Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

General Review Article

Metabolic Associated Fatty Liver Disease in Children and Adolescents: Mechanisms of a Silent Epidemic and Therapeutic Options

Author(s): Antonella Mosca*, Luca Della Volpe, Maria Rita Sartorelli, Donatella Comparcola, Silvio Veraldi, Anna Alisi and Giuseppe Maggiore

Volume 20, Issue 3, 2024

Published on: 12 May, 2023

Page: [296 - 304] Pages: 9

DOI: 10.2174/1573396319666230403121805

Price: $65

Abstract

Non-alcoholic fatty liver disease (NAFLD) is now identified as a hepatic sign of metabolic syndrome and is the most frequent cause of chronic liver disease in all ages. It is assumed that a genetic predisposition associated with epigenetic factors participates in the evolution of this condition. Visceral obesity and insulin resistance (IR) have always been considered the most important causative factors of Metabolic Syndrome (MetS) and NAFLD, but currently, the interaction between genetic heritage and environmental factors is increasingly considered fundamental in the genesis of metabolic disorders associated with NAFLD. In fact, in patients with NAFLD, insulin resistance, arterial hypertension, abdominal obesity, dyslipidemia and reduced intestinal permeability have often been found, as well as a higher prevalence of coronary artery disease, obstructive sleep apnea, polycystic ovary syndrome and osteopenia, which define a MetS framework. Early diagnosis is needed to prevent disease progression through primarily lifestyle interventions. Unfortunately, at present, there are no molecules recommended for pediatric patients. However, several new drugs are in clinical trials. For this reason, targeted studies on the interaction between genetics and environmental factors involved in the development of NAFLD and MetS and on the pathogenetic mechanisms that determine the evolution in non-alcoholic steatohepatitis (NASH), should be implemented. Therefore, it is desirable that future studies may be useful in identifying patients at risk of developing NAFLD and MetS early.

Keywords: Metabolic Syndrome, NAFL, NASH, uric acid, probiotics, DHA, vitamin D.

Graphical Abstract
[1]
Nobili V, Alisi A, Valenti L, Miele L, Feldstein AE, Alkhouri N. NAFLD in children: New genes, new diagnostic modalities and new drugs. Nat Rev Gastroenterol Hepatol 2019; 16(9): 517-30.
[http://dx.doi.org/10.1038/s41575-019-0169-z] [PMID: 31278377]
[2]
Anderson EL, Howe LD, Jones HE, Higgins JPT, Lawlor DA, Fraser A. The prevalence of non‐alcoholic fatty liver disease in children and adolescents: a systematic review and meta‐analysis. PLoS One 2015; 10(10): e0140908.
[http://dx.doi.org/10.1371/journal.pone.0140908] [PMID: 26512983]
[3]
Vos MB, Abrams SH, Barlow SE, et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: Recommendations from the expert committee on NAFLD (ECON) and the North American Society of pediatric gastroenterology, hepatology and nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr 2017; 64(2): 319-34.
[http://dx.doi.org/10.1097/MPG.0000000000001482] [PMID: 28107283]
[4]
Vajro P, Lenta S, Socha P, et al. Diagnosis of nonalcoholic fatty liver disease in children and adolescents: Position paper of the ESPGHAN Hepatology Committee. J Pediatr Gastroenterol Nutr 2012; 54(5): 700-13.
[http://dx.doi.org/10.1097/MPG.0b013e318252a13f] [PMID: 22395188]
[5]
Mantovani A, Scorletti E, Mosca A, Alisi A, Byrne CD, Targher G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism 2020; 111: 154170.
[http://dx.doi.org/10.1016/j.metabol.2020.154170] [PMID: 32006558]
[6]
Christian Flemming GM, Bussler S, Körner A, Kiess W. Definition and early diagnosis of metabolic syndrome in children. J Pediatr Endocrinol Metab 2020; 33(7): 821-33.
[http://dx.doi.org/10.1515/jpem-2019-0552] [PMID: 32568734]
[7]
Lonardo A, Leoni S, Alswat KA, Fouad Y. History of nonalcoholic fatty liver disease. Int J Mol Sci 2020; 21(16): 5888.
[http://dx.doi.org/10.3390/ijms21165888] [PMID: 32824337]
[8]
Fang YL, Chen H, Wang CL, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”. World J Gastroenterol 2018; 24(27): 2974-83.
[http://dx.doi.org/10.3748/wjg.v24.i27.2974] [PMID: 30038464]
[9]
Ullah R, Rauf N, Nabi G, et al. Role of nutrition in the pathogenesis and prevention of non-alcoholic fatty liver disease: Recent updates. Int J Biol Sci 2019; 15(2): 265-76.
[http://dx.doi.org/10.7150/ijbs.30121] [PMID: 30745819]
[10]
Anania C, Perla FM, Olivero F, Pacifico L, Chiesa C. Mediterranean diet and nonalcoholic fatty liver disease. World J Gastroenterol 2018; 24(19): 2083-94.
[http://dx.doi.org/10.3748/wjg.v24.i19.2083] [PMID: 29785077]
[11]
Delli Bovi AP, Marciano F, Mandato C, Siano MA, Savoia M, Vajro P. Oxidative stress in non-alcoholic fatty liver disease. An updated mini review. Front Med 2021; 8: 595371.
[http://dx.doi.org/10.3389/fmed.2021.595371] [PMID: 33718398]
[12]
Mann JP, Raponi M, Nobili V. Clinical implications of understanding the association between oxidative stress and pediatric NAFLD. Expert Rev Gastroenterol Hepatol 2017; 11(4): 371-82.
[http://dx.doi.org/10.1080/17474124.2017.1291340] [PMID: 28162008]
[13]
Valle-Martos R, Valle M, Martos R, Cañete R, Jiménez-Reina L, Cañete MD. Liver enzymes correlate with metabolic syndrome, inflammation, and endothelial dysfunction in prepubertal children with obesity. Front Pediatr 2021; 9: 629346.
[http://dx.doi.org/10.3389/fped.2021.629346] [PMID: 33665176]
[14]
Sharpton SR, Maraj B, Harding-Theobald E, Vittinghoff E, Terrault NA. Gut microbiome–targeted therapies in nonalcoholic fatty liver disease: A systematic review, meta-analysis, and meta-regression. Am J Clin Nutr 2019; 110(1): 139-49.
[http://dx.doi.org/10.1093/ajcn/nqz042] [PMID: 31124558]
[15]
Poeta M, Pierri L, Vajro P. Gut–Liver axis derangement in non-alcoholic fatty liver disease. Children 2017; 4(8): 66.
[http://dx.doi.org/10.3390/children4080066] [PMID: 28767077]
[16]
Tokuhara D. Role of the gut microbiota in regulating non-alcoholic fatty liver disease in children and adolescents. Front Nutr 2021; 8: 700058.
[http://dx.doi.org/10.3389/fnut.2021.700058] [PMID: 34250000]
[17]
Del Chierico F, Nobili V, Vernocchi P, et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients un-veiled by an integrated meta‐omics‐based approach. Hepatology 2017; 65(2): 451-64.
[http://dx.doi.org/10.1002/hep.28572] [PMID: 27028797]
[18]
Softic S, Cohen DE, Kahn CR. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci 2016; 61(5): 1282-93.
[http://dx.doi.org/10.1007/s10620-016-4054-0] [PMID: 26856717]
[19]
Maj M, Harbottle B, Thomas PA, et al. Consumption of highfructose corn syrup compared with sucrose promotes adiposity and in-creased triglyceridemia but comparable nafld severity in juvenile iberian pigs. J Nutr 2021; 151(5): 1139-49.
[http://dx.doi.org/10.1093/jn/nxaa441] [PMID: 33693900]
[20]
Softic S, Stanhope KL, Boucher J, et al. Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci 2020; 57(5): 308-22.
[http://dx.doi.org/10.1080/10408363.2019.1711360] [PMID: 31935149]
[21]
Goyal NP, Schwimmer JB. The genetics of pediatric nonalcoholic fatty liver disease. Clin Liver Dis 2018; 22(1): 59-71.
[http://dx.doi.org/10.1016/j.cld.2017.08.002] [PMID: 29128061]
[22]
Longo M, Meroni M, Paolini E, et al. TM6SF2/PNPLA3/] MBOAT7 loss-of-function genetic variants impact on nafld development and progression both in patients and in in vitro models. Cell Mol Gastroenterol Hepatol 2022; 13(3): 759-88.
[http://dx.doi.org/10.1016/j.jcmgh.2021.11.007] [PMID: 34823063]
[23]
McGeoch LJ, Patel PR, Mann JP. PNPLA3: A determinant of response to low-fructose diet in nonalcoholic fatty liver disease. Gastroenterology 2018; 154(4): 1207-8.
[http://dx.doi.org/10.1053/j.gastro.2017.07.054] [PMID: 29452087]
[24]
Wang JZ, Cao HX, Chen JN, Pan Q. PNPLA3 rs738409 underlies treatment response in nonalcoholic fatty liver disease. World J Clin Cases 2018; 6(8): 167-75.
[http://dx.doi.org/10.12998/wjcc.v6.i8.167] [PMID: 30148144]
[25]
Donati B, Dongiovanni P, Romeo S, et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci Rep 2017; 7(1): 4492.
[http://dx.doi.org/10.1038/s41598-017-04991-0] [PMID: 28674415]
[26]
Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J Hepatol 2018; 68(2): 268-79.
[http://dx.doi.org/10.1016/j.jhep.2017.09.003] [PMID: 29122391]
[27]
D’Adamo E, Castorani V, Nobili V. The liver in children with metabolic syndrome. Front Endocrinol 2019; 10: 514.
[http://dx.doi.org/10.3389/fendo.2019.00514] [PMID: 31428049]
[28]
Kursawe R, Eszlinger M, Narayan D, et al. Cellularity and adipogenic profile of the abdominal subcutaneous adipose tissue from obese adolescents: Association with insulin resistance and hepatic steatosis. Diabetes 2010; 59(9): 2288-96.
[http://dx.doi.org/10.2337/db10-0113] [PMID: 20805387]
[29]
Lim S, Kim JW, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab 2021; 32(7): 500-14.
[http://dx.doi.org/10.1016/j.tem.2021.04.008] [PMID: 33975804]
[30]
Nguyen D, Kit B, Carroll M. Abnormal cholesterol among children and adolescents in the United States, 2011-2014. NCHS Data Brief 2015; (228): 1-8.
[PMID: 26727279]
[31]
Nobili V, Alkhouri N, Bartuli A, et al. Severity of liver injury and atherogenic lipid profile in children with nonalcoholic fatty liver disease. Pediatr Res 2010; 67(6): 665-70.
[http://dx.doi.org/10.1203/PDR.0b013e3181da4798] [PMID: 20496475]
[32]
Nur Zati Iwani AK, Jalaludin MY, Wan Mohd Zin RM, et al. TG : HDL-C ratio is a good marker to identify children affected by obesity with increased cardiometabolic risk and insulin resistance. Int J Endocrinol 2019; 2019: 1-9.
[http://dx.doi.org/10.1155/2019/8586167] [PMID: 31885562]
[33]
Zhang Z, Thorne JL, Moore JB. Vitamin D and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2019; 22(6): 449-58.
[http://dx.doi.org/10.1097/MCO.0000000000000605] [PMID: 31589177]
[34]
Nobili V, Giorgio V, Liccardo D, et al. Vitamin D levels and liver histological alterations in children with nonalcoholic fatty liver disease. Eur J Endocrinol 2014; 170(4): 547-53.
[http://dx.doi.org/10.1530/EJE-13-0609] [PMID: 24412930]
[35]
Dong B, Zhou Y, Wang W, et al. Vitamin D receptor activation in liver macrophages ameliorates hepatic inflammation, steatosis, and insu-lin resistance in mice. Hepatology 2020; 71(5): 1559-74.
[http://dx.doi.org/10.1002/hep.30937] [PMID: 31506976]
[36]
Mosca A, Nobili V, De Vito R, et al. Serum uric acid concentrations and fructose consumption are independently associated with NASH in children and adolescents. J Hepatol 2017; 66(5): 1031-6.
[http://dx.doi.org/10.1016/j.jhep.2016.12.025] [PMID: 28214020]
[37]
Jensen T, Abdelmalek MF, Sullivan S, et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol 2018; 68(5): 1063-75.
[http://dx.doi.org/10.1016/j.jhep.2018.01.019] [PMID: 29408694]
[38]
Vos MB, Lavine JE. Dietary fructose in nonalcoholic fatty liver disease. Hepatology 2013; 57(6): 2525-31.
[http://dx.doi.org/10.1002/hep.26299] [PMID: 23390127]
[39]
Nobili V, Mosca A, De Vito R, Raponi M, Scorletti E, Byrne CD. Liver zonation in children with non-alcoholic fatty liver disease: Associations with dietary fructose and uric acid concentrations. Liver Int 2018; 38(6): 1102-9.
[http://dx.doi.org/10.1111/liv.13661] [PMID: 29222961]
[40]
Caliceti C, Calabria D, Roda A, Cicero A. Fructose intake, serum uric acid, and cardiometabolic disorders: A critical review. Nutrients 2017; 9(4): 395.
[http://dx.doi.org/10.3390/nu9040395] [PMID: 28420204]
[41]
Treviño LS, Katz TA. Endocrine disruptors and developmental origins of nonalcoholic fatty liver disease. Endocrinology 2018; 159(1): 20-31.
[http://dx.doi.org/10.1210/en.2017-00887] [PMID: 29126168]
[42]
Neuman MG, Nanau RM, Cohen LB. Nonmedicinal interventions in nonalcoholic fatty liver disease. Can J Gastroenterol Hepatol 2015; 29(5): 241-52.
[http://dx.doi.org/10.1155/2015/273595] [PMID: 26076224]
[43]
O’Sullivan TA, Oddy WH, Bremner AP, et al. Lower fructose intake may help protect against development of nonalcoholic fatty liver in adolescents with obesity. J Pediatr Gastroenterol Nutr 2014; 58(5): 624-31.
[http://dx.doi.org/10.1097/MPG.0000000000000267] [PMID: 24345826]
[44]
Metformin HL, Metabolism S. Metformin and systemic metabolism. Trends Pharmacol Sci 2020; 41(11): 868-81.
[http://dx.doi.org/10.1016/j.tips.2020.09.001] [PMID: 32994049]
[45]
Yoo JJ, Seo YS, Kim YS, et al. The influence of histologic inflammation on the improvement of liver stiffness values over 1 and 3 years. J Clin Med 2019; 8(12): 2065.
[http://dx.doi.org/10.3390/jcm8122065] [PMID: 31771253]
[46]
Sun J, Wang Y, Zhang X, He H. The effects of metformin on insulin resistance in overweight or obese children and adolescents: A PRIS-MA-compliant systematic review and meta-analysis of randomized controlled trials. Medicine 2019; 98(4): e14249.
[http://dx.doi.org/10.1097/MD.0000000000014249] [PMID: 30681616]
[47]
Chalasani N, Vuppalanchi R, Rinella M, et al. Randomised clinical trial: A leucine-metformin-sildenafil combination (NS-0200) vs placebo in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2018; 47(12): 1639-51.
[http://dx.doi.org/10.1111/apt.14674] [PMID: 29696666]
[48]
Lavine JE, Schwimmer JB, Van Natta ML, et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in chil-dren and adolescents: The TONIC randomized controlled trial. JAMA 2011; 305(16): 1659-68.
[http://dx.doi.org/10.1001/jama.2011.520] [PMID: 21521847]
[49]
Thangavel N, Al Bratty M, Akhtar Javed S, Ahsan W, Alhazmi HA. Targeting peroxisome proliferator-activated receptors using thiazolidinediones: Strategy for design of novel antidiabetic drugs. Int J Med Chem 2017; 2017: 1-20.
[http://dx.doi.org/10.1155/2017/1069718] [PMID: 28656106]
[50]
Kim KS, Lee BW. Beneficial effect of anti-diabetic drugs for nonalcoholic fatty liver disease. Clin Mol Hepatol 2020; 26(4): 430-43.
[http://dx.doi.org/10.3350/cmh.2020.0137] [PMID: 32791578]
[51]
Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br J Clin Pharmacol 2013; 75(3): 645-62.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04374.x] [PMID: 22765297]
[52]
Albracht-Schulte K, Kalupahana NS, Ramalingam L, et al. Omega-3 fatty acids in obesity and metabolic syndrome: A mechanistic update. J Nutr Biochem 2018; 58: 1-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.02.012] [PMID: 29621669]
[53]
Nobili V, Alisi A, Della Corte C, et al. Docosahexaenoic acid for the treatment of fatty liver: Randomised controlled trial in children. Nutr Metab Cardiovasc Dis 2013; 23(11): 1066-70.
[http://dx.doi.org/10.1016/j.numecd.2012.10.010] [PMID: 23220074]
[54]
Della Corte C, Carpino G, De Vito R, et al. Docosahexanoic acid plus vitamin D treatment improves features of NAFLD in children with serum vitamin D deficiency: Results from a single centre trial. PLoS One 2016; 11(12): e0168216.
[http://dx.doi.org/10.1371/journal.pone.0168216] [PMID: 27977757]
[55]
Mosca A, Crudele A, Smeriglio A, et al. Antioxidant activity of hydroxytyrosol and vitamin E reduces systemic inflammation in children with paediatric NAFLD. Dig Liver Dis 2021; 53(9): 1154-8.
[http://dx.doi.org/10.1016/j.dld.2020.09.021] [PMID: 33060043]
[56]
Barathikannan K, Chelliah R, Rubab M, et al. Gut microbiome modulation based on probiotic application for anti-obesity: A review on efficacy and validation. Microorganisms 2019; 7(10): 456.
[http://dx.doi.org/10.3390/microorganisms7100456] [PMID: 31623075]
[57]
Vajro P, Mandato C, Licenziati MR, et al. Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease. J Pediatr Gastroenterol Nutr 2011; 52(6): 740-3.
[http://dx.doi.org/10.1097/MPG.0b013e31821f9b85] [PMID: 21505361]
[58]
Alisi A, Bedogni G, Baviera G, et al. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with nonalcoholic stea-tohepatitis. Aliment Pharmacol Ther 2014; 39(11): 1276-85.
[http://dx.doi.org/10.1111/apt.12758] [PMID: 24738701]
[59]
Nobili V, Putignani L, Mosca A, et al. Bifidobacteria and lactobacilli in the gut microbiome of children with non-alcoholic fatty liver disease: Which strains act as health players? Arch Med Sci 2018; 1(1): 81-7.
[http://dx.doi.org/10.5114/aoms.2016.62150] [PMID: 29379536]
[60]
Schwimmer JB, Lavine JE, Wilson LA, et al. In children with nonalcoholic fatty liver disease, cysteamine bitartrate delayed release im-proves liver enzymes but does not reduce disease activity scores. Gastroenterology 2016; 151(6): 1141-1154.e9.
[http://dx.doi.org/10.1053/j.gastro.2016.08.027] [PMID: 27569726]
[61]
Vos MB, Jin R, Konomi JV, et al. A randomized, controlled, crossover pilot study of losartan for pediatric nonalcoholic fatty liver dis-ease. Pilot Feasibility Stud 2018; 4(1): 109.
[http://dx.doi.org/10.1186/s40814-018-0306-4] [PMID: 29992039]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy