenatal diagnosis of -thalassemia. Haematologica 2008; 93(4): 610-4.
[http://dx.doi.org/10.3324/haematol.11895] [PMID: 18326525]
[76]
Wang G, Xu X, Pace B, et al. Peptide Nucleic Acid (PNA) binding-mediated induction of human -globin gene expression. Nucleic Acids Res 1999; 27(13): 2806-13.
[http://dx.doi.org/10.1093/nar/27.13.2806] [PMID: 10373600]
[77]
Berger O, Adler-Abramovich L, Levy-Sakin M, et al. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing. Nat Nanotechnol 2015; 10(4): 353-60.
[http://dx.doi.org/10.1038/nnano.2015.27] [PMID: 25775151]
[78]
Koh W. Peptide Nucleic Acid (PNA) and Its Applications. Panagene Inc 1991.
[79]
Hövelmann F, Gaspar I, Chamiolo J, et al. LNA-enhanced DNA FIT-probes for multicolour RNA imaging. Chem Sci 2016; 7(1): 128-35.
[http://dx.doi.org/10.1039/C5SC03053F] [PMID: 29861973]
[80]
Sultan S, Rozzi A, Gasparello J, et al. A Peptide Nucleic Acid (PNA) masking the miR-145-5p binding site of the 3′UTR of the cystic fibrosis transmembrane conductance regulator (CFTR) mRNA enhances CFTR expression in calu-3 cells. Molecules 2020; 25(7): 1677.
[http://dx.doi.org/10.3390/molecules25071677] [PMID: 32260566]
[81]
Ong AAL, Tan J, Bhadra M, et al. RNA secondary structure-based design of antisense peptide nucleic acids for modulating disease-associated aberrant tau pre-mRNA alternative splicing. Molecules 2019; 24(16): 3020.
[http://dx.doi.org/10.3390/molecules24163020] [PMID: 31434312]
[82]
Scoles DR, Minikel EV, Pulst SM. Antisense oligonucleotides. Neurol Genet 2019; 5(2): e323.
[http://dx.doi.org/10.1212/NXG.0000000000000323] [PMID: 31119194]
[83]
Crooke ST. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther 2017; 27(2): 70-7.
[http://dx.doi.org/10.1089/nat.2016.0656] [PMID: 28080221]
[84]
Bennett CF. Therapeutic antisense oligonucleotides are coming of age. Annu Rev Med 2019; 70(1): 307-21.
[http://dx.doi.org/10.1146/annurev-med-041217-010829] [PMID: 30691367]
[85]
Good L, Sandberg R, Larsson O, Nielsen PE, Wahlestedt C. Antisense PNA effects in Escherichia coli are limited by the outer-membrane LPS layer. Microbiology 2000; 146(10): 2665-70.
[http://dx.doi.org/10.1099/00221287-146-10-2665] [PMID: 11021941]
[86]
Barkowsky G, Lemster AL, Pappesch R, et al. Influence of different cell-penetrating peptides on the antimicrobial efficiency of PNAs in Streptococcus pyogenes. Mol Ther Nucleic Acids 2019; 18: 444-54.
[http://dx.doi.org/10.1016/j.omtn.2019.09.010] [PMID: 31655262]
[87]
Morris MC, Gros E, Aldrian-Herrada G, et al. A non-covalent peptide-based carrier for in vivo delivery of DNA mimics. Nucleic Acids Res 2007; 35(7): e49.
[http://dx.doi.org/10.1093/nar/gkm053] [PMID: 17341467]
[88]
Vaara M, Porro M. Group of peptides that act synergistically with hydrophobic antibiotics against gram-negative enteric bacteria. Antimicrob Agents Chemother 1996; 40(8): 1801-5.
[http://dx.doi.org/10.1128/AAC.40.8.1801] [PMID: 8843284]
[89]
Bai H, You Y, Yan H, et al. Antisense inhibition of gene expression and growth in gram-negative bacteria by cell-penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. Biomaterials 2012; 33(2): 659-67.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.075] [PMID: 22000398]
[90]
Patenge N, Pappesch R, Krawack F, et al. Inhibition of growth and gene expression by PNA-peptide conjugates in Streptococcus pyogenes. Mol Ther Nucleic Acids 2013; 2(11): e132.
[http://dx.doi.org/10.1038/mtna.2013.62] [PMID: 24193033]
[91]
Abushahba MFN, Mohammad H, Thangamani S, Hussein AAA, Seleem MN. Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens. Sci Rep 2016; 6(1): 20832.
[http://dx.doi.org/10.1038/srep20832] [PMID: 26860980]
[92]
Readman JB, Dickson G, Coldham NG. Tetrahedral DNA nanoparticle vector for intracellular delivery of targeted peptide nucleic acid antisense agents to restore antibiotic sensitivity in cefotaxime-resistant Escherichia coli. Nucleic Acid Ther 2017; 27(3): 176-81.
[http://dx.doi.org/10.1089/nat.2016.0644] [PMID: 28080251]
[93]
Zhang Y, Ma W, Zhu Y, et al. Inhibiting methicillin-resistant Staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett 2018; 18(9): 5652-9.
[http://dx.doi.org/10.1021/acs.nanolett.8b02166] [PMID: 30088771]
[94]
Koppelhus U, Awasthi SK, Zachar V, Holst HU, Ebbesen P, Nielsen PE. Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev 2002; 12(2): 51-63.
[http://dx.doi.org/10.1089/108729002760070795] [PMID: 12074365]
[95]
Arana L, Gallego L, Alkorta I. Incorporation of antibiotics into solid lipid nanoparticles: A promising approach to reduce antibiotic resistance emergence. Nanomaterials 2021; 11(5): 1251.
[http://dx.doi.org/10.3390/nano11051251] [PMID: 34068834]
[96]
Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials 2019; 9(3): 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[97]
Navarro F P, Creusat G, Frochot C, et al. Preparation and characterization of mTHPC-loaded solid lipid nanoparticles for photodynamic therapy. J Photochem Photobiol B 2014; 130: 161-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.11.007.] [PMID: 24333764]
[98]
Thorn CR, Thomas N, Boyd BJ, Prestidge CA. Nano-fats for bugs: The benefits of lipid nanoparticles for antimicrobial therapy. Drug Deliv Transl Res 2021; 11(4): 1598-624.
[http://dx.doi.org/10.1007/s13346-021-00921-w] [PMID: 33675007]
[99]
González-Paredes A, Sitia L, Ruyra A, et al. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. Eur J Pharm Biopharm 2019; 134: 166-77.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.017] [PMID: 30468838]
[100]
Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for global infectious diseases. Nat Nanotechnol 2021; 16(4): 369-84.
[http://dx.doi.org/10.1038/s41565-021-00866-8] [PMID: 33753915]
[101]
Lombardo D, Kiselev M A, Caccamo M T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019; 2019.
[102]
Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018; 133: 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[103]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[104]
Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur J Pharm Biopharm 2014; 86(1): 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[105]
Garcês A, Amaral MH, Sousa Lobo JM, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur J Pharm Sci 2018; 112: 159-67.
[http://dx.doi.org/10.1016/j.ejps.2017.11.023] [PMID: 29183800]
[106]
Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers – A systematic review of in vitro data. Eur J Pharm Biopharm 2014; 87(1): 1-18.
[http://dx.doi.org/10.1016/j.ejpb.2014.02.005] [PMID: 24530885]
[107]
Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines. Vaccines 2021; 9(4): 359.
[http://dx.doi.org/10.3390/vaccines9040359] [PMID: 33918072]
[108]
Leonardi A, Bucolo C, Romano GL, et al. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int J Pharm 2014; 470(1-2): 133-40.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.061] [PMID: 24792979]
[109]
Jeong SH, Jang JH, Cho HY, Lee YB. Soft- and hard-lipid nanoparticles: A novel approach to lymphatic drug delivery. Arch Pharm Res 2018; 41(8): 797-814.
[http://dx.doi.org/10.1007/s12272-018-1060-0] [PMID: 30074202]
[110]
Alihosseini F, Azarmi S, Ghaffari S, Haghighat S, Rezayat Sorkhabadi SM. Synergic antibacterial effect of curcumin with ampicillin; free drug solutions in comparison with SLN dispersions. Adv Pharm Bull 2016; 6(3): 461-5.
[http://dx.doi.org/10.15171/apb.2016.060] [PMID: 27766232]
[111]
Rodenak-Kladniew B, Scioli Montoto S, Sbaraglini ML, et al. Hybrid Ofloxacin/eugenol co-loaded solid lipid nanoparticles with enhanced and targetable antimicrobial properties. Int J Pharm 2019; 569: 118575.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118575] [PMID: 31356956]
[112]
Akhtari H, Fazly Bazzaz BS, Golmohammadzadeh S, Movaffagh J, Soheili V, Khameneh B. Rifampin and cis-2-decenoic acid co-entrapment in solid lipid nanoparticles as an efficient nano-system with potent anti-biofilm activities. J Pharm Innov 2021; 16(2): 293-301.
[http://dx.doi.org/10.1007/s12247-020-09446-0]
[113]
Lewies A, Wentzel JF, Jordaan A, Bezuidenhout C, Du Plessis LH. Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity. Int J Pharm 2017; 526(1-2): 244-53.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.071] [PMID: 28461263]
[114]
Kalhapure RS, Sonawane SJ, Sikwal DR, et al. Solid lipid nanoparticles of clotrimazole silver complex: An efficient nano antibacterial against Staphylococcus aureus and MRSA. Colloids Surf B Biointerfaces 2015; 136: 651-8.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.003] [PMID: 26492156]
[115]
Islan GA, Tornello PC, Abraham GA, Duran N, Castro GR. Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surf B Biointerfaces 2016; 143: 168-76.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.040] [PMID: 27003467]
[116]
Fumakia M, Ho EA. Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol Pharm 2016; 13(7): 2318-31.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00099] [PMID: 27182713]
[117]
Gastaldi L, Battaglia L, Peira E, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. Eur J Pharm Biopharm 2014; 87(3): 433-44.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.004] [PMID: 24833004]
[118]
Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 2015; 11(7): 1603-11.
[http://dx.doi.org/10.1016/j.nano.2015.04.015] [PMID: 25989200]
[119]
Bhattacharjee S. DLS and zeta potential – What they are and what they are not? J Control Release 2016; 235: 337-51.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.017] [PMID: 27297779]
[120]
Jeong SH, Jang JH, Cho HY, Lee YB. Soft- and hard-lipid nanoparticles: A novel approach to lymphatic drug delivery. Arch Pharm Res 2018; 41(8): 797-814.
[http://dx.doi.org/10.1007/s12272-018-1060-0] [PMID: 30074202]
[121]
Navarro FP, Berger M, Guillermet S, et al. Lipid nanoparticle vectorization of indocyanine green improves fluorescence imaging for tumor diagnosis and lymph node resection. J Biomed Nanotechnol 2012; 8(5): 730-41.
[http://dx.doi.org/10.1166/jbn.2012.1430] [PMID: 22888743]
[122]
Vranic S, Boggetto N, Contremoulins V, et al. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part Fibre Toxicol 2013; 10(1): 2.
[http://dx.doi.org/10.1186/1743-8977-10-2] [PMID: 23388071]
[123]
Rejman J, Bragonzi A, Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther 2005; 12(3): 468-74.
[http://dx.doi.org/10.1016/j.ymthe.2005.03.038] [PMID: 15963763]
[124]
Kumar S, Bhanjana G, Kumar A, Taneja K, Dilbaghi N, Kim KH. Synthesis and optimization of ceftriaxone-loaded solid lipid nanocarriers. Chem Phys Lipids 2016; 200: 126-32.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.09.002] [PMID: 27697513]
[125]
Pignatello R, Leonardi A, Fuochi V, Petronio Petronio G, Greco A, Furneri P. A method for efficient loading of ciprofloxacin hydrochloride in cationic solid lipid nanoparticles: Formulation and microbiological evaluation. Nanomaterials 2018; 8(5): 304.
[http://dx.doi.org/10.3390/nano8050304] [PMID: 29734771]
[126]
Wang XF, Zhang SL, Zhu LY, et al. Enhancement of antibacterial activity of tilmicosin against Staphylococcus aureus by solid lipid nanoparticles in vitro and in vivo. Vet J 2012; 191(1): 115-20.
[http://dx.doi.org/10.1016/j.tvjl.2010.11.019] [PMID: 21900026]
[127]
Severino P, Chaud MV, Shimojo A, et al. Sodium alginate-crosslinked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies. Colloids Surf B Biointerfaces 2015; 129: 191-7.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.049] [PMID: 25863712]
[128]
Severino P, Silveira EF, Loureiro K, et al. Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of physicochemical properties and in vitro efficacy. Eur J Pharm Sci 2017; 106: 177-84.
[http://dx.doi.org/10.1016/j.ejps.2017.05.063] [PMID: 28576561]
[129]
Fazly Bazzaz BS, Khameneh B, Namazi N, Iranshahi M, Davoodi D, Golmohammadzadeh S. Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: The novel nanoparticulate systems with broad-spectrum antimicrobial activity. Lett Appl Microbiol 2018; 66(6): 506-13.
[http://dx.doi.org/10.1111/lam.12886] [PMID: 29569372]
[130]
Diab R, Khameneh B, Joubert O, Duval R. Insights in nanoparticle-bacterium interactions: New frontiers to bypass bacterial resistance to antibiotics. Curr Pharm Des 2015; 21(28): 4095-105.
[http://dx.doi.org/10.2174/138161282128150922175445] [PMID: 26420233]
[131]
Maretti E, Costantino L, Buttini F, et al. Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Drug Deliv Transl Res 2019; 9(1): 298-310.
[http://dx.doi.org/10.1007/s13346-018-00607-w] [PMID: 30484257]
[132]
Xie S, Yang F, Tao Y, et al. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella. Sci Rep 2017; 7(1): 41104.
[http://dx.doi.org/10.1038/srep41104] [PMID: 28112240]
[133]
Michy T, Massias T, Bernard C, et al. Verteporfin-loaded lipid nanoparticles improve ovarian cancer photodynamic therapy in vitro and in vivo. Cancers 2019; 11(11): 1760.
[http://dx.doi.org/10.3390/cancers11111760] [PMID: 31717427]
[134]
Ljungstrøّm T, Knudsen H, Nielsen PE. Cellular uptake of adamantyl conjugated peptide nucleic acids. Bioconjug Chem 1999; 10(6): 965-72.
[http://dx.doi.org/10.1021/bc990053+] [PMID: 10563765]
[135]
Lee J, Ahn HJ. PEGylated DC-Chol/DOPE cationic liposomes containing KSP siRNA as a systemic siRNA delivery Carrier for ovarian cancer therapy. Biochem Biophys Res Commun 2018; 503(3): 1716-22.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.104] [PMID: 30049442]
[136]
Shaaban MI, Shaker MA, Mady FM. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates. J Nanobiotechnology 2017; 15(1): 29.
[http://dx.doi.org/10.1186/s12951-017-0262-9] [PMID: 28399890]
[137]
Nacucchio MC, Bellora MJ, Sordelli DO, D’Aquino M. Enhanced liposome-mediated activity of piperacillin against staphylococci. Antimicrob Agents Chemother 1985; 27(1): 137-9.
[http://dx.doi.org/10.1128/AAC.27.1.137] [PMID: 3872624]
[138]
Groo AC, Matougui N, Umerska A, Saulnier P. Reverse micelle-lipid nanocapsules: A novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide. Int J Nanomedicine 2018; 13: 7565-74.
[http://dx.doi.org/10.2147/IJN.S180040] [PMID: 30532539]
[139]
Liu B, Han L, Liu J, Han S, Chen Z, Jiang L. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. Int J Nanomedicine 2017; 12: 955-68.
[http://dx.doi.org/10.2147/IJN.S115136] [PMID: 28203075]
[140]
Tang J, Ji H, Ren J, Li M, Zheng N, Wu L. Solid lipid nanoparticles with TPGS and Brij 78: A co-delivery vehicle of curcumin and piperine for reversing P-glycoprotein-mediated multidrug resistance in vitro. Oncol Lett 2017; 13(1): 389-95.
[http://dx.doi.org/10.3892/ol.2016.5421] [PMID: 28123572]
[141]
Shi S, Han L, Deng L, et al. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release 2014; 194: 228-37.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.005] [PMID: 25220161]
[142]
Yu YH, Kim E, Park DE, et al. Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur J Pharm Biopharm 2012; 80(2): 268-73.
[http://dx.doi.org/10.1016/j.ejpb.2011.11.002] [PMID: 22108492]
[143]
Ling Z, Yonghong L, Changqing S, et al. Preparation, characterization, and pharmacokinetics of tilmicosin- and florfenicol-loaded hydrogenated castor oil-solid lipid nanoparticles. J Vet Pharmacol Ther 2017; 40(3): 293-303.
[http://dx.doi.org/10.1111/jvp.12356] [PMID: 27687707]
[144]
Ling Z, Yonghong L, Junfeng L, Li Z, Xianqiang L. Tilmicosin- and florfenicol-loaded hydrogenated castor oil-solid lipid nanoparticles to pigs: Combined antibacterial activities and pharmacokinetics. J Vet Pharmacol Ther 2018; 41(2): 307-13.
[http://dx.doi.org/10.1111/jvp.12465] [PMID: 29139136]
[145]
Carbone C, Fuochi V. , Zielińska A, et al Dual-drugs delivery in solid lipid nanoparticles for the treatment of Candida albicans mycosis. Colloids Surf B Biointerfaces 2020; 186: 110705.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110705] [PMID: 31830707]
[146]
Kali A, Bhuvaneshwar D, Charles PV, Seetha K. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates. J Basic Clin Pharm 2016; 7(3): 93-6.
[http://dx.doi.org/10.4103/0976-0105.183265] [PMID: 27330262]
[147]
Liu J, Meng J, Cao L, et al. Synthesis and investigations of ciprofloxacin loaded engineered selenium lipid nanocarriers for effective drug delivery system for preventing lung infections of interstitial lung disease. J Photochem Photobiol B 2019; 197: 111510.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.05.007.] [PMID: 31163288]
[148]
Anjum MM, Patel KK, Dehari D, et al. Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: Chitosan and DNase coating improves antimicrobial activity. Drug Deliv Transl Res 2021; 11(1): 305-17.
[http://dx.doi.org/10.1007/s13346-020-00795-4] [PMID: 32519201]
[149]
Nafee N, Husari A, Maurer CK, et al. Antibiotic-free nanotherapeutics: Ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release 2014; 192: 131-40.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.055] [PMID: 24997276]
[150]
Fazly Bazzaz BS, Khameneh B, Zarei H, Golmohammadzadeh S. Antibacterial efficacy of rifampin loaded solid lipid nanoparticles against Staphylococcus epidermidis biofilm. Microb Pathog 2016; 93: 137-44.
[http://dx.doi.org/10.1016/j.micpath.2015.11.031] [PMID: 26853754]
[151]
Küçüktürkmen B,. Bozkır A. Development and characterization of cationic solid lipid nanoparticles for co-delivery of pemetrexed and miR-21 antisense oligonucleotide to glioblastoma cells. Drug Dev Ind Pharm 2018; 44(2): 306-15.
[http://dx.doi.org/10.1080/03639045.2017.1391835] [PMID: 29023168]
[152]
Jin SE, Kim CK. Long-term stable cationic solid lipid nanoparticles for the enhanced intracellular delivery of SMAD3 antisense oligonucleotides in activated murine macrophages. J Pharm Pharm Sci 2012; 15(3): 467-82.
[http://dx.doi.org/10.18433/J3Z312] [PMID: 22974792]
[153]
Sully EK, Geller BL. Antisense antimicrobial therapeutics. Curr Opin Microbiol 2016; 33: 47-55.
[http://dx.doi.org/10.1016/j.mib.2016.05.017] [PMID: 27375107]
[154]
Dias N, Stein CA. Antisense oligonucleotides: Basic concepts and mechanisms. Mol Cancer Ther 2002; 1(5): 347-55.
[PMID: 12489851]
[155]
Fleitas Martínez O,. Cardoso MH, Ribeiro SM, Franco OL. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol 2019; 9: 74.
[http://dx.doi.org/10.3389/fcimb.2019.00074] [PMID: 31001485]
[156]
Kolevzon N, Nasereddin A, Naik S, Yavin E, Dzikowski R. Use of peptide nucleic acids to manipulate gene expression in the malaria parasite Plasmodium falciparum. PLoS One 2014; 9(1): e86802.
[http://dx.doi.org/10.1371/journal.pone.0086802] [PMID: 24466246]
[157]
Kiran D, Sriranganathan N. The antimicrobial effect of anti- dnaK peptide nucleic acids on multidrug resistant strains of Escherichia coli and Salmonella enterica serovar Typhimurium. BIOS 2014; 85(1): 48-56.
[http://dx.doi.org/10.1893/0005-3155-85.1.48]
[158]
Tilley LD, Hine OS, Kellogg JA, et al. Gene-specific effects of antisense phosphorodiamidate morpholino oligomer-peptide conjugates on Escherichia coli and Salmonella enterica serovar typhimurium in pure culture and in tissue culture. Antimicrob Agents Chemother 2006; 50(8): 2789-96.
[http://dx.doi.org/10.1128/AAC.01286-05] [PMID: 16870773]
[159]
Nastruzzi C, Cortesi R, Esposito E, et al. Liposomes as carriers for DNA–PNA hybrids. J Control Release 2000; 68(2): 237-49.
[http://dx.doi.org/10.1016/S0168-3659(00)00273-X] [PMID: 10925132]
[160]
Hamilton SE, Simmons CG, Kathiriya IS, Corey DR. Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem Biol 1999; 6(6): 343-51.
[http://dx.doi.org/10.1016/S1074-5521(99)80046-5] [PMID: 10375543]
[161]
Bae YM, Kim MH, Yu GS, et al. Enhanced splicing correction effect by an oligo-aspartic acid–PNA conjugate and cationic carrier complexes. J Control Release 2014; 175: 54-62.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.015] [PMID: 24369124]
[162]
Mullick Chowdhury S, Wang TY, Bachawal S, et al. Ultrasound-guided therapeutic modulation of hepatocellular carcinoma using complementary microRNAs. J Control Release 2016; 238: 272-80.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.005] [PMID: 27503707]
[163]
Zhang Z, Liu Y, Jarreau C, Welch MJ, Taylor JSA. Nucleic acid-directed self-assembly of multifunctional gold nanoparticle imaging agents. Biomater Sci 2013; 1(10): 1055-64.
[http://dx.doi.org/10.1039/c3bm60070j] [PMID: 24058728]
[164]
AL Qtaish N, Gallego I, Villate-Beitia I, et al. . Niosome-based approach for in situ gene delivery to retina and brain cortex as immune-privileged tissues. Pharmaceutics 2020; 12(3): 198.
[http://dx.doi.org/10.3390/pharmaceutics12030198] [PMID: 32106545]
[165]
Tahmasbi Rad A, Malik S, Yang L, Oberoi-Khanuja TK, Nieh MP, Bahal R. A universal discoidal nanoplatform for the intracellular delivery of PNAs. Nanoscale 2019; 11(26): 12517-29.
[http://dx.doi.org/10.1039/C9NR03667A] [PMID: 31188378]
[166]
Ramanauskaite E, Moraschini V, Machiulskiene V, Sculean A. Clinical efficacy of single and multiple applications of antimicrobial photodynamic therapy in periodontal maintenance: A systematic review and network meta-analysis. Photodiagn Photodyn Ther 2021; 36: 102435.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102435] [PMID: 34245916]
[167]
Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front Microbiol 2018; 9: 1299.
[http://dx.doi.org/10.3389/fmicb.2018.01299] [PMID: 29997579]
[168]
Robertson C A, Evans D H, Abrahamse H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 2009; 96(1): 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.04.001.] [PMID: 19406659]
[169]
Rahmati F. Microencapsulation of Lactobacillus acidophilus and Lactobacillus plantarum in Eudragit S100 and alginate chitosan under gastrointestinal and normal conditions. Appl Nanosci 2020; 10(2): 391-9.
[http://dx.doi.org/10.1007/s13204-019-01174-3]
[170]
Liu Y, Luo J, Chen X, Liu W, Chen T. Cell membrane coating technology: A promising strategy for biomedical applications. Nanomicro Lett 2019; 11(1): 100.
[http://dx.doi.org/10.1007/s40820-019-0330-9] [PMID: 34138027]
[171]
Thomas-Moore BA, del Valle CA, Field RA. ,Marín MJ. Recent advances in nanoparticle-based targeting tactics for antibacterial photodynamic therapy. Photochem Photobiol Sci 2022; 21(6): 1111-31.
[http://dx.doi.org/10.1007/s43630-022-00194-3] [PMID: 35384638]
[172]
Wenig BL, Kurtzman DM, Grossweiner LI, et al. Photodynamic therapy in the treatment of squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 1990; 116(11): 1267-70.
[http://dx.doi.org/10.1001/archotol.1990.01870110039003] [PMID: 2146969]
[173]
Foote CS. Definition of Type I and Type II photosensitized oxidation. Photochem Photobiol 1991; 54(5): 659.
[http://dx.doi.org/10.1111/j.1751-1097.1991.tb02071.x] [PMID: 1798741]
[174]
Sharman WM, Allen CM, van Lier JE. Photodynamic therapeutics: Basic principles and clinical applications. Drug Discov Today 1999; 4(11): 507-17.
[http://dx.doi.org/10.1016/S1359-6446(99)01412-9] [PMID: 10529768]
[175]
Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 1991; 53(4): 549-53.
[http://dx.doi.org/10.1111/j.1751-1097.1991.tb03669.x] [PMID: 1830395]
[176]
Ghorbani J, Rahban D, Aghamiri S, Teymouri A, Bahador A. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Ther 2018; 27(4): 293-302.
[http://dx.doi.org/10.5978/islsm.27_18-RA-01] [PMID: 31182904]
[177]
Huang L, Xuan Y, Koide Y, Zhiyentayev T, Tanaka M, Hamblin MR. Type I and Type II mechanisms of antimicrobial photodynamic therapy: An in vitro study on gram-negative and gram-positive bacteria. Lasers Surg Med 2012; 44(6): 490-9.
[http://dx.doi.org/10.1002/lsm.22045] [PMID: 22760848]
[178]
Spesia MB, Durantini EN. Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino)ethoxy]phthalocyanine. J Photochem Photobiol B 2013; 125: 179-87.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.06.007] [PMID: 23838424]
[179]
Hoorijani MN, Rostami H, Pourhajibagher M, et al. The effect of antimicrobial photodynamic therapy on the expression of novel methicillin resistance markers determined using cDNA-AFLP approach in Staphylococcus aureus. Photodiagn Photodyn Ther 2017; 19: 249-55.
[http://dx.doi.org/10.1016/j.pdpdt.2017.06.012] [PMID: 28645784]
[180]
Pérez-Hernández M, del Pino P, Mitchell SG, et al. Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms. ACS Nano 2015; 9(1): 52-61.
[http://dx.doi.org/10.1021/nn505468v] [PMID: 25493329]
[181]
Melamed JR, Edelstein RS, Day ES. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 2015; 9(1): 6-11.
[http://dx.doi.org/10.1021/acsnano.5b00021] [PMID: 25590560]
[182]
Allison RR, Moghissi K. Oncologic photodynamic therapy: Clinical strategies that modulate mechanisms of action. Photodiagn Photodyn Ther 2013; 10(4): 331-41.
[http://dx.doi.org/10.1016/j.pdpdt.2013.03.011] [PMID: 24284082]
[183]
Yoon I, Li JZ, Shim YK. Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc 2013; 46(1): 7-23.
[http://dx.doi.org/10.5946/ce.2013.46.1.7] [PMID: 23423543]
[184]
Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G. Bioinorganic photochemistry: Frontiers and mechanisms. Chem Rev 2005; 105(6): 2647-94.
[http://dx.doi.org/10.1021/cr030707e] [PMID: 15941225]
[185]
Baran TM, Foster TH. Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy. Med Phys 2014; 41(2): 022701.
[http://dx.doi.org/10.1118/1.4862078] [PMID: 24506647]
[186]
O’Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 2009; 85(5): 1053-74.
[http://dx.doi.org/10.1111/j.1751-1097.2009.00585.x] [PMID: 19682322]
[187]
Allison RR, Moghissi K. Photodynamic therapy (PDT): PDT mechanisms. Clin Endosc 2013; 46(1): 24-9.
[http://dx.doi.org/10.5946/ce.2013.46.1.24] [PMID: 23422955]
[188]
Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 2004; 5(8): 497-508.
[http://dx.doi.org/10.1016/S1470-2045(04)01529-3] [PMID: 15288239]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy