Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Synthesis of N,N-diethylaminopropylurea and Monosubstituted Urea Derivatives from Primary Amines and Potassium Cyanate

Author(s): Wei-Jin Chang, Sook Yee Liew and Siow-Ping Tan*

Volume 20, Issue 9, 2023

Published on: 03 May, 2023

Page: [877 - 882] Pages: 6

DOI: 10.2174/1570178620666230330083659

Price: $65

Abstract

Urea derivatives are an important class of pharmacologically-active compounds due to their ability to form hydrogen bonds with biological targets. Several synthetic pathways have been developed to access urea derivatives, such as the metal-free and metal-catalysed carbonylation reactions of amines and the Curtius, Hofmann, and Tiemann rearrangement reactions. This study aimed to synthesize urea derivatives from primary amines. The urea derivatives were synthesized from primary amines and potassium cyanate in 1M HCl aqueous solution under ambient conditions and were isolated, followed by characterization using FTIR, DSC, and NMR (1H and 13C). A new urea derivative, N, N-diethylaminopropylurea (6), together with N-phenylurea (1), para-tolylurea (2), orthomethoxyphenylurea (3), para-methoxyphenylurea (4), N-benzylurea (5), and N-butylurea (7), was successfully synthesized under acidic conditions. This work presents the synthesis and characterization data of a newly-reported urea derivative, N, N-diethylaminopropylurea (6), and extends the substrate scope to basic side chains in the synthesis of urea derivatives from primary amines and potassium cyanate in water.

Keywords: N-benzylurea, N N-diethylaminopropylurea, NMR, urea derivatives, para-methoxyphenylurea, orthomethoxyphenylurea.

Graphical Abstract
[1]
Ghosh, A.K.; Brindisi, M. J. Med. Chem., 2020, 63(6), 2751-2788.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01541] [PMID: 31789518]
[2]
Volz, N. Clayden. J. Angew. Chem. Int. Ed., 2011, 2011, 12148-12155.
[3]
Yin, Y.; Zheng, K.; Eid, N.; Howard, S.; Jeong, J.H.; Yi, F.; Guo, J.; Park, C.M.; Bibian, M.; Wu, W.; Hernandez, P.; Park, H.; Wu, Y.; Luo, J.L.; LoGrasso, P.V.; Feng, Y. J. Med. Chem., 2015, 58(4), 1846-1861.
[http://dx.doi.org/10.1021/jm501680m] [PMID: 25621531]
[4]
Zarei, O.; Azimian, F.; Hamzeh-Mivehroud, M.; Shahbazi Mojarrad, J.; Hemmati, S.; Dastmalchi, S. Med. Chem. Res., 2020, 29(8), 1438-1448.
[http://dx.doi.org/10.1007/s00044-020-02559-8]
[5]
Abdelhaleem, E.F.; Abdelhameid, M.K.; Kassab, A.E.; Kandeel, M.M. Eur. J. Med. Chem., 2018, 143, 1807-1825.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.075] [PMID: 29133058]
[6]
Brown, J.R.; North, E.J.; Hurdle, J.G.; Morisseau, C.; Scarborough, J.S.; Sun, D.; Korduláková, J.; Scherman, M.S.; Jones, V.; Grzegorzewicz, A.; Crew, R.M.; Jackson, M.; McNeil, M.R.; Lee, R.E. Bioorg. Med. Chem., 2011, 19(18), 5585-5595.
[http://dx.doi.org/10.1016/j.bmc.2011.07.034] [PMID: 21840723]
[7]
Tale, R.H.; Rodge, A.H.; Hatnapure, G.D.; Keche, A.P. Bioorg. Med. Chem. Lett., 2011, 21(15), 4648-4651.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.062] [PMID: 21737269]
[8]
Patil, M.; Noonikara-Poyil, A.; Joshi, S.D.; Patil, S.A.; Patil, S.A.; Bugarin, A. Antibiotics, 2019, 8(4), 178.
[http://dx.doi.org/10.3390/antibiotics8040178] [PMID: 31600950]
[9]
Gündüz, M.G.; Uğur, S.B.; Güney, F.; Özkul, C.; Krishna, V.S.; Kaya, S.; Sriram, D.; Doğan, Ş.D. Bioorg. Chem., 2020, 102, 104104.
[http://dx.doi.org/10.1016/j.bioorg.2020.104104] [PMID: 32736149]
[10]
Wang, H.; Zhai, Z.W.; Shi, Y.X.; Tan, C.X.; Weng, J.Q.; Han, L.; Li, B.J.; Liu, X.H. J. Mol. Struct., 2018, 1171, 631-638.
[http://dx.doi.org/10.1016/j.molstruc.2018.06.050]
[11]
Manley, P.W.; Breitenstein, W.; Brüggen, J.; Cowan-Jacob, S.W.; Furet, P.; Mestan, J.; Meyer, T. Bioorg. Med. Chem. Lett., 2004, 14(23), 5793-5797.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.042] [PMID: 15501042]
[12]
Sashidhara, K.V.; Rosaiah, J.N.; Tyagi, E.; Shukla, R.; Raghubir, R.; Rajendran, S.M. Eur. J. Med. Chem., 2009, 44(1), 432-436.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.018] [PMID: 18243423]
[13]
Harada, N.; Kimura, H.; Ono, M.; Saji, H. J. Med. Chem., 2013, 56(20), 7890-7901.
[http://dx.doi.org/10.1021/jm400895s] [PMID: 24063417]
[14]
Mizuno, T.; Mihara, M.; Nakai, T.; Iwai, T.; Ito, T. Synthesis, 2007, 2007(20), 3135-3140.
[http://dx.doi.org/10.1055/s-2007-990793]
[15]
Xu, M.; Jupp, A.R.; Ong, M.S.E.; Burton, K.I.; Chitnis, S.S.; Stephan, D.W. Angew. Chem. Int. Ed., 2019, 58(17), 5707-5711.
[http://dx.doi.org/10.1002/anie.201900058]
[16]
Marchegiani, M.; Nodari, M.; Tansini, F.; Massera, C.; Mancuso, R.; Gabriele, B.; Costa, M.; della Ca, N. J CO2 Util., 2017, 21, 553-561.
[17]
della Ca’, N.; Bottarelli, P.; Dibenedetto, A.; Aresta, M.; Gabriele, B.; Salerno, G.; Costa, M. J. Catal., 2011, 282, 120-127.
[http://dx.doi.org/10.1016/j.jcat.2011.06.003]
[18]
Kim, S.H.; Hong, S.H. Org. Lett., 2016, 18(2), 212-215.
[http://dx.doi.org/10.1021/acs.orglett.5b03328] [PMID: 26695391]
[19]
Naktode, K.; Das, S.; Bhattacharjee, J.; Nayek, H.P.; Panda, T.K. Inorg. Chem., 2016, 55(3), 1142-1153.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02302] [PMID: 26789927]
[20]
Mizuno, T.; Nakai, T.; Mihara, M. Synthesis, 2010, 2010(24), 4251-4255.
[http://dx.doi.org/10.1055/s-0030-1258299]
[21]
Krishnakumar, V.; Chatterjee, B.; Gunanathan, C. Inorg. Chem., 2017, 56(12), 7278-7284.
[http://dx.doi.org/10.1021/acs.inorgchem.7b00962] [PMID: 28558205]
[22]
Kumar, G.S.; Kumar, R.A.; Kumar, P.S.; Reddy, N.V.; Kumar, K.V.; Kantam, M.L.; Prabhakar, S.; Reddy, K.R. Chem. Commun., 2013, 49(59), 6686-6688.
[http://dx.doi.org/10.1039/c3cc42381f]
[23]
Wang, L.; Wang, H.; Li, G.; Min, S.; Xiang, F.; Liu, S.; Zheng, W. Adv. Synth. Catal., 2018, 360(23), 4585-4593.
[http://dx.doi.org/10.1002/adsc.201800954]
[24]
Rajesh, M.; Puri, S.; Kant, R.; Sridhar Reddy, M. J. Org. Chem., 2017, 82(10), 5169-5177.
[http://dx.doi.org/10.1021/acs.joc.7b00417] [PMID: 28429946]
[25]
Singh, A.S.; Agrahari, A.K.; Singh, S.K.; Yadav, M.S.; Tiwari, V.K. Synthesis, 2019, 51(18), 3443-3450.
[http://dx.doi.org/10.1055/s-0039-1689937]
[26]
Liu, P.; Wang, Z.; Hu, X. Eur. J. Org. Chem., 2012, 2012(10), 1994-2000.
[http://dx.doi.org/10.1002/ejoc.201101784]
[27]
Wang, C.H.; Hsieh, T.H.; Lin, C.C.; Yeh, W.H.; Lin, C.A. Synlett, 2015, 26, 1823-1826.
[28]
De Luca, L.; Porcheddu, A.; Giacomelli, G.; Murgia, I. Synlett, 2010, 2010(16), 2439-2442.
[http://dx.doi.org/10.1055/s-0030-1258553]
[29]
Carnaroglio, D.; Martina, K.; Palmisano, G.; Penoni, A.; Domini, C.; Cravotto, G. Beilstein J. Org. Chem., 2013, 9, 2378-2386.
[http://dx.doi.org/10.3762/bjoc.9.274] [PMID: 24367403]
[30]
Kulkarni, A.R.; Garai, S.; Thakur, G.A. J. Org. Chem., 2017, 82(2), 992-999.
[http://dx.doi.org/10.1021/acs.joc.6b02521] [PMID: 27966953]
[31]
Li, Z.; Xiao, S.; Tian, G.; Zhu, A.; Feng, X.; Liu, J. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(5), 1124-1133.
[http://dx.doi.org/10.1080/10426500701578506]
[32]
Fioravanti, S.; Marchetti, F.; Morreale, A.; Pellacani, L.; Tardella, P.A. Org. Lett., 2003, 5(7), 1019-1021.
[http://dx.doi.org/10.1021/ol027509e] [PMID: 12659563]
[33]
Shi, F.; Deng, Y. SiMa, T.; Peng, J.; Gu, Y.; Qiao, B. Angew. Chem., 2003, 115(28), 3379-3382.
[http://dx.doi.org/10.1002/ange.200351098]
[34]
Tiwari, L.; Kumar, V.; Kumar, B.; Mahajan, D. RSC Advances, 2018, 8(38), 21585-21595.
[http://dx.doi.org/10.1039/C8RA03761B] [PMID: 35539945]
[35]
Tan, S.P.; Nafiah, M.A. Lett. Org. Chem., 2021, 18(5), 395-399.
[http://dx.doi.org/10.2174/1570178617999200730204856]
[36]
Chin, E.Z.; Tan, S-P.; Liew, S.Y.; Kurz, T. J. Chem., 2021, 23, 19-25.
[37]
Tan, S.P.; Ahmad, K.; Nafiah, M.A. Tetrahedron, 2017, 73(32), 4805-4810.
[http://dx.doi.org/10.1016/j.tet.2017.06.059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy