Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

The Production of Bioactive Peptides by Optimization of Enzymatic Hydrolysis Process of Protein from Tilapia Fish Skin Waste (Oreochromis niloticus, Linnaeus 1758) using Alcalase 2.4.L

Author(s): Siraj Salman Mohammad*, Maria Ivone M. J. Barbosa, Ormindo Gamallo and José L. Barbosa Junior

Volume 19, Issue 10, 2023

Published on: 14 June, 2023

Article ID: e020523216445 Pages: 10

DOI: 10.2174/1573407219666230502154801

Price: $65

Abstract

Aims: This study aimed at developing bioactive peptides by optimization of the enzymatic hydrolysis process of protein from tilapia fish skin waste (Oreochromis niloticus, Linnaeus 1758) using alcalase 2.4.L.

Background: Natural bioactive peptides are considered to have low toxicity and therapeutic properties as antioxidants.

Objective: The conditions of protein hydrolysis obtained from tilapia fish skin waste (Oreochromis niloticus, Linnaeus 1758) were optimized using alcalase 2.4.l.

Methods: In this study, the hydrolysis of protein obtained from tilapia fish skin waste (TFSW) was optimized using alcalase 2.4.L by central composite design (CCD). Degree of hydrolysis (DH), radical scavenging activities (DPPH), and ferric-reducing antioxidant power (FRAP) were used as dependent variables, whereas temperature, pH, and proportion of enzyme to the substrate (PE%) as independent variables.

Results: The optimum degree of hydrolysis DH%, DPPH, and FRAP were achieved at a temperature of 58.4℃, a pH of 8.7, except for DPPH, which was achieved at a pH of 7.0.

Conclusion: The present work demonstrated that TFSW could be used as a source to produce bioactive peptides with significant antioxidant activities under specific conditions of enzymatic hydrolysis.

Keywords: Enzymes, bioactive peptides, antioxidants, amino acids, collagen, hydrolysates.

Graphical Abstract
[1]
Ghassem, M.; Arihara, K.; Babji, A.S.; Said, M.; Ibrahim, S. Purification and identification of ACE inhibitory peptides from Haruan (Channa striatus) myofibrillar protein hydrolysate using HPLC–ESI-TOF MS/MS. Food Chem., 2011, 129(4), 1770-1777.
[http://dx.doi.org/10.1016/j.foodchem.2011.06.051]
[2]
Nasri, R.; Younes, I.; Jridi, M.; Trigui, M.; Bougatef, A.; Nedjar-Arroume, N.; Dhulster, P.; Nasri, M.; Karra-Châabouni, M. ACE inhibitory and antioxidative activities of Goby (Zosterissessor ophiocephalus) fish protein hydrolysates: Effect on meat lipid oxidation. Food Res. Int., 2013, 54(1), 552-561.
[http://dx.doi.org/10.1016/j.foodres.2013.07.001]
[3]
Baliga, M.S.; Venkatesh, S.; Mrinal, S.; Bala, N.; Palatty, P.L. Turmeric (Curcuma longa L.) the Indian Golden Curry Spice as a Skin Care Agent: Validation of the Traditional Uses. In: Bioactive Dietary Factors and Plant Extracts in Dermatology; Springer, 2013; pp. 93-102.
[4]
Umayaparvathi, S.; Meenakshi, S.; Vimalraj, V.; Arumugam, M.; Sivagami, G.; Balasubramanian, T. Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomed. Prev. Nutr., 2014, 4(3), 343-353.
[http://dx.doi.org/10.1016/j.bionut.2014.04.006]
[5]
Luna-Reyes, I.; Pérez-Hernández, E.G.; Delgado-Coello, B.; Mas-Oliva, J. Peptides as therapeutic molecules to neutralize Gram-negative bacterial lipopolysaccharides in sepsis and septic shock. Arch. Med. Res., 2021, 52(8), 798-807.
[http://dx.doi.org/10.1016/j.arcmed.2021.08.001] [PMID: 34429232]
[6]
Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: from sources to food industry applications. Molecules, 2019, 24(22), 4132.
[http://dx.doi.org/10.3390/molecules24224132] [PMID: 31731614]
[7]
Pham, L.B.; Wang, B.; Zisu, B.; Adhikari, B. Complexation between flaxseed protein isolate and phenolic compounds: Effects on interfacial, emulsifying and antioxidant properties of emulsions. Food Hydrocoll., 2019, 94, 20-29.
[http://dx.doi.org/10.1016/j.foodhyd.2019.03.007]
[8]
Andrade, M.A.; Ribeiro-Santos, R.; Costa Bonito, M.C.; Saraiva, M.; Sanches-Silva, A. Characterization of rosemary and thyme extracts for incorporation into a whey protein based film. Lebensm. Wiss. Technol., 2018, 92, 497-508.
[http://dx.doi.org/10.1016/j.lwt.2018.02.041]
[9]
Halim, N.R.A.; Yusof, H.M.; Sarbon, N.M. Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends Food Sci. Technol., 2016, 51, 24-33.
[http://dx.doi.org/10.1016/j.tifs.2016.02.007]
[10]
Deng, Y.; Huang, L.; Zhang, C.; Xie, P.; Cheng, J.; Wang, X.; Li, S. Physicochemical and functional properties of Chinese quince seed protein isolate. Food Chem., 2019, 283, 539-548.
[http://dx.doi.org/10.1016/j.foodchem.2019.01.083] [PMID: 30722910]
[11]
Murthy, L.N.; Phadke, G.G.; Unnikrishnan, P.; Annamalai, J.; Joshy, C.G.; Zynudheen, A.A.; Ravishankar, C.N. Valorization of fish viscera for crude proteases production and its use in bioactive protein hydrolysate preparation. Waste Biomass Valoriz., 2018, 9(10), 1735-1746.
[http://dx.doi.org/10.1007/s12649-017-9962-5]
[12]
Chalamaiah, M. Dinesh kumar, B.; Hemalatha, R.; Jyothirmayi, T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem., 2012, 135(4), 3020-3038.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.100] [PMID: 22980905]
[13]
Fazio, F.; Habib, S.S.; Naz, S.; Filiciotto, F.; Cicero, N.; Rehman, H.U.; Saddozai, S.; Rind, K.H.; Rind, N.A.; Shar, A.H. Effect of fortified feed with olive leaves extract on the haematological and biochemical parameters of Oreochromis niloticus (Nile tilapia). Nat. Prod. Res., 2022, 36(6), 1575-1580.
[http://dx.doi.org/10.1080/14786419.2021.1883606] [PMID: 33593139]
[14]
Ramírez, J.C.R.; Ibarra, J.I.; Romero, F.A.; Ulloa, P.R.; Ulloa, J.A.; Matsumoto, K.S.; Cordoba, B.V.; Manzano, M.Á.M. Preparation of biological fish silage and its effect on the performance and meat quality characteristics of quails (Coturnix coturnix japonica). Braz. Arch. Biol. Technol., 2013, 56(6), 1002-1010.
[http://dx.doi.org/10.1590/S1516-89132013000600016]
[15]
Khiari, Z.; Mason, B. Comparative dynamics of fish by-catch hydrolysis through chemical and microbial methods. Lebensm. Wiss. Technol., 2018, 97, 135-143.
[http://dx.doi.org/10.1016/j.lwt.2018.06.032]
[16]
Wergedahl, H.; Liaset, B.; Gudbrandsen, O.A.; Lied, E.; Espe, M.; Muna, Z.; Mørk, S.; Berge, R.K. Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL cholesterol, and lowers acyl-CoA:cholesterol acyltransferase activity in liver of Zucker rats. J. Nutr., 2004, 134(6), 1320-1327.
[http://dx.doi.org/10.1093/jn/134.6.1320] [PMID: 15173391]
[17]
Drago, S.R.; González, R.J. Foaming properties of enzymatically hydrolysed wheat gluten. Innov. Food Sci. Emerg. Technol., 2000, 1(4), 269-273.
[http://dx.doi.org/10.1016/S1466-8564(00)00034-5]
[18]
Jamdar, S.N.; Rajalakshmi, V.; Pednekar, M.D.; Juan, F.; Yardi, V.; Sharma, A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem., 2010, 121(1), 178-184.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.027]
[19]
Wani, I.A.; Sogi, D.S.; Shivhare, U.S.; Gill, B.S. Physico-chemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates. Food Res. Int., 2015, 76, 11-18.
[http://dx.doi.org/10.1016/j.foodres.2014.08.027]
[20]
Pessato, T.B.; Carvalho, N.C.; Tavano, O.L.; Fernandes, L.G.R.; Zollner, R.L.; Netto, F.M. Whey protein isolate hydrolysates obtained with free and immobilized Alcalase: Characterization and detection of residual allergens. Food Res. Int., 2016, 83, 112-120.
[http://dx.doi.org/10.1016/j.foodres.2016.02.015]
[21]
Mohammad, S.S.; da Silva Ferreira, M.V.; Barbosa, M.I.M.J.; Junior, J.L.B. Characteristics of enzymatic hydrolysis of protein from different food sources and potential separation techniques. Curr. Nutr. Food Sci., 2022, 18, 1.
[http://dx.doi.org/10.2174/1573401318666221003104005]
[22]
Qu, W.; Ma, H.; Zhao, W.; Pan, Z. ACE-inhibitory peptides production from defatted wheat germ protein by continuous coupling of enzymatic hydrolysis and membrane separation: Modeling and experimental studies. Chem. Eng. J., 2013, 226, 139-145.
[http://dx.doi.org/10.1016/j.cej.2013.04.030]
[23]
Cecile Urbain Marie, G.; Perreault, V.; Henaux, L.; Carnovale, V.; Aluko, R.E.; Marette, A.; Doyen, A.; Bazinet, L. Impact of a high hydrostatic pressure pretreatment on the separation of bioactive peptides from flaxseed protein hydrolysates by electrodialysis with ultrafiltration membranes. Separ. Purif. Tech., 2019, 211, 242-251.
[http://dx.doi.org/10.1016/j.seppur.2018.09.063]
[24]
Zhang, F.; Wang, Z.; Xu, S. Macroporous resin purification of grass carp fish (Ctenopharyngodon idella) scale peptides with in vitro angiotensin-I converting enzyme (ACE) inhibitory ability. Food Chem., 2009, 117(3), 387-392.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.015]
[25]
Dai, T.; Li, T.; He, X.; Li, X.; Liu, C.; Chen, J.; McClements, D.J. Analysis of inhibitory interaction between epigallocatechin gallate and alpha-glucosidase: A spectroscopy and molecular simulation study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 230, 118023.
[http://dx.doi.org/10.1016/j.saa.2019.118023] [PMID: 31927512]
[26]
Liao, X.; Zhu, Z.; Wu, S.; Chen, M.; Huang, R.; Wang, J.; Wu, Q.; Ding, Y. Preparation of antioxidant protein hydrolysates from Pleurotus geesteranus and their protective effects on H2O2 oxidative damaged PC12 cells. Molecules, 2020, 25(22), 5408.
[http://dx.doi.org/10.3390/molecules25225408] [PMID: 33227951]
[27]
Chotphruethipong, L.; Sukketsiri, W.; Aluko, R.E.; Sae-leaw, T.; Benjakul, S. Effect of hydrolyzed collagen from defatted Asian sea bass (Lates calcarifer) skin on fibroblast proliferation, migration and antioxidant activities. J. Food Sci. Technol., 2021, 58(2), 541-551.
[http://dx.doi.org/10.1007/s13197-020-04566-4] [PMID: 33568847]
[28]
Sierra-Lopera, L.M.; Zapata-Montoya, J.E. Optimization of enzymatic hydrolysis of red tilapia scales (Oreochromis sp.) to obtain bioactive peptides. Biotechnol. Rep. (Amst.), 2021, 30, e00611.
[http://dx.doi.org/10.1016/j.btre.2021.e00611] [PMID: 33912403]
[29]
Singh, T.P.; Siddiqi, R.A.; Sogi, D.S. Statistical optimization of enzymatic hydrolysis of rice bran protein concentrate for enhanced hydrolysate production by papain. Lebensm. Wiss. Technol., 2019, 99, 77-83.
[http://dx.doi.org/10.1016/j.lwt.2018.09.014]
[30]
Zou, Y.; Zhao, M.; Yang, K.; Lin, L.; Wang, Y. Enrichment of antioxidants in black garlic juice using macroporous resins and their protective effects on oxidation-damaged human erythrocytes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1060, 443-450.
[http://dx.doi.org/10.1016/j.jchromb.2017.06.026] [PMID: 28683396]
[31]
Seo, H.W.; Jung, E.Y.; Go, G.; Kim, G.D.; Joo, S.T.; Yang, H.S. Optimization of hydrolysis conditions for bovine plasma protein using response surface methodology. Food Chem., 2015, 185, 106-111.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.133] [PMID: 25952847]
[32]
de Castro, R.J.S.; Sato, H.H. A response surface approach on optimization of hydrolysis parameters for the production of egg white protein hydrolysates with antioxidant activities. Biocatal. Agric. Biotechnol., 2015, 4(1), 55-62.
[http://dx.doi.org/10.1016/j.bcab.2014.07.001]
[33]
Benhabiles, M.S.; Abdi, N.; Drouiche, N.; Lounici, H.; Pauss, A.; Goosen, M.F.A.; Mameri, N. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit. Mater. Sci. Eng. C, 2012, 32(4), 922-928.
[http://dx.doi.org/10.1016/j.msec.2012.02.013]
[34]
A.O.A.C. Official Methods of Analysis of the AOAC, 19th ed; Association of official analytical chemists: Washington, DC , 2012.
[35]
Adler-Nissen, J. Enzymic hydrolysis of food proteins; lsevier applied science publishers, 1986.
[36]
Morales-Medina, R.; García-Moreno, P.J.; Pérez-Gálvez, R.; Muñío, M.M.; Guadix, A.; Guadix, E.M. Nutritional indexes, fatty acids profile, and regiodistribution of oil extracted from four discarded species of the Alboran Sea: Seasonal effects. Eur. J. Lipid Sci. Technol., 2016, 118(9), 1409-1415.
[http://dx.doi.org/10.1002/ejlt.201500486]
[37]
He, R.; Girgih, A.T.; Malomo, S.A.; Ju, X.; Aluko, R.E. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. J. Funct. Foods, 2013, 5(1), 219-227.
[http://dx.doi.org/10.1016/j.jff.2012.10.008]
[38]
Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem., 2000, 48(8), 3396-3402.
[http://dx.doi.org/10.1021/jf9913458] [PMID: 10956123]
[39]
Rutherfurd, S.M. Methodology for determining degree of hydrolysis of proteins in Hydrolysates: A review. J. AOAC Int., 2010, 93(5), 1515-1522.
[http://dx.doi.org/10.1093/jaoac/93.5.1515] [PMID: 21140664]
[40]
Steinhardt, J.; Beychok, S. Interaction of proteins with hydrogen ions and other small ions and molecules. The Proteins: Composition. Structure and Function., 1964, 2, 139-304.
[41]
da Silva Bambirra Alves, F.E.; Carpiné, D.; Teixeira, G.L.; Goedert, A.C.; de Paula Scheer, A.; Ribani, R.H. Valorization of an abundant slaughterhouse by-product as a source of highly technofunctional and antioxidant protein hydrolysates. Waste Biomass Valoriz., 2021, 12(1), 263-279.
[http://dx.doi.org/10.1007/s12649-020-00985-8]
[42]
Ude, M.U.; Oluka, I.; Eze, P.C. Optimization and kinetics of glucose production via enzymatic hydrolysis of mixed peels. J. Bioresour. Bioprod., 2020, 5(4), 283-290.
[http://dx.doi.org/10.1016/j.jobab.2020.10.007]
[43]
Yu, L.; Sun, J.; Liu, S.; Bi, J.; Zhang, C.; Yang, Q. Ultrasonic-assisted enzymolysis to improve the antioxidant activities of peanut (Arachin conarachin L.) antioxidant hydrolysate. Int. J. Mol. Sci., 2012, 13(7), 9051-9068.
[http://dx.doi.org/10.3390/ijms13079051] [PMID: 22942751]
[44]
Gómez, L.J.; Gómez, N.A.; Zapata, J.E.; López-García, G.; Cilla, A.; Alegría, A. In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates. Food Res. Int., 2019, 120, 52-61.
[http://dx.doi.org/10.1016/j.foodres.2019.02.029] [PMID: 31000267]
[45]
Sun, S.; Gao, Y.; Chen, J.; Liu, R. Identification and release kinetics of peptides from tilapia skin collagen during alcalase hydrolysis. Food Chem., 2022, 378, 132089.
[http://dx.doi.org/10.1016/j.foodchem.2022.132089] [PMID: 35032798]
[46]
Ajibola, C.F.; Fashakin, J.B.; Fagbemi, T.N.; Aluko, R.E. Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. Int. J. Mol. Sci., 2011, 12(10), 6685-6702.
[http://dx.doi.org/10.3390/ijms12106685] [PMID: 22072912]
[47]
Arise, A.K.; Alashi, A.M.; Nwachukwu, I.D.; Ijabadeniyi, O.A.; Aluko, R.E.; Amonsou, E.O. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions. Food Funct., 2016, 7(5), 2431-2437.
[http://dx.doi.org/10.1039/C6FO00057F] [PMID: 27156453]
[48]
Cui, Q.; Sun, Y.; Cheng, J.; Guo, M. Effect of two-step enzymatic hydrolysis on the antioxidant properties and proteomics of hydrolysates of milk protein concentrate. Food Chem., 2022, 366, 130711.
[http://dx.doi.org/10.1016/j.foodchem.2021.130711] [PMID: 34343947]
[49]
Korkmaz, K.; Tokur, B. Optimization of hydrolysis conditions for the production of protein hydrolysates from fish wastes using response surface methodology. Food Biosci., 2021, 45, 101312.
[http://dx.doi.org/10.1016/j.fbio.2021.101312]
[50]
Song, R.; Liang, T.; Shen, Q.; Liu, J.; Lu, Y.; Tang, C.; Chen, X.; Hou, T.; Chen, Y. The optimization of production and characterization of antioxidant peptides from protein hydrolysates of Agrocybe aegerita. Lebensm. Wiss. Technol., 2020, 134, 109987.
[http://dx.doi.org/10.1016/j.lwt.2020.109987]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy